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Abstract: The purpose of this paper is to study generalized −φ recurrent Kenmotsu 
manifolds. 
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GENELLEŞTİRİLMİŞ −φ RECURRENT KENMOTSU MANIFOLDLAR 
 
Özet: Bu çalışmanın amacı genelleştirilmiş −φ recurrent Kenmotsu manifoldları 
çalışmaktır. 
 
Anahtar kelimeler: Kenmotsu manifold, genelleştirilmiş −φ recurrent manifold, 
Einstein manifold. 
 
 
1. INTRODUCTION 

 
A Riemannian manifold (Mn, g) is called generalized recurrent (DE & GUHA 1991) if 
its curvature tensor R satisfies the condition  

X( R)(Y, Z)W (X)R(Y, Z)W (X)[g(Z, W)Y g(Y, W)Z],∇ = α +β −     
where, α and β are two 1-forms, β is non-zero and these are defined by: 

(X) g(X,A), (X) g(X,B)α = β = , 
A and B are vector fields associated with 1-forms α and β, respectively.  
 
ÖZGÜR (2007) studied generalized recurrent Kenmotsu manifolds. He showed that for 
a generalized recurrent Kenmotsu manifold α = β.  
 
In their study VENKATESHA & BAGEWADI (2006) studied pseudo-projective 
−φ recurrent Kenmotsu manifolds. It was shown that for a pseudo-projective 
−φ recurrent Kenmotsu manifold is an Einstein manifold and  also a space of constant 

curvature. 
 
Motivated by the above studies, in this paper, we define generalized −φ recurrent and 
generalized concircular −φ recurrent Kenmotsu manifolds and obtain some interesting 
results.  
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The paper is organized as follows. In Preliminaries, we give a brief account of 
Kenmotsu manifolds.  In Section 3, we show that a generalized −φ recurrent or a 
generalized concircular −φ recurrent Kenmotsu manifold ( )gM n ,12 +   is an Einstein 
manifold. We  also find some relations between the associated 1-froms α and β for a 
generalized −φ recurrent and  a generalized concircular −φ recurrent  Kenmotsu 
manifold.   
 
2. PRELIMINARIES 

Let ( )gM n ,,,,12 ηξφ+  be a 2n+1-dimensional almost contact Riemannian manifold, 
where φ  is a (1, l)-tensor field, ξ  is the structure vector field, η  is a 1-form and g  
is the Riemannian metric. It is well known ( )g,,, ηξφ -structure satisfy the conditions 
(BLAIR 1976) 

(2.1)        ( ) ( ) ,1,0,0 === ξηφηφξ X  

(2.2)  ( ) ),(),(,2 XXgXXX ηξξηφ =+−=  

(2.3)      ( ) ( ) ),(,),( YXYXgYXg ηηφφ −=  

for any vector fields X and Y on M". If moreover 

(2.4)  ( ) ( ) ( ) ,, XYYXgYX φηξφφ −−=∇  

(2.5)    ,)( ξηξ XXX −=∇  

where∇  denotes the Riemannian connection of g hold, then ( )gM n ,,,,12 ηξφ+  is 
called a Kenmotsu manifold. 

In this case, it is well known that KENMOTSU (1972) 

(2.6) ( ) ( ) ( ) ,, XYYXYXR ηηξ −=  

(2.7)   ( ) ( ),2, XnXS ηξ −=  

where S denotes the Ricci tensor. From (2.6), it easily follows that 

 
(2.8)   ( ) ( ) ( ) ,,, XYYXgYXR ηξξ −=  
(2.9)          ( ) ( ) XXXR −= ξηξξ, , 
 
(2.10)        ( )( ) ( ) ( ) ( ) ( ).,,, VYgXVXgYVYXR ηηη −=  
 
Since ( ) ( )YQXgYXS ,, = , we have ( ) ( )YXQgYXS φφφφ ,, = , where Q  is the Ricci 
operator. 
Using the properties ( ) ( )YXgYXg ,, φφ −= ,  QQ φφ = , (2.2) and (2.7), we get 

 
(2.11) ( ) ( ) ( ) ( )YXnYXSYXS ηηφφ 2,, += . 
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Also we have KENMOTSU (1972) 

 
(2.12) ( )( ) ( ) ( ) ( )., YXYXgYX ηηη −=∇ . 
 
