

ON GENERALIZED φ − **RECURRENT KENMOTSU MANIFOLDS**

Aslı BAŞARI, Cengizhan MURATHAN

Department of Mathematics, Faculty of Science, University of Uludağ Görükle Campus,16059 Bursa, TURKEY. e-mail: aslibasari@gmail.com; cengiz@uludag.edu.tr *Received: 12 February 2008, Accepted: 07 March 2008*

Abstract: The purpose of this paper is to study generalized ϕ – recurrent Kenmotsu manifolds.

Key words: Kenmotsu manifold, generalized recurrent, ϕ – recurrent manifold, Einstein manifold.

GENELLEŞTİRİLMİŞ φ − **RECURRENT KENMOTSU MANIFOLDLAR**

Özet: Bu çalışmanın amacı genelleştirilmiş φ − recurrent Kenmotsu manifoldları çalışmaktır.

Anahtar kelimeler: Kenmotsu manifold, genelleştirilmiş ø–recurrent manifold, Einstein manifold.

1. INTRODUCTION

A Riemannian manifold ($Mⁿ$, g) is called generalized recurrent (DE & GUHA 1991) if its curvature tensor R satisfies the condition

 $(\nabla_{\mathbf{x}} R)(\mathbf{Y}, \mathbf{Z})\mathbf{W} = \alpha(\mathbf{X})R(\mathbf{Y}, \mathbf{Z})\mathbf{W} + \beta(\mathbf{X})[\mathbf{g}(\mathbf{Z}, \mathbf{W})\mathbf{Y} - \mathbf{g}(\mathbf{Y}, \mathbf{W})\mathbf{Z}],$

where, α and β are two 1-forms, β is non-zero and these are defined by:

 $\alpha(X) = g(X, A), \ \beta(X) = g(X, B)$,

A and B are vector fields associated with 1-forms α and β , respectively.

ÖZGÜR (2007) studied generalized recurrent Kenmotsu manifolds. He showed that for a generalized recurrent Kenmotsu manifold $\alpha = \beta$.

In their study VENKATESHA & BAGEWADI (2006) studied pseudo-projective ϕ – recurrent Kenmotsu manifolds. It was shown that for a pseudo-projective ϕ – recurrent Kenmotsu manifold is an Einstein manifold and also a space of constant curvature.

Motivated by the above studies, in this paper, we define generalized ϕ – recurrent and generalized concircular ϕ – recurrent Kenmotsu manifolds and obtain some interesting results.

The paper is organized as follows. In Preliminaries, we give a brief account of Kenmotsu manifolds. In Section 3, we show that a generalized ϕ – recurrent or a generalized concircular ϕ – recurrent Kenmotsu manifold (M^{2n+1}, g) is an Einstein manifold. We also find some relations between the associated 1-froms α and β for a generalized ϕ − recurrent and a generalized concircular ϕ – recurrent Kenmotsu manifold.

2. PRELIMINARIES

Let $(M^{2n+1}, \phi, \xi, \eta, g)$ be a $2n+1$ -dimensional almost contact Riemannian manifold, where ϕ is a (1, 1)-tensor field, ξ is the structure vector field, η is a 1-form and *g* is the Riemannian metric. It is well known (ϕ, ξ, η, g) -structure satisfy the conditions (BLAIR 1976)

(2.1)
$$
\phi \xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1,
$$

(2.2)
$$
\phi^2 X = -X + \eta(X)\xi, \quad g(X,\xi) = \eta(X),
$$

(2.3)
$$
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),
$$

for any vector fields *X* and *Y* on *M"*. If moreover

(2.4)
$$
(\nabla_X \phi)Y = -g(X, \phi Y)\xi - \eta(Y)\phi X,
$$

$$
\nabla_X \xi = X - \eta(X)\xi,
$$

where ∇ denotes the Riemannian connection of *g* hold, then $(M^{2n+1}, \phi, \xi, \eta, g)$ is called a *Kenmotsu manifold.*

