
SDU Journal of Science (E-Journal), 2011, 6 (2): 149-159
__________________________________________________________________

149

Step Size Strategies Based On Error Analysis For The Linear
Systems

Gülnur Çelik Kızılkan1,*, Kemal Aydın2

1Kahramanmaraş Sütçü İmam University, Faculty of Education, Department of Primary Mathematics
Education, 46100, Merkez, Kahramanmaraş, Turkey

2Selçuk University, Faculty of Science, Department of Mathematics, 42075, Selçuklu, Konya, Turkey
*Corresponding author e-mail: gckizilkan@ksu.edu.tr

Received: 25 August 2009, Accepted: 03 June 2011

Abstract: In this paper, we have obtained the step size strategies for numerical integration of the linear
differential equation systems. We have given the algorithms which calculate step sizes based on the given
strategies and numerical solutions. These strategies and algorithms are generalized to systems by
modifying the algorithm and strategy in [1]. We have applied our strategies to Cauchy problem with order
m. We have also give the numerical examples.
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Lineer Sistemler İçin Hata Analizi Tabanlı Adım Genişliği
Stratejileri

Özet: Bu çalışmada, lineer diferensiyel denklem sistemlerinin nümerik integrasyonu için adım genişliği
stratejileri elde edilmiştir. Verilen stratejilere uygun olarak adım genişlikleri ve nümerik çözümler
hesaplayan algoritmalar verilmiştir. Bu strateji ve algoritmalar [1] de verilen strateji ve algoritmanın
değiştirilerek sistemlere genişletilmesidir. Verilen stratejiler m. mertebeden Cauchy problemine
uygulanmıştır. Ayrıca, sonuçların doğruluğunu göstermek için nümerik örnekler de verilmiştir.

Anahtar kelimeler: Değişken adım genişliği, hata analizi, lineer sistemler, nümerik integrasyon, adım
genişliği stratejisi

1. Introduction

Choosing the step size is one of the most important concepts in numerical integration of
the Cauchy problem

),( xtfx   , 00 )( xtx  .                                                   (1.1)
The use of constant step size is not practical in numerical integration. If the step size
used is large in numerical integration, it provides fast convergence but also may lead to
error. And the computed solution may diverge from the exact solution. On the other
hand, if the step size used is small, it may give the opposite performance, i.e. the
calculation time, number of the arithmetic operations, the calculation errors start to
increase [2]. So, if the solution changes rapidly, the step size should be chosen small.
Inversely, if the solution changes slowly, then step size should be chosen larger.

In [1,3], the step size strategies based on error analysis were given for numerical
integration of the Cauchy problem (1.1) on the region

}||,],[:),{( 00 bxxTttxtD   and there was also given an algorithm which
calculates the step size based on error analysis and numerical solution in each step is
given. For Euler method the step sizes are given by the following inequality
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M  such as local error is

smaller than the required error level L  in each step of the integration. Here L  is the
error level that is determined by the user and )(tz is the solution of the Cauchy problem

),( ztfz   , 11)(   ii ytz  , ),[ 1 ii ttt   , ( 00 xy  ),                         (1.3)
where iy  is the numerical solution taken from numerical method the i-th step.

If the existence of the solution of Cauchy problem given by equation (1.1) on region
D = {( xt, ): | 0tt  | a , | 0xx  | b } is unknown; the step size has been given by

}/,min{ 10 iii Mbah  ,
where iy  is the numerical solution obtained in the i-th step, )(tz  is the solution of the
Cauchyproblem (1.3), 1ib  is the upper bound of || 1 iyz  error, },min{ 12010   iii bbb ,

}||,|:|),{( 10111   iiii byzattztD  and iM  is the upper bound of ),( ztf  on
region 1iD [1, 3, 4].

For detailed knowledge on the numerical integration of the Cauchy problem (1.1) the
references [5-7] can be examined.

In this paper, we want to investigate a step size strategy for the Cauchy problem
),( XtFX   , 00 )( XtX                                                       (1.4)

on the region
}||,|:|),{( 00 jjj bxxTttXtD                          (1.5)

by generalizing the step size strategy given in [1, 3] for Cauchy problem (1.1).  Here,
))(()( txtX j , )( 00 jxX  ; )( 00 txx jj  , )(),( jfXtF  ; ),...,,,( 21 Njj xxxtff  ,
mCXtF ),( ( ],[ 0 Tt  N ) and )(tX , 0X , ( ) N

jb b  .

We suppose that )(),( tAXXtF  , where ( ) N N
ijA a    and consider the Cauchy

problem given by
),()()( XtFtAXtX   , 00 )( XtX  .                                          (1.6)

The aim of this paper is to generalize the algorithm and strategy given in [1, 3] for the
Cauchy problem (1.6).

