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Abstract: We prove existence results for the solutions of the periodic boundary value
problem concerning the n-th order functional differential equation with impulses effects

x® (1) = (£, x(t), x(ay (1)) -+, x(,, (1)), ae.te[0,T],
AX(i)(tk) = Ii,k(x(tk)""’X(n_l)(tk))’ k=1,--p,
and the periodic boundary conditions
x(0) = x"(T),i=0,---,n-1.
Our method is based upon the coincidence degree theory of Mawhin and some technical
inequalities. Examples are presented to illustrate the main results.
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1. INTRODUCTION

In this paper, we investigate the periodic boundary value problem ( PBVP for short )
consisting of the n-th order functional differential equation with impulses effects
{X(n) (1) = F(t,x(t), x(0oy (1)) -, x(a, (1)), ae.te[0,T],

AXO () = 1 (X (), X)), k=1, .

and the periodic boundary conditions

x®(©0)=x"(T),i=0,1,---,n—-1, (2)
where T>0 is a constant, f:[0,1]xR™" — R is an impulsive Carathedeodory function,
n>2 an integer, I, are continuous functions, a; € C'([0,T],[0,T]).
The motivation for this paper is as follows. First, there exist many papers concerning with the
solvability of the PBVPs for first order ordinary or functional differential equations, see
(NIETO 2002, FRANCO 1998, NIETO 1997, HE 2002, LADDE 1985, JIANG 2004, HAKL
2003, NIETO 2002, CABADA 1994, NIETO 1996, PIERSON-GOREZ 1993, VATSALA
1992, LIU 1990). We now discuss briefly several of the appropriate papers on the topic.

The pioneer papers concerning the solvability of PBVP may be (HU 1989) and (BAINOV
1989). In (NIETO 1997), Nieto studied the PBVP
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X'() +Ax(t) = F(t, x(1)), te[0, TI\{t;,---,t.},

X(t) —x(t) = L (x(t,)), k=1,---,p 3
x(0=x(T),

where L #0, J =[0,T],0=t, <t <---<t <t , =T, by using fixed point theorems and
lower and upper solution methods.

In (NIETO 2002) and (NIETO 1996), Nieto considered the following PBVP for first order
impulsive differential equation

X'(t)+F(t x()=0, aete[0,1]\{,,---,t,},
X(t7) = X(t) = I, (x(t)), k=1.2,p @)
x(0) = x(T),
where 0=t, <t <--<t <t =1, F is an impulsive Caratheodory function, I, is
continuous. The methods used in these papers are different from those in (NIETO 1997).

In (FRANCO 1998), Franco and Neito studied the first order PBVP
X'(t) = f(t, x(t)), ae.ted\{t, -t}
X(t) = x(t) = L (x(t,)), k=12:---,p (5)
x(0) = x(T).
Using upper and lower solutions method and the monotone technique, they proved (5) has at
least one solution under the existence assumptions of lower solution o and upper solution f3.
In a recent paper (LI 2006), Li and Shen studied the PBVPs consisting of the functional
impulsive differential equations
x'(t) = f(t,x(t),x(6(t)), te[0, T, t #t,, k=1,---,m,
AX(ty) = L (x(t)), k=1,---,m, (6)
x(0) = x(T),
by using upper and lower solution methods and monotone techniques under certain
assumptions, but their methods are different from those in (FRANCO 1998).
Second, there exist some papers concerned with the solvability of PBVPs for the second order
functional differential equations with or without impulses effects, see (CABADA 2000,
JIANG 2004, CHEN 2006, LAKSHMIKANTHAM 1984, GUO 1997, DING 2004, JIANG
2005). We address some of the relative papers.
Jiang, Chu and Zhang (JIANG 2005) studied the PBVP
x"(t)+a(t)x(t) = f(t,x(t),te[0,T], 7)
x(0) = x(1), x'(0) =x'(1),
where f has a repulsive singularity near x =0 using nonlinear alternative of Leray-Schauder
type and of Krasnoselskii fixed point theorem on compression and expansion in cones.
Kiguradze and Stanek (KIGURADZE 2002) studied the following PBVP
x"(t) = f(t,x(t),x'(t)), t [0, T], (8)
x(a) = x(b), x'(a) =x'(b),
their methods are based upon upper and lower solution methods and monotone iterative
technique.
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In (DING 2004), Ding, Han and Yan investigated the following PBVP
{x”(t) =f(t, x(t),x(6(t))), t [0, T], )
x(0) = x(T), x'(0) = x'(T),

the proofs are based upon upper and lower solution methods and comparison principle.
In (CHEN 2006), Chen and Sun studied the existence of positive solutions of the following
PBVP of the second order impulsive functional differential equations