In this case, it is well known that KENMOTSU (1972)

$$
(2.6) \t R(X,Y)\xi = \eta(X)Y - \eta(Y)X,
$$

$$
(2.7) \tS(X,\xi) = -2n\eta(X),
$$

where *S* denotes the Ricci tensor. From (2.6), it easily follows that

$$
(2.8) \t\t R(X,\xi)Y = g(X,Y)\xi - \eta(Y)X,
$$

$$
R(X,\xi)\xi = \eta(X)\xi - X,
$$

(2.10)
$$
\eta(R(X,Y)V) = \eta(Y)g(X,V) - \eta(X)g(Y,V).
$$

Since $S(X, Y) = g(QX, Y)$, we have $S(\phi X, \phi Y) = g(Q\phi X, \phi Y)$, where *Q* is the Ricci operator.

Using the properties $g(X, \phi Y) = -g(\phi X, Y)$, $Q\phi = \phi Q$, (2.2) and (2.7), we get

 $S(\phi X, \phi Y) = S(X, Y) + 2n\eta(X)\eta(Y).$

Also we have KENMOTSU (1972)

$$
(2.12) \qquad (\nabla_X \eta)(Y) = g(X,Y) - \eta(X)\eta(Y).
$$

Kenmotsu manifold M^{2n+1} is said to be η -*Einstein* if its Ricci tensor *S* is of the form

(2.13)
$$
S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),
$$

for any vector fields *X* and *Y*, where *a* and *b* are functions on M^n .

3. GENERALIZED φ − **RECURRENT KENMOTSU MANIFODS**

Definition 3.1. Kenmotsu manifold (M^{2n+1}, g) is called generalized ϕ – recurrent if its curvature tensor R satisfies the condition

(3.1)
$$
\phi^{2}((\nabla_{W}R)(X,Y)Z) = \alpha(W)R(X,Y)Z + \beta(W)[g(Y,Z)X - g(X,Z)Y]
$$

where, α and β are two 1-forms, β is non-zero and these are defined by:

(3.2)
$$
\alpha(W) = g(W, A), \quad \beta(W) = g(W, B)
$$

and A, B are vector fields associated with 1-forms α and β , respectively (TAKAHASHI 1977, DE & GUHA 1991).

From (3.1) , using (2.2) we have

$$
(3.3)
$$

-($\nabla_W R$)(X,Y)Z + η (($\nabla_W R$)(X,Y)Z) ξ = α (W)R(X,Y)Z + β (W)[$g(Y,Z)X - g(X,Z)Y$]

from which it follows that

(3.4)
\n
$$
-g((\nabla_W R)(X,Y)Z,U) + \eta((\nabla_W R)(X,Y)Z)\eta(U) = \alpha(W)g(R(X,Y)Z,U) + \beta(W)[g(Y,Z)g(X,U) - g(X,Z)g(Y,U)]
$$

Let ${e_i}$, $i = 1, 2, \ldots, 2n+1$, be an orthonormal basis of the tangent space at any point of the manifold. Then putting $X = U = e_i$ in (3.4) and taking summation over *i*, $1 \le i \le 2n+1$, we get

$$
(3.5) \qquad -(\nabla_W S)(Y,Z) + \sum_{i=1}^{2n+1} \eta((\nabla_W R)(e_i, Y)Z)\eta(e_i) = \alpha(W)S(Y,Z) + 2n\beta(W)g(Y,Z).
$$

The second term of (3.5) is reduced to

$$
\sum_{i=1}^{2n+1} \eta((\nabla_W R)(e_i, Y)Z)\eta(e_i) = g((\nabla_W R)(\xi, Y)Z, \xi)
$$