Kenmotsu manifold 12 +nM  is said to be η -Einstein if its Ricci tensor S is of the form 

(2.13) ( ) ( ) ( ) ( )YXbYXagYXS ηη+= ,, , 

 
for any vector fields X and Y, where a and b are functions on nM . 
 
3. GENERALIZED −φ RECURRENT KENMOTSU MANIFODS 

 
Definition 3.1.  Kenmotsu manifold ( )gM n ,12 +  is called generalized −φ recurrent if its 
curvature tensor R satisfies the condition 
 
(3.1)  ( )( )( ) ( ) ( ) ( ) ( ) ( )[ ]YZXgXZYgWZYXRWZYXRW ,,,,2 −+=∇ βαφ  
 
where, α and β are two 1-forms, β is non-zero and these are defined by: 
 
 (3.2)              ( ) ( ) ( ) ( )BWgWAWgW ,,, == βα                                                                    
 
and A, B are vector fields associated with 1-forms α and β, respectively  
(TAKAHASHI 1977, DE & GUHA 1991).  
 
 From (3.1), using (2.2) we have  
 
(3.3) 
( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )[ ]YZXgXZYgWZYXRWZYXRZYXR WW ,,,,, −+=∇+∇− βαξη  

 

from which it follows that 

 (3.4) 
( )( )( ) ( )( )( ) ( ) ( ) ( )( )

( ) ( ) ( )[ ].),(,),(,
,,,,,

UYgZXgUXgZYgW
UZYXRgWUZYXRUZYXRg WW

−+
=∇+∇−
β
αηη

 

Let { }ie ,  i = 1, 2, . . . , 2n+1, be an orthonormal basis of the tangent space at any 
point of the manifold. Then putting ieUX ==  in (3.4) and taking summation over i, 

,121 +≤≤ ni  we get  

(3.5) ( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) .,2,,,
12

1
ZYgWnZYSWeZYeRZYS

n

i
iiWW βαηη +=∇+∇− ∑

+

=
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The second term of (3.5) is reduced to  

( )( )( ) ( )∑
+

=

∇
12

1
,

n

i
iiW eZYeR ηη = ( )( )( )ξξ ,, ZYRg W∇  

 
Using (2.5) and (2.6),we get 
 

( )( )( )ξξ ,, ZYRg W∇ =0. 
 
So, the equation (3.5) has following form: 
 

( )( ) ( ) ( ) ( ) ( ) .,2,, ZYgWnZYSWZYSW βα −−=∇  
 

Replacing Z byξ  in (3.5) and using (2.7) we have 

(3.6)   ( )( ) ( ) ( ) ( ) ( )YWnYWnYSW ηβηαξ 22, −=∇− . 

Now we have ( )( ) ( ) ( ) ( )ξξξξ WWWW YSYSYSYS ∇−∇−∇=∇ ,,,, . Using (2.5) and 
(2.7) in the above relation, it follows that 

(3.7)     ( )( ) ( ) ( )WYSWYngYSW ,,2, −−=∇ ξ . 
 

In view of (3.6) and (3.7) we obtain 
 

(3.8)          ( ) ( ) ( ) ( ) ( ) .)(2,,2 WWYnWYSWYng βαη −=−−  
 
Replacing Y by ξ in (3.8) and then using (2.7), we get 

(3.9)        ( ) ( ) .WW αβ =  

So using (3.9) in (3.8) we get 

(3.10)    ( ) ( )WYngWYS ,2, −=   

This leads to the following results: 
 

Theorem 3.1. A generalized −φ recurrent Kenmotsu manifold ( gM n ,12 + ) is an 
Einstein manifold. 