—x"(t) = f(t,x(t),x(6(t))), te[0, T}, t #t,,k=1,---,m,

Ax(t,) = L (x(t,)), k=1,---,m,

AX'(t) = L (X(t,)), k=1,---,m,

X(0) = x(T) +ky, x'(0) = Ax'(T) +k,.
Using upper and lower solution methods and monotone iterative technique, they established
existence results for above problems. PBVP(10) contains the following PBVP

—Xx"(t) = f(t,x(t),x(6(t))), te[0, T}, t #t,,k=1,---,m,

Ax(t) = L (x(t,)), k=1,---,m,

AX'(t) = L (X(t,), k=1,---,m,

x(0) = x(T), x'(0) = x'(T)

(10)

as special case.

In papers (GUO 1997, YANG 2007, LIANG 2007, DING 2005, DING 2004, HU 1989), the
authors, by developing some new comparison results and using the monotone iterative
technique, obtained existence of minimal and maximal solutions of some PBVPs for
second-order nonlinear impulsive differential, functional differential or integro-differential
equations.

There exist a few papers concerned with the solvability of the PBVPs of higher order
functional differential equations, see (KONG 2001, CHU 2006, LIU 2005, CONG 1998,
CONG 2000, LI 2007, LIU 2005, CONG 2004). We give a simple list concerned with this
topic.

Chu and Zhou (CHU 2006), Kong, Wang and Wang (KONG 2001) studied the existence of

solutions of the following PBVP
X"'(t)+ p°x(t) = f(t,x(t))t[0,T], 1)
x(0) = x(2x), X'(0) = x'(27x),

Cong and Huang (CONG 1998, CONG 2000, CONG 2004) established the existence results
for solutions of the following PBVP

n-1
x@ 1+ 3"cx @ (1) = (1, (1)), t [0,2n],
2 (12)
x(i)(O) = X(i)(ZTE), i=0,---,2n-1
and
n-1
x@ D 13 e x @ (1) = (t, x(t)), t e[0,2n],
2. (13)
X(i)(o) — X(i)(ZTI:), i= 0,...,2n,
respectively. Li, Li and Liang in (L1 2007) studied the following PBVP



256

Y.LIU

(- 1)mx<2m>+2( )™ x @D (t) = £ (t,x(1)), t € [0,1], (14

x®(0) = x(')(l) i=0,---,2m-1
In a recent paper (LIU 2005, LI1U 2005), L|u and Ge, different from (CHEN 2006, KONG
2001, CHU 2006, CONG 1998, CONG 2000, L1 2007), studied the following PBVP

x™ +Zc xD (1) = f(t,x(1)), t €[0,2n],

(15)
x(')(O) x(')(2n) i=0,---,n-1
and
x™ =f(t,x(t), -, x" (1)), t [0, T],
{x(‘)(O):x("(T), i=0,---,n-1 (16)

To the best of our knowledge, the existence of solutions of the PBVPs of the higher-order
impulsive functional differential equations has not been well studied till now. Our purpose is
to provide sufficient conditions for the existence of solutions of PBVP(1)-(2). This will be
done by applying the well known coincidence degree theory and some technical inequalities.
The methods used is different from those used in papers (CHEN 2006, GUO 1997, YANG
2007, LIANG 2007, DING 2005, DING 2004, VATSALA 1992, HU 1989) and the text book
(BAINOV 1993).

The organization of this paper is as follows. In section 2, we present some preliminary results.
The main results concerned with the even order case will be given in section 3, and concerned
with the odd order case in section 4 , and the examples to illustrate the main results will be
given in section 5.

2. Preliminary Results

To establish sufficient conditions for the existence of at least one solution of PBVP(1)-(2), we,
in this section, introduce some notations and an abstract existence theorem by Gaines and
Mawhin (GAINES 1977).

Let X and Y be Banach spaces, L :dom L(c X) — Y be a Fredholm operator of index zero,

P:X—>X, Q:Y —Y be projectors such that
ImP=KerL,KerQ=ImL, X=KerL®KerP, Y=ImML®ImQ.
It follows that
L |gom Lkerp-dom LN Ker P — Im L

is invertible, we denote the inverse of that map by K.

If Q is an open bounded subset of X, dom LNQ # &, the map N: X — Y will be called
L -compact on Q if QN(ﬁ) is bounded and K, (I-Q)N QX is compact.

