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Abstract: In this article, He’s variational iteration method (VIM) is implemented to 
solve the non-homogeneous dissipative wave, Helmholtz and some nonlinear fifth-order 
Korteweg-de Vries (FKdV) partial differential equations with specified initial 
conditions. The initial approximations can be freely chosen with possible unknown 
constants which can be determined by imposing the boundary or initial conditions after 
few iterations. Comparison of the results with those obtained by exact solution and 
Adomian’s decomposition method reveals that VIM is very effective, convenient and 
quite accurate to both linear and nonlinear problems. It is predicted that VIM can be 
widely applied in engineering. 

Key words: Variational iteration method, Helmholtz equation, FKdV equation, 
nonlinear partial differential equations 

DALGA PROBLEMLERİNİN FARKLI TİPLERİ İÇİN BİR YAKLAŞIK 
ÇÖZÜM 

Özet: Bu makalede, He’nin varyasyonel iterasyon yöntemi (VIM), belli başlangıç 
koşulları ile homojen olmayan dissipative dalga, Helmholtz ve bazı lineer olmayan 
beşinci mertebeden Korteweg-de Vries (FKdV) kısmi diferansiyel denklemlerini 
çözmek için uygulanmıştır. Başlangıç yaklaşımları, birkaç iterasyon sonra başlangıç ve 
sınır koşullarının uygulanmasıyla belirlenebilen mümkün bilinmeyen sabitler ile keyfi 
olarak seçilebilir. Analitik çözüm ve Adomian'ın ayrıştırma yöntemi ile elde edilen 
sonuçların karşılaştırılması, VIM’in çok etkili, uygun ve hem lineer hem de lineer 
olmayan problemler için oldukça hatasız olduğunu ortaya koymaktadır. VIM’in 
mühendislikte yaygın olarak uygulanabildiği tahmin edilmektedir. 

Anahtar kelimeler: Varyasyonel iterasyon yöntemi, Helmholtz denklemi, FKdV 
denklemi, lineer olmayan kısmi diferansiyel denklemler 

1. INTRODUCTION 
 
It is well-known that there are many linear nonlinear partial differential equations in the 
study of physics, mechanics and biology, etc. The solution of these equations can guide 
authors to know the described process deeply. But because of the complexity and 
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limitations of classical mathematical methods, it is sometimes difficult for us to achieve 
exact solutions for the problems. In the recent decades, there has been great 
development in the numerical analysis (BURDEN & FAIRES 1993) and exact solutions 
for partial differential equations. 

Many different methods have recently introduced to solve linear and nonlinear 
problems, such as variational iteration method (VIM) (HE 1998a; 1998b; 1999a; 2006; 
2007a; 2007b; 2008, ABDOU & SOLIMAN 2005, MIANSARI et al. 2008), the 
Adomian’s decomposition method (ADM) (WAZWAZ 2002), and homotopy 
perturbation method (HE 1999b; 2000; 2004; 2005, GANJI & RAJABI 2006). The VIM 
is strongly and simply capable of solving a large class of linear or nonlinear differential 
equations without the tangible restriction of sensitivity to the degree of the nonlinear 
term and also is it reduces the size of calculations besides, its interations are direct and 
straightforward. In this paper, we implement the VIM for finding the exact solutions of 
some derived linear non-homogeneous dissipative wave, Helmholtz and nonlinear fifth-
order Korteweg-de Vries (FKdV) partial differential equations. The homogeneous and 
inhomogeneous solutions of the equations will be handled more easily and quickly by 
implementing the VIM rather than the traditional methods for the exact solutions as well 
as approximate solutions, without suffering from traditional difficulty. Unlike classical 
techniques, the nonlinear equations are solved easily without transforming the equation 
by using the VIM. The technique has many advantages over the classical ones. Mainly, 
it avoids linearization and perturbation in order to find solutions of a given nonlinear 
equations, On the other hand, the VIM provides explicit and numerical solutions with 
high accuracy, minimal calculations and strong operability, avoiding physically 
unrealistic assumptions. 

