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Abstract

The realizations of inequalities which containing the fractional integral and di�erential operators is con-
sidered to be important due to its wide implementations among authors. In this research, we introduce
some new fractional integral inequalities of Minkowski's type by using Riemann-Liouville fractional integral
operator. We replace the constants appears on Minkowski's inequality by two positive functions. Further,
we establish some new fractional inequalities related to the reverse Minkowski type inequalities via Riemann-
Liouville fractional integral. Using this fractional integral operator, some special cases of reverse Minkowski
type are also discussed.
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1. Introduction

During their unrelenting e�ort in the development of mathematics, mathematicians in the past few
decades have expanded the concept of classical calculus of derivatives and integrals for integer orders to the
fractional calculus, which is a generalized form of classical integrals and derivatives in case of non-integer
order. Recently, the fractional calculus theory has get more attention due to its important applications
in various �elds such as computer networking, biology, physics, �uid dynamics, signal processing, image
processing, control theory and other �elds. One of the widespread approaches among authors is the use
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of fractional integrals and derivatives operators. As a consequence many di�erent kinds of fractional inte-
grals and derivatives have been realized, such as the Riemann-Liouville, Weyl types, Liouville, Hadamard,
Katugampola and some other types can be found found in Kilbas et.al. [13].

In classical integral and di�erential equations, mathematical inequalities play a responsible role and in
the last few years, a number of useful and important mathematical inequalities invented by many authors.
Inequalities which involve fractional integrals and derivatives are crucial in the study of a number of dif-
ferential and integral equations, among which we mention [1], [2], [3], [5], [17]. One of the most renowned
and important integral inequality is given by Hermann Minkowski. In the last few decades, this inequality
has received considerable attention from many authors and several articles have appeared in the litera-
ture. In (2010), Dahmani [9], gave the reverse Minkowski and Hermite-Hadamard inequalities by mean
of Riemann�Liouville fractional integral. In (2010), Erhan et al. [16], studied the inequalities of reverse
Minkowski and Hermite-Hadamard involving two functions using the classical Riemann integral. It should
be noted that in (2006), Lazhar [6], also presented a work related to the Hardy's inequality and the reverse
Minkowski's inequality. In (2013), Chinchane with Pachpatte [8] and Taf with Brahim [19], established the
reverse Minkowski's inequality via Hadamard fractional integral. Recently, in (2018), Vanterler et al. [21],
presented the reverse Minkowski inequalities and some other related inequalities by mean of Katugampola
fractional integral. In (2019), Rahman et al. [15], employed the generalized proportional fractional integral
operators to establish the reverse Minkowski's inequality and other fractional inequalities.Very recently, in
(2020), Aljaaidi and Pachpatte [4], presented the reverse Minkowski inequalities via ψ-Riemann-Liouville
fractional integral operators. More survey of some of the earlier and recent developments related to the
inequality mentioned above can be found in [7], [10], [12], [14], [18], [20].

Our purpose in this paper is to use Riemann-Liouville fractional integral operator to introduce some
new fractional integral inequalities of Minkowski's type in case of functional bounds. Moreover, we establish
some new fractional inequalities related to the reverse Minkowski's type inequality via Riemann-Liouville
fractional integral operator. The paper is organized as follows: In second section, we recollect some notations,
de�nitions, results and preliminary facts which are used throughout this paper. In third section, we give our
main results of reverse Minkowski's inequality with functional bounds. In fourth section, we present some
other related results involving Riemann-Liouville fractional integral operator.

2. Basic De�nitions and Tools

Now, in this section, we give some basic de�nitions and properties of fractional integrals used to obtain
and discuss our new results.

De�nition 2.1. [13] Let δ > 0 and f be an integrable functions on [a, b] with a ≥ 0. The notation Iδa+ and
Iδb− are called respectively the left and right-sided Riemann-Liouville fractional integrals and de�ned by

Iδa+f (x) =
1

Γ (δ)

∫ x

a
(x− τ)δ−1 f (τ) dτ, x > a (1)

and

Iδb−f (x) =
1

Γ (δ)

∫ b

x
(τ − x)δ−1 f (τ) dτ, x < b, (2)

where, Γ (δ) =
∫∞

0 e−uuδ−1du is a Gamma function and I0
a+f (x) = I0

b−f (x) = f (x) .