Lemma 2.1 (GAINES 1977). Let L be a Fredholm operator of index zero and let N be
L -compact on Q. Assume that the following conditions are satisfied:
(i). Lx#ANXx for every (x,A) e[(domL \ KerL) noQ]x(0,1);
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(ii). Nx ¢ ImL for every x e KerLMnoQ;
(iii). deg(/\QN|KerL, QN KerL,0) #0, where A:KerL — Y/ImL is an isomorphism.
Then the equation Lx = Nx has at least one solution in domLNQ.
Let u:J=[0,T]>R,and 0=t, <t <---<t <t ,, =T, for k=0, p,define the function
u,:(t,, t,..]—>R by u,(t) =u(t). We will use the following real Banach spaces
u:J > Ru, eC’t,t._ ], k=0,---, p, there exist the limits
X =1 limu(t), lim u(t) = u(0)

toty t—0"
and Y = XxR™ with the norms || u||=sup, | u(t)| for ue X and

uwhmw@uwmmﬂxuﬁ

1<k<np

for y={u,x;,~--, X, }eY.
A function F is an impulsive Carathedeodory function if

* F(e,Uq,Uy,---,u_)eX foreach ueR™;

* F(t,e,---,@) is continuous for a.e. teJ;

« for each r>0 thereis h, € L"(J) so that

| F(t,ug,up,--,u,) [<h (1), ae.te J\{t, -t}

and every u satisfying || (ug,u,,---,u,)|[>r.

By a solution of PBVP(1)-(2) we mean a function u e X satisfying (1) and (2).
Define the linear operator L and the nonlinear operator N by

x™(t)
AX(t,)

AXI(t,)
L:XndomL—>Y, Lx(t)=]- for x e domL,

AX(t,)

AX(t)

where
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xe X :x{" e C°t,,t,,,].k =0,---, p, there exist the limits [im x (t) = x"(t,),

t—)tk

domL =< 1im x” (1), lim x(t) = x?(0), 1im x®(t) = x(T),

tot) t—>ot to>T ™

withx®(0) = x™(T),i=0,---,n-1

f(t! X(t)v X(al(t))! ] X(O(’m (t)))
Io,l(x(tl)v"HX(n_l) (t1))

s (), X (1)-

N:X->Y, Nx(t)=|"

1oy (X(t, ) X" ()

In—l,p (X(tp)’ T X(nil) (tp))
for x e X.

Lemma 2.2. The following results hold.
(i). KerL={x(t)=c,te][0,T], ceR};

.
(ll)' ImL = {(y(t)!ao,l"“’aO,p’“.'an—l,l’“ "an—l,p) € Y! J.O y(U)dU +Zizlan—l,k = 0}’
(iii). L is a Fredholm operator of index zero;
(iv). There exist projectors P: X — X and Q:Y — Y such that KerL =ImP and
KerQ =ImL. Furthermore, let Q < X be an open bounded subset with QndomL# &,
then N is L—compacton Q;
(v). X(t) is asolution of PBVP(1)-(2) if and only if x is a solution of the operator
equation Lx = Nx in domL.

Proof: The proofs are similar to those of Lemmas in (HE 2002, LADDE 1985, CABADA
2000, LI 2006, JIANG 2004) and are omitted. We list P: X > X,Q :Y =Y and the

generalized inverse K :ImL — domL~ImP and the isomorphism A :KerL — Y/ImL .
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Px(t) = x(0) for xe X,
Q(y(t)’ao,li""aO,p”“’an—l,l1“"an—l,p)

(1 1
= (?J.O y(s)ds + ?;an_lyp,or oJ
for(y'ao,l’ ’ aOp’ han_ 1,10 a, 1p)€Y
K (y(t) Qo1 Op’ LR TARATEC M 1p)

(t=9)"" S)nl N (t-9)" S)
J' 1)| Z 1)' j _ > a,ds+ Z aOk

0 o<ty <S 0<tk

for (y7aO,l""’aO,w“"an—l,l’ A, 1p)€Y
A(c)=(c,0,---,0) forceR.

