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Abstract: In this paper we consider the usual Jacobsthal numbers. We investigate the identities between
the Jacobsthal numbers and matrices, which are introduced for the first time in this paper. We also present
a new complex sum formula.
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Matris Metoduyla Jacobsthal Sayılar Üzerine
Özet: Bu çalışmada, alışılmış Jacobsthal sayılarını göz önüne aldık. Jacobsthal sayıları ve bu çalışmada
ilk kez tanıtılan matrisler arasındaki özdeşlikleri inceledik. Birde yeni bir karmaşık toplam formülü
sunduk.
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1. Introduction

The Fibonacci sequence is an inexhaustible source of many interesting identities. It is
one of the most famous numerical sequences in mathematics and constitutes an integer
sequence. If certain fruits are looked at, the number of little bumps around each ring are
counted or the sand on the beach and how waves hit is watched out, the Fibonacci
sequence is seen there. For more details about the Fibonacci sequence, see [1]. The
same statements can easily be said for the Jacobsthal sequences. For instance, it is well-
known that computers use conditional directives to change the flow of execution of a
program. In addition to branch instructions, some microcontrollers use skip instructions
which conditionally bypass the next instruction. This brings out being useful for one
case out of the four possibilities on 2 bits, 3 cases on 3 bits, 5 cases on 4 bits, 11 cases
on 5 bits, 21 cases on 6 bits,…, which are exactly the Jacobsthal numbers. At first, it is
studied by Horadam in [2]. The usual Jacobsthal sequence is represented with { }nJ  and
defined by the following recurrence:

1 22n n nJ J J    for 2n  (1)

with initial conditions 0 0J   and 1 1J  . Similarly, the usual Jacobsthal-Lucas
sequence is represented with  nj  and defined by the same recurrence but initial
conditions 0 2j   and 1 1j  . Then the Jacobsthal and Jacobsthal-Lucas sequences are
written as

0{ } {0,1,1,3,5,11,21,43,85,171, }n nJ   
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and

0{ } {2,1,5,7,17,31,65,127, }n nj    ,

respectively. The members of these integer sequences can also be obtained in different
ways. It appears that this can be done in either of two ways: the Binet formulas or
matrix method. In [2], the explicit Binet formulas of these numbers are given by
Horadam as follows:

2 ( 1)
3

n n

nJ  
 (2)

and

2 ( 1)n n
nj    , (3)

respectively. As a second way, they can be obtained by a generating matrix, which is
called the matrix method. In [8] and [9], Koken and Bozkurt showed:
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, respectively. The matrices F and E are called the

Jacobsthal F-matrix and Jacobsthal-Lucas E-matrix, respectively. Two relationships
between these matrices  and these sequences are given by Köken and Bozkurt as follows
[8]:
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   

More information about the above generating matrices can be found in [8-9].

There exist very miscellaneous properties of the usual Jacobsthal and Jacobsthal-Lucas
numbers. In particular, their Cassini-like and sum formulas consisting of consecutive
terms are very nice and quite important. The Cassini-like formulas for these numbers
are given by Horadam as follows [2]:



SDU Journal of Science (E-Journal), 2012, 7 (1): 69-76
____________________________________________________

71

2 1
1 1 ( 1) 2n n

n n nJ J J 
     (6)

and
2 2 1

1 1 3 ( 2)n
n n nj j j 
     . (7)

Further, sums of their consecutive terms are given by Horadam as follows [2]:

2
1

1 ( 1)
2
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i n
i

J J 


  (8)

and

2
1

1 ( 5)
2

n

i n
i

j j 


  . (9)

The sums of odd and even terms of the Jacobsthal and Jacobsthal-Lucas sequences are
investigated by Köken and Bozkurt [10].
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and

2 2 2
0

1
n

i n
i

j J n


   . (13)

It is well-known that the permanent of an n n  matrix A is defined by

( )
1n

n

i i
S i

perA a 
 

  , (14)

where the summation extends over all permutations  of the symmetric group nS . The
most important applications of permanents are in the areas of physics and chemistry.
The permanent of a matrix is analogous to the determinant, where all of the signs used
in the Laplace expansion of minors are positive.

It is the aim of this article to investigate the corresponding new elementary identities
associated with the classical Jacobsthal numbers by matrix method.
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2. Main Results

In this section the Jacobsthal numbers and certain matrices are considered. Recall that in
[8], authors give the Jacobsthal F-matrix as follows:

1 2
.

1 0
F  
  
 

(15)

Let us define two new matrices such that

1 0 0
1 1 2
0 1 0

A
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  

(16)

and
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1 1
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, (17)

where nJ   is defined such that
1

n

n i
i

J J



 . Then, we can write the following interesting

result.

Theorem 2.1. Let A  and nD  be 3 3  matrices as in (16) and (17), respectively. Then

n
nD A . (18)

Proof. Let us prove the Theorem by induction on n. For 1n  , the proof is clear. For
2n  ,

2

1 0 0 1 0 0 1 0 0
1 1 2 1 1 2 2 3 2
0 1 0 0 1 0 1 1 2

A
     
            
          

or equivalently
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is obtained. Assume that for n k , k
kA D . Now we must show that for 1n k  ,

1
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,

which completes the proof.

Theorem 2.2. If nJ  is the nth Jacobsthal number, then

2 1 1m n m m n m nJ J J J J J  
      . (19)

Proof. 21a  entry of m nD   is equal to m nJ  . Computing 21a  entry of m nD D ,

2
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J J J J J J J J J J J J
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as desired.

Theorem 2.3. For all n  , the following equality holds:

12 ,n
n nF J F J I  (20)

where F is defined as in (15) and I  is an 2 2  identity matrix.

Proof. By the definition of the usual Jacobsthal number, we can write

1 1
1

1 1

2 2 0 2
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.

Thus the proof is completed.
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Theorem 2.4. Let F be a matrix as in (15). Then

2 1 1
2 ( ( 1) )
3

n n
n nperF J J    . (21)

Proof. From [8], we know that
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Using the definition of the permanent of a matrix and considering the Binet form of the
usual Jacobsthal numbers, one can write
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Thus the proof is completed.

Theorem 2.5. Let F  and nD be a matrices as in (15) and (17). Then

n
nperD perF . (22)

Proof. From (17),

1 2 1

1 1

1 1

1 0 01 0 0
12 ( 1) 2
2

2 1 ( 1) 2
2

n n n n n n n

n n n

n n n

D J J J J J J
J J J

J J J


  


 

 

 
 

   
        
    
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is known. Then computing nperD  by the Laplace expansion of the permanent with
respect to the first row, we obtain
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1

1 1 1

0 0

2
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2
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Thus the proof is completed.

3. Discussion and Conclusion

In this paper, we consider the amazing relationships between the usual Jacobsthal
numbers and matrices. Five results are essentially obtained. Sum formula involving the
terms of Jacobsthal numbers is one of the most important results obtained in this study.

However, we do not investigate the following research areas:

 There exists no relationship involving the Jacobsthal-Lucas numbers and
matrices. One can derive similar properties with respect to them. For instance,
we can define a new matrix such that

1 0 0
1 5 2
0 1 4

B
 
   
  

. (23)

Then what is the result for consecutive power of the matrix B ? Are there any identities
for  the matrix B  similar to identities derived for the matrix A ?

 We do not search determinantal identities of the matrices A  and nD .  Also the
following statements can be investigated:

det ?nD  , (24)

det ?nB  , (25)

and

?nperB  . (26)

 Also, determinantal and permanental identities between the matrices nB  and E
can be investigated.
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