In present paper, we use only the left-sided fractional integrals (1) to obtain and discuss our results. For
the convenience of establishing the results, we use the expression Iδ to denote the left-sided Riemann-Liouville
fractional integral operator Iδa+ at a = 0.

Theorem 2.2. [6] Let n ≥ 1. Assume that there exist two positive functions f, g de�ned on Ln [a, b] with

n ∈ [1,∞) . If 0 < q ≤ f(x)
g(x) ≤ Q,∀ x ∈ [a, b] where q,Q ∈ R∗+, then we have(∫ b

a
fn (x) dx

) 1
n

+

(∫ b

a
gn (x) dx

) 1
n

≤ 1 +Q (q + 2)

(q + 1) (Q+ 1)

(∫ b

a
(f + g)n (x) dx

) 1
n

. (3)
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Theorem 2.3. [6] Let n ≥ 1. Assume that there exist two positive functions f, g de�ned on Ln [a, b] with

n ∈ [1,∞) . If 0 < q ≤ f(x)
g(x) ≤ Q,∀ x ∈ [a, b] where q,Q ∈ R∗+, then we have

(∫ b

a
fn (x) dx

) 2
n

+

(∫ b

a
gn (x) dx

) 2
n

≥
(

(q + 1) (Q+ 1)

Q
− 2

)(∫ b

a
fn (x) dx

) 1
n
(∫ b

a
gn (x) dx

) 1
n

. (4)

For the inequalities (3) and (4), Dahmani in [9] established a fractional versions inequalities as follows

Theorem 2.4. Let δ > 0, n ≥ 1. Assume that there exist two positive functions f, g de�ned on [0,∞) such

that for all x > 0, Iδfn (x) <∞, Iδgn (x) <∞. If 0 < q ≤ f(τ)
g(τ) ≤ Q,∀ τ ∈ [0, x] , then we have

(
Iδfn (x)

) 1
n

+
(
Iδgn (x)

) 1
n ≤ 1 +Q (q + 2)

(q + 1) (Q+ 1)

(
Iδ (f + g)n (x)

) 1
n
. (5)

Theorem 2.5. Let δ > 0, n ≥ 1. Assume that there exist two positive functions f, g de�ned on [0,∞),such

that for all x > 0, Iδfn (x) <∞, Iδgn (x) <∞. If 0 < q ≤ f(τ)
g(τ) ≤ Q,∀ τ ∈ [0, x] , then we have

(
Iδfn (x)

) 2
n

+
(
Iδgn (x)

) 2
n ≥

(
(q + 1) (Q+ 1)

Q
− 2

)(
Iδfn (x)

) 1
n
(
Iδgn (x)

) 1
n
. (6)

Note that, the corresponding results of all results discussed in this paper for the right-sided Riemann-
Liouville fractional integrals (2) can be obtained by same arguments.

3. Reverse Minkowski's inequalities for fractional integral

Here, we are ready to give our generalization of the reverse Minkowski inequalities for fractional integrals
in case of functional bounds.

Theorem 3.1. Let f, g be two positive functions on [0,∞) , such that Iδfn (x) , Iδgn (x) <∞, ∀x ∈ [0,∞) .

Assume that there exist two positive functions u, v such that 0 < u (ρ) ≤ f(τ)
g(τ) ≤ v (ρ) , τ, ρ ∈ [0, x] . Then for

all δ > 0, n ≥ 1, we have[
Iδfn (x)

] 1
n

+
[
Iδgn (x)

] 1
n

≤ Γ (δ + 1)

xδ

{
Iδ
(

v (x)

v (x) + 1

)
+ Iδ

(
1

u (x) + 1

)}[
Iδ (f + g)n (x)

] 1
n
. (7)