Suppose the followings which will be used in the main results.
(A;). There exist impulsive Caratheodory functions h(t,x,, X, -, X,,), e(t) and

g;(t,x)(i=0,1,---,m), positive number § and q such that
o f satisfies

f(tlxo'xly""xm):e(t)+h(t’Xo’xl""!xm)+zgi(t'xi)’
i=0
e h satisfies
(—1)”X0h(t,XO,X1, :
forall te[0,T] and (x,,X,, -+, X,,) € R™",
e (; satisfies

)< B Ix, '

1 m

limsup 0., )|—r fori=0,1,

Xomtdor] | X[
with r, >0 for i=0,1,---,m
(A,). There exist impulsive Caratheodory functions h(t,X,,X;,---,X,), e(t),
g;(t,x)(i=0,1,---,m), positive number § and q such that
o f satisfies

f(taxo'xlf”"xm):e(t)+h(t’xo’xl""’xm)"‘zgi(tvxi)’
i=0
e h satisfies
(—1)”X0h(t,X0,Xl,---,Xm)2B|XO |qul
forall te[0,T] and (X4, X;,-+,X,,) € R™,
e (; satisfies

limsup 0., )|—r fori=0,1,

[X|—o0,te[0,T] | X |q

with r; 20 for i=0,1,---,m
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(A,). There exists a constant M, >0 such that

1T 18
_?J‘Of(t,c,c,---,c)dt+?kzz;lnLk(c,O,---,O) >0

(@)

forall |c|> M, or

()

1 1
?jof(t,c,c,--',c)dt+?ZIn_1yk(c,O,~--,O) <0

forall |[c|> M,.
(A,). There exist positive functions p;,r € X so that
(5, X0 Xy o, X ) [dS < D pi (D) %, [T +1(1), te[0,T]

i=0
3. Existence Results for the Even Order Case

The even order case of PBVP(1)-(2) is as follows.
X (1)) = (6, x(), x( (1), X(a,, (1)), ae.te[0,T],
AXO(t) = 1 (Xt x@ P (t,)), k=1,--,p,i=0,---,2n -1, @an
x®(0)=x"(T), i=0,---,2n-1,
where n >1 is an integer. Suppose
(A,). Forall (x,,---,X,,,)€R*" and i=1,---,n, we have
(_1)i+n(xznfi Ii—l,k (Xoy' T X2n—1) + Xi—1|2n—i,k (Xo" " X2n—1)+ Ii—l,k (Xo""’ X2n—l) I2n—i,k (Xo" T X2n—1))2 0
(A;). Forall (x,,-+,X,,,)€R* and i=1,---,n-1 we have
X (X + 1 (Xg,7++1 X504)) 2 0
(A;). There exist constants o, >0 such that |1, (Xg, -+, X, ) < o, | X; | with

Zkl Ik l i=0 -’n—land k:l,...,p;

Theorem 3.1. Suppose (A,), (A;), (As), (A) and (A,) hold. Then problem (17) has at
least one solution if

o+ D 1By 1790 < B, (18)
k=1

where s =3, (u) is the inverse function of u=a,(S), k=1,---,m
Proof. To apply Lemma 2.1, we should define an open bounded subset Q of X so that (i),
(i) and (iii) of Lemma 2.1 hold. It is based upon three steps to obtain Q. The proof of this
theorem is divide into four steps.
Step 1. Let

Q, ={xedomL\ KerL, Lx = ANx for some 4 € (0,1)}.

We prove €, is bounded. Suppose x € €2,. Then
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XV (t) = Af (t, x(t), x(e (1)), X(a,, (1)), t € [0, T, t £t , k =1,---, p,
AXO () = Al (X)), xE (), k =1,-++,p,i=0,---,2n -1, (19)
xP(©0) = x"(T), i=0,---,2n—-1.

Substep 1.1. Prove that there is a constant M > 0 such that LT | X(S) "™ ds< M.

Multiplying both sides of the first equation of (19) by x(t), integrating it from0to T, we get
from (A,) that

Zn:(—l)”l( (2n-i) (-I-)X(i—l) (T) - x @) (O)X(i—l) (O))
3 S () X () () [ o s

XI f(s, x(s) X(a,(S)),- -+, X(a,(S)))x(s)ds
( [[ (s, X(9), X(01,(9)), -, X(ct, (£))X($)ds + [0, (5, X(8))x(5)ds

- .Zn:Ingi (8, X(01;(s))x(s)ds + LTE(S)X(S)dsj.

It follows from (A;), for i=1,---,n and k=1,---,p, that

(=)™ D XD () =X ()X (1)
= (_1)i+n (X(Zn_i) (tk)li—l,k (X(tk)! T X(zn_l) (tk)) + X(i_l) (tkiIZn—i,k (X(tk)v T X(Zn_l) (tk))

+ Ii—l,k (X(tk)l"'ax(zn_l) (tk))IZn—i,k (X(tk)l"'ax(zn_l) (tk))
> 0.

