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Abstract: The first kind of Chebyshev polynomials are used for the series expansion of the neutron angular flux 

in neutron transport theory. The first order approximation known as the diffusion approximation is applied to 

one-dimensional neutron transport equation to determine the diffusion coefficients of one-speed neutrons for 

selected values of the scattering parameters. 
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Birinci Tip Chebyshev Polinomları ile Nötron Transport Denklemine 

Difüzyon Yaklaşımı 
 

Özet: Nötron transport teorisinde açısal akının seri açılımı için I. Tip Chebyshev polinomları kullanıldı. Tek 

hızlı nötronların difüzyon katsayılarını belirlemek için difüzyon yaklaşımı olarak bilinen ilk mertebe yaklaşımı 

saçılma parametrelerinin seçilen değerleri için tek boyutlu nötron transport denklemine uygulanmıştır.  

 

Anahtar kelimeler: I. tip Chebyshev polinomları, nötron transport denklemi, difüzyon Yaklaşımı 

 

1. Introduction 

 

In nuclear reactor theory, the neutron transport equation is referred to as an integro-

differential equation which describes the neutron population and interactions throughout the 

system. It is not very easy to solve transport equation accurately since the neutrons are neutral 

particles and thus move in complicated paths in the systems. To get a satisfactory solution, 

this problem can be solved with diffusion approximation which is also used in other branches 

of engineering. To do this, one should have knowledge about nuclear cross sections, their 

energy dependence and also neutron distributions. Diffusion approximation which is widely 

used for the first estimates of a nuclear system has the great advantage to predict many of the 

properties of nuclear reactors such as neutron transport and energy spectrum. This theory 

gives adequate results if the number of secondary neutrons per collision, c, is close to unity 

[1]. 

 

There are many methods developed for the solutions of the problems related with neutron 

transport theory. The spherical harmonics (PN) method is one of the most preferred one 

among the polynomial expansion based techniques for the problems in neutron transport 

theory. The lowest-order P1 approximation or more widely known as diffusion approximation 

can be derived quite simply for arbitrary geometry and its results are compared with rigorous 

solutions obtained from singular eigenfunction expansions [2,3]. However, the spherical 

harmonics method is not the unique one valid for all cases such as the computation of the 

extrapolated end points. Therefore, Aspelund, Conkie and Yabushita used the Chebyshev 
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polynomials instead of Legendre polynomials in series expansion of the angular flux and 

reported the advantages of their new methods [4,6]. 

 

Since then, the first and second kind of Chebyshev polynomials are often used in transport 

theory calculations. In some of recent studies, the eigenvalues spectrum, the criticality 

problem and diffusion length calculations are investigated for bare and reflected slabs and 

spheres using higher order applications of the TN method, i.e. the first kind of Chebyshev 

polynomials approximation [7,11]. However, in any of those studies, T1 approximation is not 

used for the calculation of the diffusion length. Therefore, it is worth to apply the T1 

approximation to determine the diffusion length of one-speed neutrons in a homogeneous 

slab. In this study, it is shown that the T1 approximation can easily be applied to transport 

equation for the determination of the diffusion length as well as the traditional P1 

approximation. Furthermore, numerical results for the diffusion length of the neutrons are 

calculated using the present method for various values of the collision parameter c and they 

are given in the tables with the literature values for comparison. 

 

2. Theory 

 

The neutron transport equation for one-speed neutrons in a homogeneous slab with isotropic 

scattering can be written as, 
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where ( , )x   is the neutron angular flux at position x traveling in direction µ, cosine of the 

scattering angel between the neutron velocity vector and the positive x-axis. T  is the total 

macroscopic cross section [2]. 