In our study, we have used the Euler's method for simplicity. In section 2; the concept
of local error given in [1, 3, 8] as being defined for systems of differential equations and
local error analysis has been examined. In section 3, the step size strategies based on
error analysis have been applied to systems and algorithms which calculate step size and
numerical solution in each step have been given. In section 4; the step size strategies
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have been given for m-th order Cauchy problem. Finally, in Section 5 numerical
examples have been given as applications of the algorithms.

2. Preliminaries

In this study, as a norm in N  we use Euclidean norm, which is defined as follows

|| y ||= 


N

j
jy

1

2 , ( ) N
jy y  .

For every ( ) N N
ijA a   , we use the Frobenius norm, i.e.


 


N

i

N

j
ijaA

1 1

2|||| .

2.1. Local Error

We give the concept of local error, which is given for Cauchy problem (1.1) in [1, 3, 8],
for Cauchy problem (1.4) as follows.

Let us construct the Cauchy problem given as follows
),( ZtFZ   , 11)(   ii YtZ  , 00 XY  ),[ 1 ii ttt  , (2.1)

where ( ) N
i ijY y    is the numerical solution taken from numerical method the i-th

step.

The vector of local error iLE of a numerical method is given by
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and || iLE || is the local error of the numerical method.

2.2. Euler’s Method

Euler's method for Cauchy problem (1.4) is defined in [9] by
iiii FhYY 11   .

Here ( ) N
i ijF f  , ( ) N

i ijY y    and iii tth   11 .

2.3. Error Analysis For Systems

Let us apply error analysis in [1] to Cauchy problem (1.3). The component ijLE  of (2.2)
is given as follows,
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The vector of local error on interval [ ii tt ,1 ) is as follows,
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3. The Step Size Strategies For The Linear Systems

Let us give the theorem which gives the upper bound of local error of the system
),()( XtFtAXX   , 00 )( XtX  .

Theorem 1. The vector of local error of Cauchy problem (1.6) is

iLE ),[,)(
!2 1

2
2

iiijij
i ttZAh

  . (3.1)

Proof. If we take )(),( tAZZtF   in (2.1), then we find
)()( tAZtZ  ,

where ( ) N N
ijA a   . So it is clear that

)())(()()( 2 tZAtAZAtZAtZ  . (3.2)
If we substitute this result into the equation (2.3), then the vector of local error will be
as follows:

iLE ),[,)(
!2 1
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Theorem 2. The upper bound of local error for the system (1.6) is
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Proof. If we take the norm of the equation (3.1), then we obtain
2 2 2 21 1|| || || ( ) || || |||| ( ) ||

2 2i i i i iLE h A Z h A Z   . (3.4)
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, the inequality (3.4) can be written as
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Here, it is clear that 11
||max 
 ijNj

z  .

3.1. Step Size Strategy

From (3.3), the step size is computed using the inequality
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                    (3.5)

in the k-th step such that local error LkLE |||| , where L  is the error level determined
by the user.

Since we have considered the problem (1.6) on the region
}...,,2,1,||,|:|),{( 00 NjbxxTttXtD jjj  ,
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So, the calculation of k  can be as follows in practice:
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Corollary 1. For N =1, the inequality (3.5) is equivalent to the inequality (1.2), which is
the step size strategy given in [1] for the first order nonlinear nonhomogeneous ordinary
differential equations.
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If we substitute the result above into the equation (3.5), then the step size is computed as
follows:

2
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1
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.                                    (3.6)

So, it is shown that the inequality (3.5) is equivalent to (1.2) for N = 1.

Remark 1. In accordance with our goal, the step size can be chosen from the equation
(3.4) in the k-th step. Theoretically, when step sizes are computed by (3.4), local error of
the problem may be very close to the number L . Since all numerical computations on
the computer are performed using floating point arithmetic, the round-off errors occur.
So it may occur that kLE L  for some k. Therefore, we have given the step size
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strategy in (3.5) to avoid possible effects of errors in floating point arithmetic. It is clear
that the step sizes computed by (3.5) are smaller than those obtained by (3.4).

3.2. Algorithm 1

Now, let us give the algorithm which calculates step sizes using the equation (3.5) and
numerical solution in each step. This algorithm is a modification of the algorithm in [1].

Step 0: Give the t₀, T, b, h*, δL, X₀, A  data.

Step 1: Calculate 0  and  .