Proof. Using the condition f(τ)
g(τ) ≤ v (ρ) ; τ, ρ ∈ [0, x] , we can write

[v (ρ) + 1]n fn (τ) ≤ vn (ρ) (f + g)n (τ) (8)

and by using the condition u (ρ) ≤ f(τ)
g(τ) ; τ, ρ ∈ [0, x] , we can write(

1 +
1

u (ρ)

)n
gn (τ) ≤

(
1

u (ρ)

)n
(f + g)n (τ) . (9)

Multiplying both sides of (8) and both sides of (9) by 1
Γ(δ) (x− τ)δ−1 , τ ∈ (0, x) and integrating the resulting

inequalities with respect to τ over (0, x) , we get respectively

[v (ρ) + 1]n

Γ (δ)

∫ x

0
(x− τ)δ−1 fn (τ) dτ ≤ vn (ρ)

Γ (δ)

∫ x

0
(x− τ)δ−1 (f + g)n (τ) dτ. (10)
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and (
1 +

1

u (ρ)

)n 1

Γ (δ)

∫ x

0
(x− τ)δ−1 gn (τ) dτ

≤
(

1

u (ρ)

)n 1

Γ (δ)

∫ x

0
(x− τ)δ−1 (f + g)n (τ) dτ. (11)

So we have
[v (ρ) + 1]n Iδfn (x) ≤ vn (ρ) Iδ (f + g)n (x)

and (
1 +

1

u (ρ)

)n
Iδgn (x) ≤

(
1

u (ρ)

)n
Iδ (f + g)n (x) ,

which can be written as [
Iδfn (x)

] 1
n ≤ v (ρ)

v (ρ) + 1

[
Iδ (f + g)n (x)

] 1
n

(12)

and [
Iδgn (x)

] 1
n ≤

(
1

u (ρ) + 1

)[
Iδ (f + g)n (x)

] 1
n
. (13)

Now, multiplying by 1
Γ(δ) (x− ρ)δ−1 , ρ ∈ (0, x) both sides of (12) and (13), then integrating the resulting

inequalities with respect to ρ over (0, x) , we obtain respectively[
Iδfn (x)

] 1
n xδ

Γ (δ + 1)
≤
[
Iδ (f + g)n (x)

] 1
n 1

Γ (δ)

∫ x

0
(x− ρ)δ−1

(
v (ρ)

v (ρ) + 1

)
dρ

and [
Iδgn (x)

] 1
n xδ

Γ (δ + 1)
≤
[
Iδ (f + g)n (x)

] 1
n 1

Γ (δ)

∫ x

0
(x− ρ)δ−1

(
1

u (ρ) + 1

)
dρ,

which yields [
Iδfn (x)

] 1
n ≤ Γ (δ + 1)

xδ
Iδ
(

v (x)

v (x) + 1

)[
Iδ (f + g)n (x)

] 1
n

(14)

and [
Iδgn (x)

] 1
n ≤ Γ (δ + 1)

xδ
Iδ
(

1

u (x) + 1

)[
Iδ (f + g)n (x)

] 1
n
. (15)

Hence, the required inequality (7) can be obtained by adding the inequalities (14) and (15), which completes
the proof.

In the following corollary, we apply Theorem (3.1) for two parameters

Corollary 3.2. Let f, g be two positive functions on [0,∞) , such that Iδfn (x) , Iδgn (x) <∞, ∀x ∈ [0,∞) .

Suppose that there exist two positive functions u, v such that 0 < u (ρ) ≤ f(τ)
g(τ) ≤ v (ρ) , τ, ρ ∈ [0, x] . Then for

all δ > 0, γ > 0, n ≥ 1, we have[
Iδfn (x)

] 1
n

+
[
Iδgn (x)

] 1
n

≤ Γ (γ + 1)

xγ

{
Iγ
(

v (x)

v (x) + 1

)
+ Iγ

(
1

u (x) + 1

)}[
Iδ (f + g)n (x)

] 1
n
. (16)

Proof. The proof follows by multiplying both sides of (12) and (13) by 1
Γ(γ) (x− ρ)γ−1 , ρ ∈ (0, x) and

integrating the resulting inequalities with respect to ρ over (0, x) , then the proof can be completed with
same argument as in Theorem3.1.