 

In this work, the neutron angular flux is expanded in terms of the first kind of Chebyshev 

polynomials as described in Ref. [7] to analyze the diffusion or asymptotic relaxation length 

for one-speed neutrons in a slab, 
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The orthogonality and recurrence relations of the Chebyshev polynomials of first kind can be 

given as [10], 
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Eq. (2) is inserted into Eq. (1), then multiplying the resultant equation by T0() and T1() and 

then integrating over   [1, 1] by means of Eq. (3) and (4), one can obtain the equations of 

moments for n = 0 n = 1, respectively; 
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Eqs. (5) and (6) are T1 equations for the neutron transport equation and the condition for n = 1 

stated in Eq. (6) is equivalent to diffusion approximation as in spherical harmonics (PN) 

method by setting 1d ( ) / d 0N x x   [12]. In the case of T1 approximation, a familiar equation 

known as Fick’s law is obtained by taking 2d ( ) / d 0x x   in Eq. (6), 
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By following the same procedure as in Fick’s law, diffusion equation can be obtained for the 

conservation of the neutron flux in a medium without source when Eq. (7) is inserted into Eq. 

(5), 
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Since Eq. (8) is obtained with the same procedure as in P1 approximation, the diffusion length 

(L) in T1 approximation can be given according to Eq. (8), 
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In addition, an analytic expression for the neutron scalar flux can be obtained for T1 

approximation and for c < 1 by solving the differential equation given in Eq. (8), 
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where the constants A and B can be found from boundary conditions. 

 

Other expressions for diffusion lengths obtained from the method of separation of variables 

(often referred to as asymptotic relaxation length), traditional P1 (diffusion) approximation, 

and U1 approximation can be given as, respectively; 
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These methods are not needed to be discussed here since they can be found elsewhere [9,12]. 

 

3. Results and Discussion   

 

The diffusion approximation for one-speed neutrons in a homogeneous slab with isotropic 

scattering is applied and an analytic expression is derived. For this analysis, neutron angular 

flux is expanded in terms of the Chebyshev polynomials of first kind and first two terms of 

the series expansion of the angular flux are taken (n = 0 and n = 1) to obtain the equations of 

moments, i.e. T1 approximation. Then, numerical results for the diffusion lengths are 

calculated from Eqs. (9), (11), (12) and (13) for various values of the collision parameter c 

and they are tabulated in the tables for comparison. In all cases, the total macroscopic cross 

section is assumed to be its normalized value, T = 1 cm
1

. 

 

The diffusion lengths given in Eqs. (11) and (12) are quoted from Bell and Glasstone [12] and 

represent the asymptotic relaxation length from the transport theory (exact) and the diffusion 

length from simple diffusion theory (traditional P1 approximation), respectively. Eq.(13) gives 

the result for the diffusion length from U1 approximation [9]. The diffusion lengths are 

computed for the values of c ranging from 0 (weakly absorbing medium) to 1 (highly 

scattering medium). 

 

As seen from Table 1, diffusion lengths obtained from the present method is quite similar to 

the exact results. Meanwhile, the same manner is also valid for the results obtained from the 

well-known P1 and U1 approximations. The numerical results obtained for the diffusion length 

from the present T1 approximation may not seemed to be very close to the results obtained 

from transport theory (exact), completely. However, this does not show the inefficiency of the 

TN method since it has been applied to other types of transport problems successfully in 

previous studies [7,8]. Therefore, it is aimed in this study that this method may be applied to 

other problems in science and engineering and may give consistent results. 

 
Table 1. Diffusion lengths L obtained from T1 approximation and literature values, (cm) 

c T1 

(present work, Eq. (9)) 

U1 

(Eq. (13)) 

P1 

(Eq. (12)) 

Exact 

(Eq.(11)) 

0.99 7.071 5.000 5.774 5.797 

0.98 5.000 3.536 4.082 4.116 

0.95 3.162 2.236 2.582 2.635 

0.90 2.236 1.581 1.826 1.903 

0.80 1.581 1.118 1.291 1.408 

0.50 1.000 0.707 0.816 1.044 

0 0.707 0.500 0.577 1.000 
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