Step 2: Calculate 1k  and kĥ ; 2
1

1
4 5

)2(1ˆ



k

L
k

N
h





Step 3: Control kĥ  with K;

K: 1. If Tht kk 
ˆ

1  ; then

1.1. If *ˆ hhk   then kk hh ˆ  .

1.2. If *ˆ hhk   then kh =0 and the process stops.

        2. If Tht kk 
ˆ

1  then 1
ˆ̂

 kk tTh .

2.1. If *ˆ̂ hhk   then kk hh ˆ̂  .

2.2.  If *ˆ̂ hhk   then kh =0 and the process stops.
Step 4: Calculate kkk htt  1  and 1)(  kkk YAhIY . Replace k by k+1 and go

to step 2.

Here; k is the step number, T  is the number given on D, kĥ  is the proposed step size by

the step size strategy, *h is the practical parameter for step size, 



 

1

1
01

k

i
ik htt , where

0
0

1


i
ih .

In Algorithm 1, Algorithm K which is called Step Size Control Algorithm in [1]
concludes the computation procedure.

Remark 2. For the reason mentioned in Remark 1, (3.5) is obtained by increasing the
inequality (3.4) and step sizes obtained by (3.5) become smaller. Therefore, if the step
sizes are computed by the inequality (3.5), their values increase and the local errors
occur much smaller than the number δL.

To compute the numerical solutions in error level δL with sufficiently large step sizes,
let us give the following modified step size strategy.
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3.3. Modified Step Size Strategy

Initially, the step size is chosen by the inequality (3.5) in the k-th step. For any  >1
(  ); k

ii
k hh ˆ1   and i

kLE  are calculated from i = 2 to i = p such that || p
kLE ||> δL

and || 1p
kLE ||< δL , where  || 1

kLE ||< δL  in the k-th step. Then, the step size is computed by

k
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4 5
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L
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N
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
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
                                             (3.7)

in the k-th step for numerical integration of the linear system (1.6). The step size (3.7) is
sufficiently large to calculate the numerical solution in error level δL. Although  >1,
   is chosen by the user, we suggest the user take 1 2  . The following diagram
represents the modified strategy:

Diagram 1. Calculation of the step size with respect to modified strategy in the k-th
step.
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l : =l + 1
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3.4. Algorithm 2

Step 0: Give the t₀, T, b, h*, δL, X₀, A  data.

Step 1: Calculate 0  and  .

Step 2: Calculate 1k  and kiĥ ; 2
1

1
4 5

)2(1ˆ



k

L
ki

N
h





;

Step 3: Calculate kiY , kiZ  and kiLE  for 1i , i N ;

1)ˆ1(  kkiki YAhY  , 1
ˆ

 k
hA

ki YeZ ki  , kiLE =|| kiY kiZ ||

Step 4: If kiLE < δL then replace i  by i+1. Calculate ki
i

ki hh ˆ1   and go to step 3.

Step 5: Calculate kĥ = ki
i ĥ2  ,

Step 6: Control kĥ  with K.
Step 7: Calculate kkk htt  1  and 1)(  kkk YAhIY . Replace k by k+1 and go

to step 2.

Algorithm 2 is obtained from Algorithm 1 by replacing step 4 by steps 4, 5 and 6.

4. Application of Step Size Strategies to The m-th Order Cauchy Problem

Consider the Cauchy problem as follows:
001

)1(
1

)(  
 xaxaxax m

m
m  . (4.1)

By taking 1xx  , 2xx  , m
m xx  )1(  the equation (4.1) can be written as
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with initial condition 00 )( jj xtx  (j = 1, 2, ..., m). Shortly, it can be given as
),( XtFCXX  , 00 )( XtX  . (4.2)

Here, it is clear that the matrix C is the companion matrix. Then, the step size strategies
and algorithms which are given for the numeric integration of the Cauchy problem (1.6)
can be easily used for the numeric integration of m-th order Cauchy problem (4.2).

5. Numerical Results

Example 1. Consider the Cauchy problem
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on the region }5||],5,0[:),{( 0  ii xxtXtD . Let *h =10-12 and δL=10-1.
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To calculate the step sizes and the numerical solutions of the Cauchy problem (5.1), the
Maple procedure has been used. The results obtained from the procedure for the
solution of Example 1 have been summarized in Table 1 and Table2.