The next Theorem is follows
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Theorem 3.3. Let f, g be two positive functions on [0,∞) , such that Iδfn (x) , Iδgn (x) <∞, ∀x ∈ [0,∞) .

Suppose that there exist two positive functions u, v such that 0 < u (ρ) ≤ f(τ)
g(τ) ≤ v (ρ) , τ, ρ ∈ [0, x] . Then for

all δ > 0, n ≥ 1, we have[
Iδfn (x)

] 2
n

+
[
Iδgn (x)

] 2
n

≥
[

Γ2 (δ + 1)

x2δ
Iδ
(
v (x) + 1

v (x)

)
Iδ (u (x) + 1)− 2

] [
Iδfn (x)

] 1
n
[
Iδgn (x)

] 1
n
. (17)

Proof. Rewriting the inequalities (12) and (13) respectively as(
v (ρ) + 1

v (ρ)

)[
Iδfn (x)

] 1
n ≤

[
Iδ (f + g)n (x)

] 1
n

(18)

and

(u (ρ) + 1)
[
Iδgn (x)

] 1
n ≤

[
Iδ (f + g)n (x)

] 1
n
. (19)

Multiplying by 1
Γ(δ) (x− ρ)δ−1 , ρ ∈ (0, x) both sides of (18) and (19), then integrating the resulting inequal-

ities with respect to ρ over (0, x) , we obtain respectively

Γ (δ + 1)

xδ
Iδ
(
v (x) + 1

v (x)

)[
Iδfn (x)

] 1
n ≤

[
Iδ (f + g)n (x)

] 1
n

(20)

and
Γ (δ + 1)

xδ
Iδ (u (x) + 1)

[
Iδgn (x)

] 1
n ≤

[
Iδ (f + g)n (x)

] 1
n
. (21)

Now, carrying out the multiplication between the inequalities (14) and (15), we have

Γ2 (δ + 1)

x2δ
Iδ
(
v (x) + 1

v (x)

)
Iδ (u (x) + 1)

[
Iδfn (x)

] 1
n
[
Iδgn (x)

] 1
n ≤

([
Iδ (f + g)n (x)

] 1
n

)2

. (22)

Applying Minkowski inequality to the right hand side of (22), we obtain([
Iδ (f + g)n (x)

] 1
n

)2

≤
([
Iδfn (x)

] 1
n

+
[
Iδgn (x)

] 1
n

)2

.

It follows that([
Iδ (f + g)n (x)

] 1
n

)2

≤
[
Iδfn (x)

] 2
n

+
[
Iδgn (x)

] 2
n

+ 2
[
Iδfn (x)

] 1
n
[
Iδgn (x)

] 1
n
. (23)

Using (22) and (23), we get the desired inequality (17). Then Theorem (3.3) is thus proved.

Remark 3.4. (i) If we put u (x) = q and v (x) = Q, then Theorem (3.1) reduce to Theorem (2.1) and
Theorem (3.3) reduce to Theorem (2.3) obtained by Dahmani in [9]. (ii) Applying Theorem (3.3) for δ = 1
with u (x) = q and v (x) = Q, then we obtain Theorem (1.2) on [0, x] obtained by Bougo�a in [6] and Theorem
(2.2) on [0, x] obtained by Set et. al. in [16].

4. Other related fractional integral inequalities

This part is dedicated for some new fractional inequalities which is related to reverse Minkowski inequal-
ities with functional bounds.
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Theorem 4.1. Let δ > 0, n,m ≥ 1, n,m ∈ R∗+ where 1
n + 1

m = 1. Suppose that f, g be two positive functions
on [0,∞) , such that Iδfn (x) , Iδgn (x) < ∞, ∀x ∈ [0,∞) and there exist two positive functions u, v such

that 0 < u (ρ) ≤ f(τ)
g(τ) ≤ v (ρ) , τ, ρ ∈ [0, x] . Then we have

Iδ (fg) (x) ≤ 2p−1Γ (δ + 1)

nxδ
Iδ
(

vn (x)