The Helmholtz equation is                                                                                                                                

                                             )y,x(gu)y,x(fu2 =+∇                                                  (1)                              
with the boundary and initial conditions of 

                                     1 2(0, ) ( ), (0, ) ( ),xu y y u y yψ ψ= =                                  (2) 

                                        3 4( ,0) ( ), ( ,0) ( ),yu x x u x xψ ψ= =                                 (3)                              

where  1 2 3( ) , ( ) , ( )x x xψ ψ ψ  and  4 ( )xψ  are given functions. The Helmholtz equation 
appears in such diverse phenomena as elastic waves in solids including vibrating string, 
bars, membranes, sound or acoustics, electromagnetic waves, and nuclear reactors 
(DRAZIN & JOHNSON 1989, HE 2004). The FKdV equation (DRAZIN & JOHNSON 
1989) is       

                                         2( , , , , , ).t xxxxx x xx xxxu u F x tu u u u u− =                                (4)     

 This occurs, for example in the theory of magneto- acoustic waves in plasmas 
(AKYLAS & YANG 1995) and in the theory of shallow water waves with surface 
tension (HUNTER & SCHEURLE 1988). The FKdV equation has been investigated 
extensively over the last decade. It has been shown that the traveling- wave solutions of 
this equation do not vanish at infinity (BEALE 1991, BODY 1991). 
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2. BASIC IDEA OF VIM                                                                                    

To illustrate basic concepts of the VIM, we consider the following differential equation  

                                             ( ),Lu Nu g x+ =                                                              (5) 

where L is a linear operator, N  a nonlinear operator, and ( )g x  is an inhomogeneous 
term.   According to the VIM, we can construct a correction functional as follows 

1 0( ) ( ) { ( ) ( ) ( )}x
n nn nu x u x u s Nu s g s dsλ+ = + + −∫ %

  
    (6) 

where λ  is a general Lagrange multiplier , which can be identified optimally via the 
variational theory. The subscript n  denotes the nth-order approximation, nu%  is 

considered as a restricted variation, i.e., nuδ % =0 (HE 2007b). For linear problems, their 
exact solutions can be obtained by only one iteration step due to the fact that the 
Lagrange multiplier can be exactly identified and for nonlinear equation, the Lagrange 
multiplier is difficult to be identified. To overcome the difficulty, we apply restricted 
variations to nonlinear terms. 
 
 3. APPLICATIONS 

In this section, we will apply the VIM to four linear and nonlinear examples.                        
Example 1. We consider the following linear non-homogeneous dissipative wave 
equation  

           
2 2

2 2 , 0 1, 0.( , ) ( , ) ( , ) ( , ) 2( ) x tu x t u x t u x t u x t t x
t x t x

= ≤ ≤ >
∂ ∂ ∂ ∂

+ − + −
∂ ∂ ∂ ∂

          (7)                              

The initial and boundary conditions posed are 

                    2 2( ,0) , 0 1, ( ,0) 0, (0, ) , 0.tu x x x u x u t t t= < < = = ≥                               (8)                              
Exact solution of this equation (INC et al. 2004) is 

                                                  2 2( , ) .u x t x t= +                                                            (9)                              
The variational iteration formula is obtained in the form 

2 2

1 2 20

( , ) ( , ) ( , ) ( , )( , ) ( , ) 2 2 .
t n n n n

n n
u x u x u x u xu x t u x t x d

x x
τ τ τ τλ τ τ

τ τ+

 ∂ ∂ ∂ ∂
= + − + − − + ∂ ∂ ∂ ∂ 

∫     (10)                              

The Lagrangian multiplier can there be identified as 

                                                   ( ) 1.te τλ −= −                                                              (11)                              
As a result, we obtain the following iteration formula 

 
1

2 2
( )

2 20

( , ) ( , )

( , ) ( , ) ( , ) ( , )( 1)( 2 2 ) .

n n

t t n n n n

u x t u x t

u x u x u x u xe x d
x x

τ τ τ τ τ τ τ
τ τ

+

−

=

∂ ∂ ∂ ∂
+ − − + − − +

∂ ∂ ∂ ∂∫
   (12)                              
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Now we start with an arbitrary initial approximation that satisfies the initial condition 

                                                          2
0 ( , ) .u x t x=                                                        (13)                              

Using the above variational formula (12), we have 

 
1 0

2 2
( ) 0 0 0 0

2 20

( , ) ( , )

( , ) ( , ) ( , ) ( , )( 1) 2 2 .
t t

u x t u x t

u x u x u x u xe xx d
x x

τ τ τ τ τ τ τ
τ τ

−

=

 ∂ ∂ ∂ ∂
+ − − + − − + ∂ ∂ ∂ ∂ 
∫

  (14)       

Substituting Eq. (13) in to Eq. (14) and after simplification, we have 

                                2 ( ) 2
1( , ) 2 2 2 .tu x t x e x t xt x−= − + − +                                            (15)                              

In the same way, we obtain 2 ( , )u x t  as follows 

               2 2
2 ( , ) 10 3 6 10 4 4 4 4t t tu x t x e x t xt x e xte t− − −= − + − + − − − +                     (16)                              

and so on. In the same way the rest of the components of the iteration formula can be 
obtained.  