Hence we get
(2)7( [} X6 Xt (&) X(01, DI+ [ g 6 X(OX(5)s
+ Z (0,5, x(c (8))x(9)ds + j;e(s)x(s)ds] >0,
It follows from (A,) It:rl\at
B[, 1x()[" ds
(—1)“[ [[ 90 x(s)x(s)ds + Zl: [[0:(s.x(0 (@) x(5)ds + IOTe(s)x(s)ds]
[ 106X X s+ D[ 19,65, x(ct 60 1 x(6) [ ds + [ 1e() 1 x(5) [ s
Choose ¢ >0 satisfy that -

IA

IA

(o +&) + 2 (r +e) [ By 1K <. (20)
k=1
For such £ >0, there is >0 so that for every i=0,1,---,n,
| 9;(t,x)|< (r, + &) | x|" uniformly for te[0,T]and | x|> 6. (21)

Let, for i=1,---,n,
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Ay ={t:te[0T] [ x(e (1) [0}, Ay ={t:t [0 T] [ (s (1)) [> 6}, 955 = maxqorypss | Gi (6, X) |,
and A, ={t<[0,T],| x(t) |< &}, A, ={t €[0, T],| x(t) |> 6}. Then we get

B[, Ix(s)[** ds < J, 195 x@ 1x(s) [ds+ [, 195 (5,x() I1x(5) | ds

IN

IN

IN

+le“ EXCHCIONEOTEES Y AREICHCION OTES
+ [ 1e(s) I x(@) | ds )
(1, +e)[ X(6) [ ds+ kzr:(rk &) 1x(e, () 1) 05
+ /16 1x(0) 1 ds+ >0, [ 1)
G+ 1@ ds.
S o [ I @) ([xor )
( [ 1e(s) [ ds)q/(q+l) ( NECLE ds)mqﬂ)
+295kj | ()| ds
(1o + )] 1x(5) " s
(T) : v o 1(g+1)
#2009 [ X 1B, (u)|du‘ ([ 1x0)1 o)
+U0 | e(s) [ dS)q/(q+l) ( [ 1x@ ds)

1/(gq+1)

m T 1/(g+1)
#0577 [[1x(6) 1 s

k=0

(r +&)[ 1x(5) [ ds

m 0 e - . ] ala+) /o1 0 d 1/(q+1)
#2200 ) 1B I ([T e ) ([T os)
T W(a+l) o 7 1(q+1)
+UO | e(s) [ ds) UO IX(s) [ ds)

m T 1/(g+1)
#2707 [ 1x66) 1 o)

((r £+ 2+ o) B, I j [T Ix(s) [ ds

U le(s) |(q+1)/q ds) (L | X(s) [ dsjll(qﬂ)

Toa+D) 01 g v
>0, [ 1x@ [ ds
k=0

It follows from (20) that there is a constant M >0 such that IOT | X(S) " ds< M.



263
SDU FEN EDEBIYAT FAKULTESI
FEN DERGISI (E-DERGI). 2007, 2(2), 253-272

Substep 1.2. Prove that there is a constant M, >0 so that || x ||, < M,.

It follows from Substep 1.1 that there is £ [0, T] so that | x(&) |< (M/T ). On the other
hand, we get

IO ds = a-1)" [FsX(6) X0 (6 X(ot (SN)X()dS
DX ()X (1) - x (6, )X (1,)]
(2" [} X9 X0t 5.+ X(a (DX(E)ds + 19 5. X(Dx()3s
+ i [[0:(s.x(a (&)x(s)ds + jOTe(s)x(s)dsj
SBL X1 ds+ [ 1, (6 XE) 16 1ds + X[ 19, (5 x(e, ) 1 x(6) | s
+[ 1e®)1x6)]|
((ro +8)+ 2 (1 +) 1By 20 j [ 1x(s)"* ds
T » W) /g Y(g+)
+[ [ Tes) o dsj ( INECTY
m T 1/(q+1)
#2057 [[1x(6) [ s
((r0 v+ D +e) | B U JM + ( [[ 1e(s) " ds)“’“‘“’ MY@D

m
+ Zg 8]k-|-q/(q+l) M 1/(q+1)
k=0
2

Now, we see for t [0, T] from (A,) that

IN

IN

IN

IA

XOI = K@+2 > It x® () + [x(©)ds

t<t, <EOrE<t, <t

b T
< (MMM 1 Y a, I+ 1X(6) ] ds.
k=1

Hence
T %{(M/T)ﬂw +[ X ds )

l—Zao’k
k=1

Fori=1,---,n—1, it is easy from (A,) to get that there is & [0, T] such that x”(&,) =0,
then from (A,), we have
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i i e
X0 = XO@) A > KX ) + [ XV ()ds
5 <t <tort<t, <t i
P

< Yo IxO L +f x40 () |ds.

k=1

This implies that
[ 1 T i+
IXO ), < ——[ [x"(s)| ds.