(v (x) + 1)n

)
Iδ [fn (x) + gn (x)]

+
2p−1Γ (δ + 1)

mxδ
Iδ
(

1

(1 + u (x))m

)
Iδ [fm (x) + gm (x)] . (24)

Proof. Using the condition f(τ)
g(τ) ≤ v (ρ) ; τ, ρ ∈ [0, x] , we can write

(v (ρ) + 1)n fn (τ) ≤ vn (ρ) (f + g)n (τ) (25)

and by using the condition u (ρ) ≤ f(τ)
g(τ) ; τ, ρ ∈ [0, x] , we can write

(1 + u (ρ))m gm (τ) ≤ (f + g)m (τ) . (26)

Multiplying both sides of (25) and both sides of (26) by 1
Γ(δ) (x− τ)δ−1 , τ ∈ (0, x) and integrating the

resulting inequalities with respect to τ over (0, x) , we get respectively

Iδfn (x) ≤
(

vn (ρ)

(v (ρ) + 1)n

)
Iδ (f + g)n (x) (27)

and

Iδgm (x) ≤
(

1

(1 + u (ρ))m

)
Iδ (f + g)m (x) . (28)

Again, multiplying by 1
Γ(δ) (x− ρ)δ−1 , ρ ∈ (0, x) both sides of (27) and (28), then integrating the resulting

inequalities with respect to ρ over (0, x) , we obtain respectively

Iδfn (x) ≤ Γ (δ + 1)

xδ
Iδ
(

vn (x)

(v (x) + 1)n

)
Iδ (f + g)n (x) (29)

and

Iδgm (x) ≤ Γ (δ + 1)

xδ
Iδ
(

1

(1 + u (x))m

)
Iδ (f + g)m (x) . (30)

Now, Considering Young's inequality, [11]

f (τ) g (τ) ≤ fn (τ)

n
+
gm (τ)

m
. (31)

Multiplying both sides of (31) by 1
Γ(δ) (x− τ)δ−1 , τ ∈ (0, x) and integrating the resulting inequalities with

respect to τ over (0, x) , we obtain

Iδ (fg) (x) ≤ 1

n
Iδfn (x) +

1

m
Iδgm (x) . (32)

Thus, using the inequalities (29), (30) and (32), we have

Iδ (fg) (x) ≤ 1

n
Iδfn (x) +

1

m
Iδgm (x)

≤ Γ (δ + 1)

nxδ
Iδ
(

vn (x)

(v (x) + 1)n

)
Iδ (f + g)n (x)

+
Γ (δ + 1)

mxδ
Iδ
(

1

(1 + u (x))m

)
Iδ (f + g)m (x) . (33)
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By using the following inequality (k + h)p ≤ 2p−1 (kp + hp) , p > 1, k, h ≥ 0, we can write

Iδ (f + g)n (x) ≤ 2p−1Iδ [fn (x) + gn (x)] (34)

and
Iδ (f + g)m (x) ≤ 2p−1Iδ [fm (x) + gm (x)] . (35)

Thus, replacing the inequalities (34) and (35) in (33), we get the required inequality (24).

Theorem 4.2. Let f, g be two positive functions on [0,∞) , such that Iδfn (x) , Iδgn (x) <∞, ∀x ∈ [0,∞) .

Assume that there exist two positive functions u, v such that 0 < k < u (ρ) ≤ f(τ)
g(τ) ≤ v (ρ) , τ, ρ ∈ [0, x] . Then

for all δ > 0, n ≥ 1, we have

Γ (δ + 1)

xδ

{
Iδ
(

1

(v (x)− k)

)
+ Iδ

(
u (x)

u (x)− k

)}(
Iδ (f (x)− kg (x))n

) 1
n

≤
(
Iδfn (x)

) 1
n

+
(
Iδgn (x)

) 1
n

≤ Γ (δ + 1)

xδ

{
Iδ
(

v (x)

v (x)− k

)
+ Iδ

(
1

(u (x)− k)

)}(
Iδ (f (x)− kg (x))n

) 1
n
. (36)