Using (2.5) and (2.6) , we get

$$
g((\nabla_W R)(\xi, Y)Z, \xi)=0.
$$

So, the equation (3.5) has following form:

$$
(\nabla_W S)(Y,Z) = -\alpha(W)S(Y,Z) - 2n\beta(W)g(Y,Z).
$$

Replacing *Z* by ξ in (3.5) and using (2.7) we have

(3.6)
$$
-(\nabla_W S)(Y,\xi) = 2n\alpha(W)\eta(Y) - 2n\beta(W)\eta(Y).
$$

Now we have $(\nabla_w S)(Y, \xi) = \nabla_w S(Y, \xi) - S(\nabla_w Y, \xi) - S(Y, \nabla_w \xi)$. Using (2.5) and (2.7) in the above relation, it follows that

(3.7)
$$
(\nabla_W S)(Y,\xi) = -2ng(Y,W) - S(Y,W).
$$

In view of (3.6) and (3.7) we obtain

(3.8)
$$
-2ng(Y,W) - S(Y,W) = 2n\eta(Y)(\alpha(W) - \beta(W)).
$$

Replacing *Y* by ξ in (3.8) and then using (2.7), we get

$$
\beta(W) = \alpha(W).
$$

So using (3.9) in (3.8) we get

$$
(3.10) \t S(Y,W) = -2ng(Y,W)
$$

This leads to the following results:

Theorem 3.1. A generalized ϕ – recurrent Kenmotsu manifold (M^{2n+1}, g) is an Einstein manifold.

Theorem 3.2. Let (M^{2n+1}, g) be a generalized ϕ – recurrent Kenmotsu manifold. Then $\beta = \alpha$.

Now from (3.1) we have

(3.11)
$$
(\nabla_W R)(X,Y)Z = \eta((\nabla_W R)(X,Y)Z)\xi - \alpha(W)R(X,Y)Z - \beta(W)[g(Y,Z)X - g(X,Z)Y]
$$

Then by the use of second Bianchi identity ,(3.11) and (3.9) we have

(3.12)
$$
\alpha(W)R(X,Y)Z + \alpha(W)[g(Y,Z)X - g(X,Z)Y] \n+ \alpha(X)R(Y,W)Z + \alpha(X)[g(W,Z)Y - g(Y,Z)W] \n+ \alpha(Y)R(W,X)Z + \alpha(Y)[g(X,Z)W - g(W,Z)X] = 0.
$$

So by a suitable contraction from (3.12) we get

$$
(3.13) \qquad \alpha(W)S(X,U) + 2n\alpha(W)g(X,U) - \alpha(X)S(W,U) - 2n\alpha(X)g(W,U) - \alpha(R(W,X)U) + \alpha(X)g(W,U) - \alpha(W)g(X,U) = 0.
$$

Hence by the use of (3.9) , (3.10) in (3.13) it can be easily seen that:

(3.14)
$$
-\alpha(R(W,X)U) + \alpha(X)g(W,U) - \alpha(W)g(X,U) = 0.
$$

Replacing *X*, *U* by ξ in (3.14), we have

$$
\alpha(W) = \alpha(\xi)\eta(W)
$$

or,

$$
\alpha(W) = \eta(A)\eta(W).
$$

This leads to the following result:

Theorem 3.2. In a a generalized ϕ – recurrent Kenmotsu manifold (M^{2n+1} , *g*), the characteristic vector field ξ and the vector field A associated to the 1-form α are codirectional and the 1-form α is given by (3.15).

Definition 3.2. A Kenmotsu manifold (M^{2n+1}, g) is called generalized concircular ϕ – recurrent if its concircular curvature tensor \overline{C} (YANO & KON 1984)

(3.17)
$$
\overline{C}(X,Y)W = R(X,Y)W - \frac{r}{(2n+1)2n}[g(Y,W)X - g(X,W)Y],
$$

satisfies the condition

(3.18)
$$
\phi^2((\nabla_W \overline{C})(X,Y)Z) = \alpha(W)\overline{C}(X,Y)Z + \beta(W)[g(Y,Z)X - g(X,Z)Y],
$$

[5] where α and β are defined as in (3.2) and *r* is the scalar curvature of (M^n, g) .