 
Theorem 3.2. Let ( gM n ,12 + ) be a generalized −φ recurrent Kenmotsu manifold.  Then 

.αβ =  
 

Now from (3.1) we have 
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(3.11)  
( )( ) ( )( )( ) ( ) ( )

( ) ( ) ( )[ ]YZXgXZYgW
ZYXRWZYXRZYXR WW

,,
,,,

−−
−∇=∇

β
αξη

 

 
Then by the use of second Bianchi identity ,(3.11) and (3.9) we have 

 

(3.12) 
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ] .0,,,

,,,
,,,

=−++
−++

−+

XZWgWZXgYZXWRY
WZYgYZWgXZWYRX

YZXgXZYgWZYXRW

αα
αα

αα
 

 
So by a suitable contraction from (3.12) we get 

(3.13)       
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .0,),())),((
,2),(,2,

=−+−
−−+

UXgWUWgXUXWR
UWgXnUWSXUXgWnUXSW

ααα
αααα

 

 
Hence by the use of  (3.9) , (3.10) in (3.13) it can be easily seen that:  
 

(3.14) ( ) ( ) ( ) .0,),())),(( =−+− UXgWUWgXUXWR ααα   
 
Replacing X, U by ξ in (3.14), we have 

)()()( WW ηξαα =  
or, 
 
(3.15)                                             )()()( WAW ηηα = . 
 
This leads to the following result: 
Theorem 3.2. In a a generalized −φ recurrent Kenmotsu manifold ( gM n ,12 + ), the 
characteristic vector field ξ and the vector field  A associated to the 1-form α are co-
directional and the 1-form α is given by (3.15). 
 
Definition 3.2.  A Kenmotsu manifold ( gM n ,12 + ) is called generalized concircular 
−φ recurrent if its concircular curvature tensor C (YANO & KON 1984)  
 

(3.17) ( ) ( ) ( ) ( )[ ],,,
2)12(

,, YWXgXWYg
nn

rWYXRWYXC −
+

−=  

 
satisfies the condition 
 
(3.18)  ( )( )( ) ( ) ( ) ( ) ( ) ( )[ ] ,,,,,2 YZXgXZYgWZYXCWZYXCW −+=∇ βαφ  
 
[5] where α  and β  are defined as in (3.2) and r is the scalar curvature of ( )gM n , . 

Let us consider a generalized concircular −φ recurrent Kenmotsu manifold. Then 
by virtue of (2.2) and (2.16) we have 

(3.19) 
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( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )[ ] ,,,,,, YZXgXZYgWZYXCWZYXCZYXC WW −+=∇+∇− βαξη
 

from which it follows that 

(3.20)   
( )( )( ) ( )( )( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( )[ ] .,,,,,,

,,,
UYgZXgUXgZYgWUZYXCgW

UZYXCUZYXCg WW

−+=

∇+∇−

βα

ηη
 

Let { }ie ,  i = 1, 2, . . . , 2n + 1, be an orthonormal basis of the tangent space at any 
point of the manifold. Then putting ieZY ==  in (3.20) and taking summation over i, 

,121 +≤≤ ni  we get  

(3.21) 
 

( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) .,2),(
12

,

)()(2
2)12(

)()(,,2
2)12(

)(,

UXgWnUXg
n
rUXSW

UXn
nn

rWUXSUXng
nn

rWUXS WW

βα

ηηηξ

+





+
−=

+
−∇+

+
+∇−

 

 
Replacing U byξ  in (3.3) and using (2.1) and (2.7), we have 

 

(3.22)   ( ) ( ) ( ) .2)(
12

20 XWnX
n
rnW ηβηα −





+
+=  

 
Putting X=ξ  in (3.22), we obtain  

(3.22)            ( ) ( ) .02
12

2 =−





+
+ Wn

n
rnW βα  

This leads to the following results: 
 

Theorem 3.3. Let ( gM n ,12 + ) be a generalized concircular −φ recurrent Kenmotsu 

manifold.  Then ( ) ( ) .02
12

2 =−





+
+ Wn

n
rnW βα  
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