Figure 1. Numerical results obtained by 
exact solution 

Figure 2. Numerical results obtained by 
VIM          

 

Example 2. We consider the Helmholtz equation, as follows 

                          
2 2

2 2 ,
( , ) ( , ) + +5 =0u x y u x y u (x, y)
x y

∂ ∂
∂ ∂

                                       (17)                               

with the initial conditions 

                                (0, ) 0, (0, ) 3sinh(2 ).xu y u y y= =                                       (18)                               
Now we being with an arbitrary initial approximation:  0 ( , ) ,u x y A Bx= +  where A  and    
B  are constants in x  to be determined using the initial conditions (18), thus we have 
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                                                  0 ( , ) 3 sinh(2 ).u x y x y=                                                  (19)                             
According to the VIM, we can construct the correction functional of (17) as follows 

                   1 0
( , ) ( , ) ( ( , ) ( , ) 5 ( , )) ,

x

n n n n nu x y u x y u t y u t y u t y dtλ+ ′′= + + +∫ &&           (20)                            

where ‘‘dot ’’denotes differentiation with respect to x  and ‘‘prime ’’denotes 
differentiation with respect to y  and λ  is general Lagrange multiplier.              

Making the above correction functional stationary, we can obtain following 
stationary condition 

                                                      

( ) 5 ( ) 0,
1 ( ) 0,

( ) 0.
t x

t x

t t
t

t

λ λ
λ

λ
=

=

′′ + =
′− =

=

                                                   (21)          

The Lagrange multiplier, therefore, can be identified as 

                         5 (cos( 5)sin( 5) -sin( 5)cos ( 5)).
5

x t x tλ =                                (22)                             

Substituting Eq. (22) into Eq. (20) 

1 0

5( , ) ( , ) (cos( 5)sin( 5) -sin( 5)cos ( 5)) [ ( , )
5

( , ) ( , )] .

x

n n n

n n

u x y u x y x t x t u t y

u t y u t y dt

+

 
= +  

 
′′+ −

∫ &&

  

(23)        

Now we start with an arbitrary initial approximation that satisfies the initial condition 

                                             0 ( , ) 3 sinh(2 ).u x y x y=                                                      (24)                             
Using the above variational formula (23), we have   

1 0 00

0 0

5( , ) ( , ) (cos( 5)sin( 5) -sin( 5)cos( 5)) [ ( , )
5

( , ) ( , )] .

x
u x y u x y x t x t u t y

u t y u t y dt

 
= +  

 
′′+ −

∫ &&
      (25)                              

Substituting Eq. (24) into Eq. (25) and after simplifications, we have 

2
1

2

54 5 54( , ) 3 sinh(2 ) sin( 5)sinh( )cosh( ) - cos ( 5) sinh( )cosh( )
25 5

54- sin ( 5) sinh( )cosh( ).
5

u x y x y x y y x x y y

x x y y

= +

   

(26)                               

In the same way, other components can be obtained. 



M. MIANSARI, A. BARARI, H. MIRGOLBABAEI, M. J. VAHDATIRAD   
_____________________________________________________________________________ 

 

 194

Figure 3. Numerical results obtain by 
VIM. 

Figure 4. Numerical results obtain by 
ADM (EL-SAYED & KAYA 2004) and 
HPM (RAFEI & GANJI 2006). 

 

Example 3. Let’s consider a special case of the FKDV equation as follows (DRAZIN & 
JOHNSON 1989) 

         2 2 120 0 , ( ,0) .t x xx x xx xxx xxxxxu u u u u u u u u u x
x

+ + + − + = =                     (27)                                

According to the VIM, we can construct the correction functional of (27) as follows 

        2 2 (5)
1 0
( , ) ( , ) ( 20 ) ,n n n n n n n n n n nu x t u x t u u u u u u u u u d

τ
λ τ+ ′ ′′ ′ ′′ ′′′= + + + + − +∫ &  (28)                                 

where ‘‘dot ’’denotes differentiation with respect to t  and ‘‘prime ’’denotes 
differentiation with respect to x  and λ  is general Lagrange multiplier. 

Making the above correction functional stationary, we can obtain following stationary 
condition 

                                        
.