Proof. Using the condition 0 < k < u (ρ) ≤ f(τ)
g(τ) ≤ v (ρ) , we can write

u (ρ) ≤ f (τ)

g (τ)
≤ v (ρ) =⇒ u (ρ)− k ≤ f (τ)

g (τ)
− k ≤ v (ρ)− k,

which yields

u (ρ)− k ≤ f (τ)− kg (τ)

g (τ)
≤ v (ρ)− k,

it follows that
(f (τ)− kg (τ))n

(v (ρ)− k)n
≤ gn (τ) ≤ (f (τ)− kg (τ))n

(u (ρ)− k)n
. (37)

Also, we have

u (ρ) ≤ f (τ)

g (τ)
≤ v (ρ) =⇒ 1

k
− 1

u (ρ)
≤ 1

k
− g (τ)

f (τ)
≤ 1

k
− 1

v (ρ)
,

which yields
u (ρ)− k
u (ρ)

≤ f (τ)− kg (τ)

f (τ)
≤ v (ρ)− k

v (ρ)
,

it follows that (
u (ρ)

u (ρ)− k

)n
(f (τ)− kg (τ))n ≤ fn (τ) ≤

(
v (ρ)

v (ρ)− k

)n
(f (τ)− kg (τ))n . (38)

Multiplying both sides of each of (37) and (38) by 1
Γ(δ) (x− τ)δ−1 , τ ∈ (0, x) and integrating the resulting

inequalities with respect to τ over (0, x) , we obtain respectively

1

Γ (δ) (v (ρ)− k)n

∫ x

0
(x− τ)δ−1 (f (τ)− kg (τ))n dτ

≤ 1

Γ (δ)

∫ x

0
(x− τ)δ−1 gn (τ) dτ

≤ 1

Γ (δ) (u (ρ)− k)n

∫ x

0
(x− τ)δ−1 (f (τ)− kg (τ))n dτ
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and (
u (ρ)

u (ρ)− k

)n 1

Γ (δ)

∫ x

0
(x− τ)δ−1 (f (τ)− kg (τ))n dτ

≤ 1

Γ (δ)

∫ x

0
(x− τ)δ−1 fn (τ) dτ

≤
(

v (ρ)

v (ρ)− k

)n 1

Γ (δ)

∫ x

0
(x− τ)δ−1 (f (τ)− kg (τ))n dτ,

it follows that(
1

(v (ρ)− k)n

)
Iδ (f (x)− kg (x))n ≤ Iδgn (x) ≤

(
1

(u (ρ)− k)n

)
Iδ (f (x)− kg (x))n (39)

and (
u (ρ)

u (ρ)− k

)n
Iδ (f (x)− kg (x))n ≤ Iδfn (x) ≤

(
v (ρ)

v (ρ)− k

)n
Iδ (f (x)− kg (x))n . (40)

which are respectively equivalent to(
1

(v (ρ)− k)

)(
Iδ (f (x)− kg (x))n

) 1
n ≤

(
Iδgn (x)

) 1
n ≤

(
1

(u (ρ)− k)

)(
Iδ (f (x)− kg (x))n

) 1
n

(41)

and (
u (ρ)

u (ρ)− k

)(
Iδ (f (x)− kg (x))n

) 1
n ≤

(
Iδfn (x)

) 1
n ≤

(
v (ρ)

v (ρ)− k

)(
Iδ (f (x)− kg (x))n

) 1
n
. (42)

Now, multiplying by 1
Γ(δ) (x− ρ)δ−1 , ρ ∈ (0, x) both sides of (41) and (42), then integrating the resulting

inequalities with respect to ρ over (0, x) , we obtain respectively

Iδ
(

1

(v (x)− k)

)(
Iδ (f (x)− kg (x))n

) 1
n

≤ xδ

Γ (δ + 1)

(
Iδgn (x)

) 1
n

≤ Iδ
(

1

(u (x)− k)

)(
Iδ (f (x)− kg (x))n

) 1
n

(43)

and

Iδ
(

u (x)

u (x)− k

)(
Iδ (f (x)− kg (x))n

) 1
n

≤ xδ

Γ (δ + 1)

(
Iδfn (x)

) 1
n

≤ Iδ
(

v (x)

v (x)− k

)(
Iδ (f (x)− kg (x))n

) 1
n
. (44)

The addition of (43) and (44), ends the proof.