1-) a4,
k=1
Hence
Ixl, < —=—|mre T 2 [1x0 @) ds
1- Z‘lo,k - Zajk
k=1
n-1 12
< —pl (M/T)l’(q+1’+T”‘1H—p1 UOT|X(H)(S)|dsj
1_Zao,k = 1_Zaj,k
k=1 L k=1
1 U(g+l) | Tn-L - 1 12
< ——— | (MM 4T Hp—M2
1-> 0, P> ay,
k=1 L k=1
= M.
It follows that €, is bounded.
Step 2. Let

Q, ={x e KerL, Nx € ImL}.
We prove Q, is bounded. Suppose x € Q),, then x(t)=ceR and

P
[fteco0dt+ Y1, (€0,+-,0) =0.
k=1

It follows from (A,) that |[c|< M, .
Step 3. If the first case in (A;) holds, let

Q, ={xeKerL, AAX+(1-1)QNx =0, A €[0,1]},
where A :KerL — ImQ is the linear isomorphism given by A (c) =(c,0,---,0) for all ceR.
Now we show that Q. is bounded. Suppose x,(t)=c, €Q, and |c, | >+ as n tends to
infinity. Then

A (C,)+ (1-x)($ﬂf (t,cn,---,cn)dt+zp“ln_1vk(cn ,o,---,0)j =
So
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p
AC? = —(1—k)cn(%ﬂf (t,C,0Cpeen Gt + D1 (c, ,0,---,0)].
k=1

If A=1, then ¢, =0. If L<[0,1) and |c, |>M,, then Ac2 <0, a contradiction. Hence
|c, [£M,. Q, is bounded.
If the second case in (A;) holds, let

Q, ={xeKerL, AAXx—-(1-1)QNx =0, A €[0,1]}.
Similar to above discussion, we get Q. is bounded.
In the following, we shall show that all conditions of Lemma 2.1 are satisfied. Let QO be a
non-empty open bounded subset of X centered at zero point such that Q o uiilﬁi centered

at zero. By Lemma 2.1, L is a Fredholm operator of index zero and N is L —compacton Q.
By the definition of Q, we have
(a). Lx# ANX for x € (domL \KerL) noQ and A €(0,1) ;

(b). Nx¢gImL for x e KerLnoQ).
Step 4. We prove (c¢). deg(QN |, , 2" KerL,0) #0.
In fact, let H(X,A)=A Ax+(1-A)QNx . According the definition of Q , we know
H(x,A) # 0 for x e Q2 ~KerL, thus by the homotopy property of degree,
deg(QN | KerL,Q n KerL,0) = deg(H (-,0), 2 n KerL,0)
= deg(H(-1),QnKerL,0) = deg(l,Q2n KerL,0) # 0 since 0 € Q.

Thus by Lemma 2.1, Lx = Nx has at least one solution in domL~Q, which is a o periodic
solution of equation (17). The proof is complete.

4. Existence Results for the Odd Order Case

The even order case of PBVP(1)-(2) is as follows:
x @ (1)) = F(t, x(t), X(a (1) -+, X(ar,, (1)), ae.te[0,T],
Ax(i)(tk) = Ii,k(x(tk)v"'lX(zn)(tk))' k=1,---,p, (22)
xM(0)=x"(T), i=0,---,2n,
where n >1 is an integer. Suppose
(A,). Forall (x,,---,X,,) € R**" and i=0,---,n we have
In,k(Xo""'in)(zxn +1 k(%o X5,)) 20,
(=) Xl Koo =+3 X0 ) + Xi g i (Xgr 5 X )
+Ii,k(XO’”"X2n)|2n—i,k(X0'”"XZn))Z0'

(A,). Forall (x,,---,X,,) € R*" and i=0,---,n we have
In,k(XO"”’XZn)(ZXn+In,k(X0'”"X2n))S01

(_1)i+n Xonoili Kor o1 X0 ) + Xl (Xgae 00 X50)
+ Ii,k(XO""1X2n)|2n-i,k(xo""vX2n))§O-

(A,). For all (xy,--+,X,,)eR*" and i=1,---2n-1 and k=1,---,p we have
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Xi (X + 1 (Xoue++,X5,)) 20
(A,). There exist constants o, >0 such that |1, (Xe, , X,,) [ 0t | X; | With

Z a,<1l,i=0,---2n and k=1,---,p;

k=1_"1,k

Theorem 4.1. Suppose (A,), (A;), (A, (Ag), (Ag), (Ay) and (A;;) hold. Then
problem (22) has at least one solution if

o+ D 1 Ml B 1740 < B, (23)
k=1

where s =3, (u) is the inverse function of u=0o,(s), k=1,---,m
Proof: To apply Lemma 2.1, we should define an open bounded subset Q of X so that (i),
(i) and (iii) of Lemma 2.1 hold. It is based upon three steps to obtain Q. The proof of this
theorem is divide into four steps.
Step 1. Let

Q, ={xedomL\ KerL, Lx = ANx for some 4 € (0,1)}.