( ) 0,

1 ( ) 0tτ

λ τ

λ τ
=

′ =

+ =
                                                               (29)                                 

The Lagrange multiplier can be identified as 

                                        1.λ = −                                                                              (30)                       
Substituting Eq. (30) into Eq. (28) 

         2 2 (5)
1 0
( , ) ( , ) ( 20 ) .n n n n n n n n n n nu x t u x t u u u u u u u u u d

τ
τ+ ′ ′′ ′ ′′ ′′′= − + + + − +∫ &        (31)                                 

Now we start with an arbitrary initial approximation that satisfies the initial condition: 



 

 

 

SDU JOURNAL OF  SCIENCE (E-JOURNAL).  2009, 4(2), 189-198           
__________________________________________________________________________ 

195

                                        0
1( , ) .u x t
x

=                                                                       (32)                                

Using the above variational formula (31), we have 

                  2 2 (5)
1 0 0 0 0 0 0 0 0 00
( , ) ( , ) ( 20 ) .nu x t u x t u u u u u u u u u d

τ
τ′ ′′ ′ ′′ ′′′= − + + + − +∫ &          (33)                                 

Substituting (32) into (33) and after simplifications, we have  

                                       1 2

1( , ) tu x t
x x

= +                                                              (34)                                

which is exactly the same as those obtained by Adomian’s decomposition method 
(KAYA 2003) and HPM (RAFEI & GANJI 2006). In the same way, other components 
can be obtained. 

Figure 5. Numerical results obtain by 
VIM. 

Figure 6. Numerical results obtain by 
ADM (EL-SAYED & KAYA 2004) and 
HPM (RAFEI & GANJI 2006). 

 

Example 4. We consider an equation with initial condition is given by 

                             0 0, ( , ) .x
t x xxx xxxxxu uu uu u u x e+ − + = =                         (35)                                 

According to the VIM, we can construct the correction functional of (35) as follows: 

                        (5)
1 0

(36)( , ) ( , ) ( ) ,n n n n n n n nu x t u x t u u u u u u d
τ
λ τ+ ′ ′′′= + + − +∫ &                                

where ‘‘dot ’’denotes differentiation with respect to t  and ‘‘prime ’’denotes 
differentiation with respect to x  and λ  is general Lagrange multiplier.                             
Making the above correction functional stationary, we can obtain following stationary 
condition: 
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.

( ) 0,

1 ( ) 0tτ

λ τ

λ τ
=

′ =

+ =
                                                        (37)                                

The Lagrange multiplier, therefore, can be identified as 

                                               1.λ = −                                                                      (38)                      
Substituting Eq. (38) into Eq. (36) 

                            (5)
1 0
( , ) ( , ) ( ) .n n n n n n n nu x t u x t u u u u u u d

τ
τ+ ′ ′′′= − + − +∫ &                (39)                                  

Now we start with an arbitrary initial approximation that satisfies the initial condition 

                                                   ( )
0 ( , )  .xu x t e=                                                       (40)                                  

Using the above variational formula (39), we have 

                              (5)
1 0 0 0 0 0 0 00
( , ) ( , ) ( ) .u x t u x t u u u u u u d

τ
τ′ ′′′= − + − +∫ &                  (41)                                  

Substituting Eq. (40) into Eq. (41) and after simplifications, we have 

                                                   ( ) ( )
1 ( , )  - ,x xu x t e t e=                                          (42)                                  

which is exactly the same as obtained by Adomian’s decomposition method  (KAYA 
2003) and HPM (RAFEI & GANJI 2006).  

In the same way, other components can be obtained. 

Figure 7. Numerical results obtain by 
VIM. 

Figure 8. Numerical results obtain by 
ADM (EL-SAYED & KAYA 2004) and 
HPM (RAFEI & GANJI 2006). 
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4. CONCLUSION 

In this paper, He’s variational iteration method has been successfully applied to finding 
the exact solutions of the linear dissipative wave, Helmholtz and fifth-order Korteweg-
de Vries (FKdV) partial differential equations with specified initial conditions. The 
obtained solutions are compared with the exact solution, Adomian’s decomposition 
method and Homotopy perturbation Method. All the examples show that the results of 
the present method are in excellent accordance with those obtained by the other ones. 
An interesting point about VIM is that with the fewest number of iterations or even in 
some cases, once, it can converge to correct results. The results show that the VIM is a 
powerful mathematical tool for solving linear and nonlinear partial differential 
equations, and therefore can be widely applied in engineering. The variational iteration 
method can be easily comprehended with only a basic knowledge of Advanced 
Calculus, even the reader has no knowledge of calculus of variations in pure 
mathematics. 
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