Theorem 4.3. Let f, g be two positive functions on [0,∞) , such that Iδfn (x) , Iδgn (x) <∞, ∀x ∈ [0,∞) .

Suppose that there exist two positive functions u, v such that 0 < u (τ) ≤ f(τ)
g(τ) ≤ v (τ) , τ ∈ [0, x] . Then for

all δ > 0, n ≥ 1, we have (
Iδfn (x)

) 1
n

+
(
Iδgn (x)

) 1
n ≤ 2

(
Iδhn (f (x) , g (x))

) 1
n
, (45)

where h is an integrable function de�ned on [0,∞) , as

h (f (x) , g (x)) = max

{[(
1 +

v (x)

u (x)

)
f (x)− v (x) g (x)

]
,
(v (x) + u (x)) g (x)− f (x)

u (x)

}
.
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Proof. Taking 0 < u (τ) ≤ f(τ)
g(τ) ≤ v (τ) , τ ∈ [0, x] , we have

u (τ) ≤ v (τ) + u (τ)− f (τ)

g (τ)
(46)

and

v (τ) + u (τ)− f (τ)

g (τ)
≤ v (τ) . (47)

Using (46) and (47), we can write

g (τ) ≤ (v (τ) + u (τ)) g (τ)− f (τ)

u (τ)
≤ h (f (τ) , g (τ)) , (48)

where h is an integrable function de�ned on [0,∞) , as

h (f (τ) , g (τ)) = max

{[(
1 +

v (τ)

u (τ)

)
f (τ)− v (τ) g (τ)

]
,
(v (τ) + u (τ)) g (τ)− f (τ)

u (τ)

}
,

it follows that
gn (τ) ≤ hn (f (τ) , g (τ)) . (49)

In other hand, under the given hypothesis 1
v(τ) ≤

g(τ)
f(τ) ≤

1
u(τ) , we can write

1

v (τ)
≤ 1

v (τ)
+

1

u (τ)
− g (τ)

f (τ)
(50)

and
1

v (τ)
+

1

u (τ)
− g (τ)

f (τ)
≤ 1

u (τ)
. (51)

From (50) and (51), we get

1

v (τ)
≤

(
1

v(τ) + 1
u(τ)

)
f (τ)− g (τ)

f (τ)
≤ 1

u (τ)
,

so we have

f (τ) ≤ v (τ)

(
1

v (τ)
+

1

u (τ)

)
f (τ)− v (τ) g (τ)

=

(
1 +

v (τ)

u (τ)

)
f (τ)− v (τ) g (τ)

≤ max

{[(
1 +

v (τ)

u (τ)

)
f (τ)− v (τ) g (τ)

]
,
(v (τ) + u (τ)) g (τ)− f (τ)

u (τ)

}
= h (f (τ) , g (τ)) ,

which yields
fn (τ) ≤ hn (f (τ) , g (τ)) . (52)

Now, multiplying both sides of each of (49) and (52) by 1
Γ(δ) (x− τ)δ−1 , τ ∈ (0, x) and integrating the

resulting inequalities with respect to τ over (0, x) , we obtain respectively(
Iδgn (x)

) 1
n ≤

(
Iδhn (f (x) , g (x))

) 1
n

(53)

and (
Iδfn (x)

) 1
n ≤

(
Iδhn (f (x) , g (x))

) 1
n
. (54)

Hence, the addition of (53) and (54) completes the proof.
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Conclusion 4.4. In this paper, we have presented the reverse Minkowski's inequalities in new generalization
through replacing the constants which appear as borders on Minkowski's inequality by two positive functions.
Our work produces functional bounds analogues of many pre-existing results in the literature. We have also
presented some other related inequalities for reverse Minkowski type inequalities. The de�nitions and a few
advantages of the used fractional integral over the other fractional integrals are presented in the literature .
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