We prove €, is bounded. Suppose x € €2,. Then
XM (1) = AF (t, X (1), X (o, (1)), -+, X (o, (1)), t € [0, T], t £ t,, k =1,---,p,
AXO(t) = Al (X(E), -, XE (), k=1,---,p,i = 0,-+-,2n, (24)
x®(0)=x"(T), i=0,---,2n.

Substep 1.1. Prove that there is a constant M >0 so that JOT [X(s) [ ds< M.

Multiplying two sides of the first equation of (24) by x(t), integrating it from 0to T, we get
from (A,) that

nz_i(_l)m(x(zn—i) (T)X(i) (M) - x @) (O)X(i) (0))

_I_z( 1)|+1z( (2n- ')(t )X(')(t )— x@n- ')(tk)X(')(t ))

( 1)n+l i([x(n)(t )] [X(n)(tk)]z)_i_%[xz(-r)_XZ(O)]

AR x(s) X(05(8)), -, X(at, ()X (s)ds
UO (5, X(), X(04 ), X, )X(E)ds + [ gy (5, X(8))x(6)ds

" Zn:joT 9; (8, X(01;(s))x(s)ds + IOTE(S)X(s)dsj.

It follows from (A,), for i=1,---,n, that

(=)™ [x @ ()% O () - x @ (1, )xO (1, )
(_1)I+n(XZn—iIi,k(XO"“’X2n)+XiIZ Lk (Xga i Xgp)

"’Ii,k(xm”"in)lzn—i,k(xov""xzn)j

)

v

and
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[X(n)(tﬁ)]z _[X(n)(tk)]2 = In,k (Xo""’XZn)(ZXn + In,k (XO’“"XZn)) > 0.
Hence we get

(_1)n+1UOTh (8, X(8), (04, (8)), -+, X (et ()X (8)dls + IOT 9o (5, X(8))x(s)ds
+ Z”: LTgi (S, x(a;(s))x(s)ds + Ee(s)x(s)dsj >0.

It follows from (A,) that

B, 1x(9)[* ds

< —(-1)" 9,6 XEXE - (D)"Y 10,05, X(a, ()xX(5)ds - (-1) [le()x(e)ds
< 19, XOXE 05+ Y[ 19,(5,x(0x ()1 x(5) 1 ds + [ () 1) s

Let € >0 satisfy (20). For such € >0, there is 56> 0 so that for every i=0,1,---,n,

| g;(t,x)|< (r. + &) | x|" uniformly for te[0,T]and | x|>J. (25)
Let, fori=1,---,n,
A ={t:te[0,T] [ x(e (M) [ 63 Ay ={t:t [0 T] | X(e (D) > 6} 955 = maxeeorymes | 9i (6 X) |,
and A, ={t<[0,T],| x(t) |< 8}, A, ={t [0, T],| x(t) |> &}. Similar to that of Substep 1.1 in

the proof of Theorem 3.1, we get that there is a constant M > 0 so that J:)T | X(s) [ ds< M.

Substep 1.2. Prove that there is a constant M, >0 such that || x ||, < M;.
It follows from Subcase 1.1 that there is &e[0,T] such that |x(&) |< (M/T)Y . (A,)
implies

XOI < )@+h > It x ) + [x s

t<t, <EOrE<t, <t

P T
< (MY 1Y ag I xl, +[ 1X(s) | ds.
k=1

So

T %((M/T)“W [ 1x6)l ds).