Let us consider a generalized concircular ϕ – recurrent Kenmotsu manifold. Then by virtue of (2.2) and (2.16) we have

(3.19)

$$
-(\nabla_{W}\overline{C})(X,Y)Z+\eta((\nabla_{W}\overline{C})(X,Y)Z)\xi=\alpha(W)\overline{C}(X,Y)Z+\beta(W)[g(Y,Z)X-g(X,Z)Y],
$$

from which it follows that

(3.20)
$$
-g((\nabla_{W} \overline{C})(X,Y)Z,U)+\eta((\nabla_{W} \overline{C})(X,Y)Z)\eta(U)
$$

$$
=\alpha(W)g(\overline{C}(X,Y)Z,U)+\beta(W)[g(Y,Z)g(X,U)-g(X,Z)g(Y,U)].
$$

Let ${e_i}$, $i = 1, 2, ..., 2n + 1$, be an orthonormal basis of the tangent space at any point of the manifold. Then putting $Y = Z = e_i$ in (3.20) and taking summation over *i*, $1 \le i \le 2n+1$, we get

(3.21)

$$
-(\nabla_{W}S)(X,U)+\frac{W(r)}{(2n+1)2n}2ng(X,U)+(\nabla_{W}S)(X,\xi)\eta(U)-\frac{W(r)}{(2n+1)2n}2n\eta(X)\eta(U)
$$

=\alpha(W)\bigg[S(X,U)-\frac{r}{2n+1}g(X,U)\bigg]+2n\beta(W)g(X,U).

Replacing *U* by ξ in (3.3) and using (2.1) and (2.7), we have

(3.22)
$$
0 = \alpha(W) \left[2n + \frac{r}{2n+1} \right] \eta(X) - 2n\beta(W) \eta(X).
$$

Putting $X = \xi$ in (3.22), we obtain

$$
(3.22) \qquad \alpha(W)\bigg[2n+\frac{r}{2n+1}\bigg]-2n\beta(W)=0.
$$

This leads to the following results:

Theorem 3.3. Let (M^{2n+1}, g) be a generalized concircular ϕ – recurrent Kenmotsu manifold. Then $\alpha(W) \left[2n + \frac{r}{2n+1} \right] - 2n\beta(W) = 0$. L + $+\frac{1}{2}$ $\Big|-2n\beta(W)$ *n* $\alpha(W)$ 2n + $\frac{r}{2n+1}$ – 2n β

REFERENCES

- BLAIR DE, 1976. Contact manifolds in Riemannian Geometry. Lecturer Notes in Mathematics, Springer-Verlag, Berlin, pp.509.
- DE UC, GUHA N, 1991. On generalised recurrent manifolds, *Proceedings of the Mathematical Society*, 7, 7–11.
- JUN JB, DE UC, PATHAK G, 2005. On Kenmotsu Manifolds, *Journal of the Korean Mathematical Society*, 42, 435-445.

KENMOTSU K, 1972. A class of almost contact Riemannian manifolds. *Tohoku Mathematical Journal*, 24, 93-103.

- MARALABHAVI YB, RATHNAMMA M, 1999. Generalized recurrent and concircular recurrent manifolds. *Indian Journal of Pure and Applied Mathematics*, 30, 1167-1171.
- ÖZGÜR C, 2007. On generalized recurrent Kenmotsu manifolds. *World Applied. Sciences Journal*, 2(1), 29-31.
- TAKAHASHI T, 1977. Sasakian φ − symmetric spaces. *Tohoku Mathematical Journal*, 29, 91–113.
- VENKATESHA, BAGEWADI CS, 2006 . On Pseudo Projective ϕ-Recurrent Kenmotsu manifolds. *Sooch. J. Math*. 32, 1-7.
- YANO K, KON M, 1984*. Structures on manifolds, Series in Pure Mathematics, 3.* World Scientific Publishing Co., Singapore.