Table 1. The values of kh and || kLE  ||
calculated by Algorithm 1

k h[k] ||LE[k]||
1 0.7676298925e-1 0.486213533296065998e-2
2 0.7627660496e-1 0.523492205897241933e-2
3 0.7576630534e-1 0.562636935108112163e-2
4 0.7523192579e-1 0.603634945839548378e-2
5 0.7467341901e-1 0.646461245897668980e-2

  
151 0.1245476253e-1 0.218515322380387970e-1
152 0.1237374845e-1 0.218399211547902102e-1
153 0.7630850e-2 0.839674426318677038e-2

Table 2. The values of kh and || kLE  ||
calculated by Algorithm 2

k h[k] ||LE[k]||
1 0.3206580563 0.936760210176839220e-1
2 0.2840167462 0.996658237505510110e-1
3 0.2280553189 0.833971827410726896e-1
4 0.2217416715 0.989712685239365620e-1
5 0.1953166375 0.948779191352420310e-1

  
66 0.2700564562e-1 0.845638340427681824e-1
67 0.2662635074e-1 0.844494222141915913e-1
68 0.2354630e-2 0.672714172473744743e-3

Figure 1 and Figure 2 illustrate the values of kh and || kLE  || calculated by Algorithm 1
and Algorithm 2. For the same example, when Figure 1 and Figure 2 are examined it is
seen that the step sizes in Figure 2 are larger than those in Figure 1 and as a result of
this, the local errors in Figure 2 are closer to the error level δL  than those in Figure 1.

Figure 1. kh and || kLE  || values
calculated by Algorithm 1

Figure 2. kh and || kLE  || values
calculated by Algorithm 2,  =1.1

Example 2. Consider the Cauchy problem
02  xxx , 1)0( x , 2)0( x (5.2)

on the region }5||],5,0[:),{( 0  xxtxtD . We can write the Cauchy problem
(5.2) as the first order Cauchy problem

)(
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)( tXtX 
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 , 

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




2
1

)0(X . (5.3)

Calculate the step sizes of Cauchy problem (5.2) by using Algorithm 1 and Algorithm 2
(take *h =10-12 and δL=10-1). The results have been summarized in Table 3 and Table 4.
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Table 3. The values of kh and || kLE  ||
calculated by Algorithm 1

k h[k] ||LE[k]||
1 0.3553435919e-1 0.255520075611192014e-2
2 0.3553435919e-1 0.264643518554205822e-2
3 0.3554718578e-1 0.273944928167041153e-2
4 0.3557334725e-1 0.283423858472207566e-2
5 0.3561340429e-1 0.293081941938916607e-2

  
187 0.1741910786e-1 0.856607155253301564e-2
188 0.1745794177e-1 0.873206199579816372e-2
189 0.3211990e-2 0.298731866088589842e-3

Table 4. The values of kh and || kLE  ||
calculated by Algorithm 2

k h[k] ||LE[k]||
1 0.2154091358 0.993073650329621138e-1
2 0.1951026910 0.986083761942254668e-1
3 0.1824488304 0.992032623554028881e-1
4 0.1713558100 0.967589437811161440e-1
5 0.1683553928 0.998941563771873488e-1

  
46 0.5828613353e-1 0.990812977891800395e-1
47 0.5652879068e-1 0.997574431122475736e-1
48 0.49608525e-1 0.817337742041106264e-1

The tables above have been obtained by using Maple procedure. The results obtained
from the procedure for the solution of Example 2 have been summarized in Figure 3 and
Figure 4. Figure 3 and Figure 4 illustrate the values of kh and || kLE  || calculated by
Algorithm 1 and Algorithm 2.

Figure 3 . kh and || kLE  || values
calculated by Algorithm 1

Figure 4 . kh and || kLE  || values
calculated by Algorithm 2,  =1.02

6. Conclusion

In this work, the new step size strategies and the new algorithms have been given for the
Cauchy problem (1.6). Cauchy problem (1.6) arises in many applications such as
spring-mass systems, LRC circuits and the simple pendulum. First order series and
parallel chemical reactions and process control models are also usually represented by
Cauchy problem (1.6). The strategies and algorithms given in this work are the
generalization to systems by modifying the algorithm and strategy in [1]. The
algorithms calculate the step sizes based on our strategies and the numerical solution of
the Cauchy problem (1.6) such that local error LkLE ||||  in the step k-th step, where
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L  is the error level determined by the user. The strategies and algorithms have been
applied to m-th order Cauchy problem. The numerical examples have also been
constructed using the algorithms. The algorithms are suitable to write the computer
procedure. To compute the step sizes and the numerical solutions, the Maple procedure
has been used.

As it can be seen from the examples, local errors occurred in numerical solutions
computed by Algorithm 1 are smaller than δL, so the number of the step sizes occurs
more and numerical solutions are quite close to the exact solution. Local errors in
numerical solutions computed by Algorithm 2 are quite close to δL, so the number of the
step sizes occur less and numerical solutions are close enough to the exact solution.
Algorithm 2 is an adaptive algorithm in this aspect.

So, if the number of the step sizes is desired to be less, Algorithm 2 is preferable.
Otherwise, both Algorithm 1 and 2 can be also used.
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