1—2‘%’k
k=1

Similar to that of the Substep 1.2, from (A,,), there is & €[0,T] such that x®’(&,) =0 for
i=1,---,2n. Thus we get

. p . .
| XD (@) < o XL, +J'(|)x"+1) (s)|ds, i=1,---,2n.
k=1

So
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) 2n
IO =T ][ X5 ds, i=L2n.
1Y,
k=1

Hence

1 . T 1 T @n
x|l < ——| (MT)"@ 4+ T2 Hp—jo |x@™ (s) | ds

1—2‘(10‘k = 1—Zocj’k
k=1 k=1

1 / e 1
< : (MM L T2 [ ——x
1_Z°‘o,k 1= o
k=1 k=1

Lf{po(s) X6+ 3P, (5) X os 9] +r(s)jds]

2n
— Ly e [ [
1= ot Tl o
k=1 k=1

1Pl [ X ds+ > lpel, [ IX( () ds+ [ r(s)ds}

2n
< —pl (|\/|/T)1’<q+1>+T2“H—p1 x
l—Zoco’k =) g
k=1 k=1

1Bl [ 1X(@) " ds+ Y l1py L1 I [ X ds + joTr(s)dsj

2n
< —pl (M/T)”(q”)+T2”H—pl X
1_Za0,k T1-D o
k=1 k=1

m T W@ g
(n Poll. T+ 2. 11p, LIIB: I T]( NECTREY ) r(s)ds}

1 20 1
< : (MM L T2 [ ———x
l—Z(xo’k 1= ) g
k=1 k=1
m T
(II Poll T+ 1pi 1By 1L, TJM“’(“”) +j0 r(S)dS}
i=1

It follows that €2, is bounded.
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The remainder of the proof are similar to those of the proof of the Theorem 3.1 and are
omitted. The proof is complete.

Theorem 4.2. Suppose (A,), (A), (A)), (Ag) ., (Ay), (Ap) and (A,;) hold. Then

problem (22) has at least one solution if (23) holds.
Proof. It is similar to that of Theorem 4.1 and is omitted.

5. Examples
In this section, two examples are discussed to illustrate the obtained results.

Example 5.1. Consider the problem

K'(0) = o) + [+ X OIDOT + LB IXOF,

AX(t) = ax(t,), k=1,+,p, (26)
AX'(t,) = b X'(t,), k=1,---,p,
x(0) = x(T), x'(0)=x'(T).

Corresponding to problem (17), we have n=1, ai(t):i, ee C([0,T],[0,T]) ,
[
B,B.,a,,b, €R and
(X, ) X ) = (1) +[B+X5IX5" + D BxPT™, 1o (X) = aX, 1y, (X) =b,x.
-

Let
h(t,Xq, X)) = [B+X2IX2%, g, (L, x) = Bx*,i=1,---,m.
B <0 implies that (A,) holds.
b, (2+b,) >0 implies that (A,) holds.
Since n =1, (A;) holds.

> la, <1 implies that (A;) holds.

CDon (t.c,---,c)dt + Zp:|1,k (c,0,--- ,O)} = C[L,Te(S)ds + [B + ZP:BKJCZ“”}

it is easy to see that there is a constant M, > 0 such that (A;) holds if B+ZE:lBk #0.
It follows from Theorem 3.1 that problem (26) has at least one solution if

p p m
B<0. 2 lacI<L, B+ 2B #0.ab,+a,+b =0, 31| B [k <,
k=1 k=1 k=1
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Example 5.2. Consider the problem
" 4 n t +
x"'(t) = e(t) +Bx(t)] l+Zj3i[><(7)]2q g
i=1

AX(ty) = ax(ty), k=1,---,p, (27)
AX'(t,) =bX'(t,), k=1,---,p,

AX"(t,) = ¢, x"(t,), k=1,---,p,

x(0) = x(T), x'(0) =x'(T), x"(0) =x"(T).

Corresponding to problem (22), we have n=1, ai(t):i, ee C([0,T],[0,T]) ,
[
B,B;,a,,b, €R and

f(t,Xg, X)) = €(t) +Bxgq+l +iBiXi2q+ll Lo, (X) =a,X, 1y, (X) =b,x.
Let 1
h(t X, X)) = BX3™™, 0, (6,X) = BX*H, i =1, m.
B <0 implies that (A,) holds.
b, >-1and b, (2+b,)>0 implies that (A,,) holds.
a, +b, +a,b, =0 implies that (A;) holds.
Since n=1, (A,) holds.

>0 la <1, > |b |<land Y |c, <1 imply that (A;,) holds.

C{J‘on (t.c,---,c)dt+ Zplll,k (c,0,-- ’0)} = C[LTQ(S)ds + [B + Zp:ﬁkJCZq”}

it is easy to see that there is a constant M, > 0 such that (A;) holds if B+ZE:lBk 0.

It is easy to see that (A,) holds.
It follows from Theorem 4.1 that problem (27) has at least one solution if
p p p
B<0,> la, <1, D Ib <1 > |c <1, b >-1, a,b, +a,+b, =0,
k=1

i=1 i=1
and

i | Bk | k(2q+1)/(2q+2) < _B-
k=1
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