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Abstract: U1 and P1 approximations are applied to one-dimensional neutron transport equation and Henyey- 

Greenstein phase function is used for calculating diffusion length. Numerical results obtained from U1 and P1 

approximations are compared with each other for different collision parameters and t parameters. 
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UN Metodu Kullanarak Henyey-Greenstein Faz Fonksiyonu ile 

Difüzyon Yaklaşımı 
 

Özet: U1 ve P1 yaklaşımları tek boyutlu nötron transport denklemine uygulandı ve difüzyon uzunluğu hesabı için 

Henyey-Greenstein faz fonksiyonu kullanıldı. Farklı çarpışma parametreleri ve t parametresi için U1 ve P1 

yaklaşımlarından elde edilen nümerik sonuçlar birbiri arasında kıyaslandı. 

 

Anahtar kelimeler: Difüzyon yaklaşımı, Henyey-Greenstein faz fonksiyonu, UN metodu 

 

1. Introduction 

 

As well known, designing a nuclear reactor is difficult since the neutrons move complicated 

paths through the system. As the neutrons repeated nuclear collisions in the system, this 

problem become a more difficult case. To get a satisfactory solution, this problem can be 

solved with diffusion approximation. Diffusion approximation has the great advantage to 

predict many of the properties of nuclear reactors for example neutron transport and energy 

spectrum and also it is widely used first estimates of reactor properties [1,2]. 

 

Diffusion equation is based on Fick’s law which was originally used to account for chemical 

diffusion and this law relating to current to the gradient of the flux. Fick’s law expresses the 

net number of neutrons which pass per unit time through a unit area perpendicular to the x-

direction in one-dimensional case [1]. 

 

Many methods have been proposed and applied to variety of transport problems. Among 

them, the spherical harmonics method (PN) is most commonly used one by many scientists. 

However, Chebyshev polynomials of the second kind have been used in some recent studies 

for calculating critical thickness, diffusion length by certain scientists [3-5]. 

 

In this study, diffusion equation is solved with Chebyshev polynomial expansion using 

Henyey-Greenstein phase function. Henyey-Greenstein phase function (HG) is used in several 

studies to describe stellar light propagation throughout an atmosphere and light scattering in 

the sea-water [6-9]. HG phase function is also used in bio-medical applications by some 
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researchers [10,11]. Up to now, HG phase function is not applied to diffusion equation using 

UN method. In this study, we use HG phase function to solve diffusion equation then calculate 

the diffusion lengths for different values of collision scattering parameters. The results 

obtained from U1 and P1 approximations are given in the tables for comparison. 

 

2. Theory 

 

The steady-state neutron transport equation without sources is given as 
 

2 1

0

0 1

( , )
( , ) ( , ) ( )d d , , 1 1.T S

x
x x a x a

x


 

          



         

       (1) 

 

where ),(  x  is the angular flux or flux density of neutrons at position x traveling in 

direction µ, T and S are macroscopic total and scattering differential cross section, 

respectively [12]. It is aimed to solve this equation with HG phase function in this study. To 

do this, we use S in terms of HG phase function and it is given as [6], 
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where S is any non-negative coefficient, the parameter t is in the range of 10  t  and 

 0  is the cosine of the scattering angel, 
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The steady state transport equation for one-dimensional case can be written when the HG 

phase function given in Eq. (2) is inserted on the right hand side of Eq. (1), 
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The integral of the HG phase function appeared on the right hand side of Eq. (4) over d  can 

be obtained using the addition theorem of the Legendre polynomials [13], 
 

 











2

0 0

0 )()()12(
2

d)(
n

nn

nSHG

S PPtn ,       (5) 

 
1

0 1

( , )
( , ) (2 1) ( ) ( , ') ( ')d '

2

N
n

n n

n

x vc
v x n t P x P

x

 
       



 


  


  .     (6) 

 

To simplify the derivation of the equations, here a dimensionless space variable such that 

Tx/  x is defined and  is the eigenvalues. In order to solve Eq.(6), it is well known that in 

the UN approximation the angular flux is expanded in terms of the Chebyshev polynomial of 

second kind as, 
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If the neutron angular flux ),(  x  given in Eq. (7) is inserted into Eq. (6), and the resulting 

equation is multiplied by Un() and integrated over   [1,1] using the orthogonality and the 

recurrence relations of the Chebyshev polynomials [13], 
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One can obtain the UN moments of the angular flux for n = 0 and n = 1, respectively; 
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Eqs. (9) and (10) are U1 equations of the present method for the neutron transport equation 

and the condition for n = 1 stated in Eq. (10) is equivalent to diffusion approximation as in 

spherical harmonics (PN) method by setting 0dd 1   xN  [12]. In the case of U1 

approximation, a familiar equation known as Fick’s law is obtained by taking 0dd 2  x  in 

Eq. (10), 
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Then Equation (11) is inserted into Eq.(9) to obtain the diffusion equation; 
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From Eq.(12), the diffusion length (L) in U1 approximation can be given, 
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3. Results and Discussion 

 

In this work, we applied the UN approximation to diffusion theory using HG phase function in 

slab geometry. HG phase function is used as the phase function which plays an important role 
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for the accurate solution of the transport equation.  The diffusion lengths are calculated for 

different values of c and t parameters. Numerical results obtained from the present method are 

compared with ones obtained from PN method and it can be summarized from the tables that 

the U1 approximation gives coherent results with P1 approximation in slab geometry. 

 
 
 

Table 1. Diffusion lengths L (cm) as calculated by P1 and U1 approximations for c = 0.99, 0.98 and 0.95 with 

HG phase function 

t 
c = 0.99 c = 0.98 c = 0.95 

U1 P1 U1 P1 U1 P1 

0.00 5.0000 5.7735 3.5355 4.0825 2.2361 2.5820 

0.25 5.7639 6.6556 4.0689 4.6984 2.5607 2.9569 

0.50 7.0360 8.1244 4.9507 5.7166 3.0861 3.5635 

0.70 9.0240 10.4201 6.3094 7.2855 3.8633 4.4610 

0.85 12.5590 14.5019 8.6516 9.9900 5.0965 5.8849 

1.00 50.0000 57.7350 25.0000 28.8675 10.0000 11.5470 

 
Table 2. Diffusion lengths L (cm) as calculated by P1 and U1 approximations for c = 0.89, 0.85 and 0.80 with 

HG phase function 

t 
c = 0.89 c = 0.85 c = 0.80 

U1 P1 U1 P1 U1 P1 

0.00 1.5076 1.7408 1.2910 1.4907 1.1180 1.2910 

0.25 1.7097 1.9742 1.4548 1.6798 1.2500 1.4434 

0.50 2.0236 2.3367 1.7025 1.9659 1.4434 1.6667 

0.70 2.4453 2.8351 2.0286 2.3424 1.6855 1.9462 

0.85 3.0551 3.5277 2.4507 2.8298 1.9764 2.2822 

1.00 4.5455 5.2486 3.3333 3.8490 2.5000 2.8868 
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