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Abstract 

This paper deals with the soft topological counterparts of concepts introduced by 

Kuratowski. First the closure operator is investigated in the soft topological setting and afterwards 

the Kuratowski Closure-Complement Theorem is stated and proved. 

Keywords: Soft topology; Kuratowski closure operator; Kuratowski Closure-Complement 

Theorem. 

Soft Topolojideki Kuratowski Teoremleri 

Öz 

Bu çalışmada Kuratowski tarafından ortaya konan bazı topolojik kavramların Soft 

topolojideki karşılıkları ele alınmıştır. Öncelikle kapanış operatörü soft topolojide tanımlanmış 

ve incelemesi yapılmış daha sonra Kuratowski Kapanış-Tümleyen Teoremi ifade edilmiş ve 

kanıtlanmıştır.   

Anahtar Kelimeler: Soft topoloji; Kuratowski kapanış operatörü; Kuratowski Kapanış-

Tümleyen Teoremi. 
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1. Introduction 

Various theories have been proposed with the purpose of dealing with different types of 

uncertainties. Besides to probability theory the most known ones are the theory of fuzzy sets [1], 

the theory of vague sets [2], the theory of rough sets [3]. Nevertheless not suprisingly all these 

theories have their own drawbacks. In 1999, Molodtsov [4] introduced the notion of soft set theory 

claiming to overcome the drawbacks of the theories mentioned above. Molodtsov proposed 

applications of this new tool in several directions, such as smoothness of functions, game theory, 

operations research, Riemann integration, Perron integration, probability, theory of measurement. 

After the introduction of soft sets, several researchers started to extend the theory in different 

paths. In 2003, Maji et al [5] defined and studied several fundamental notions of soft set theory. 

The outcome of soft set theory in algebraic structures was introduced by Aktaş and Çağman [6]. 

They not only defined the notion of soft groups but also obtained most of their basic properties. 

In 2011, Shabir and Naz [7] brought to light the idea of soft topological spaces. They interestingly 

observed that a soft topological space is actually a parameterized family of topological spaces.  

This paper participates to all those discussions in the direction of soft topological spaces. 

First the concept of Kuratowski closure operator is introduced in the soft topological setting. The 

correspondence of a closure operator with a soft topology is given. In addition the well-known 

Kuratowski Closure-Complement Theorem is stated and proved for soft topological spaces. 

2. Preliminaries 

In this section, the fundamental definitions and results of soft set theory and its topology 

are presented. They may be found in earlier studies [4 , 5, 7-10]. 

Definition 1. Let 𝑈 denote the universe of discourse and 𝐸 be a set of parameters. Let ℘(𝑈) 

denote the power set of 𝑈 and 𝐴 be a non-empty subset of 𝐸. A pair (𝐹, 𝐴) is called a soft set over 

𝑈, where F is a mapping given by 𝐹: 𝐴 ⟶ ℘(𝑈).  

Basically, a soft set over 𝑈 is a parametrized family of subsets of the universe 𝑈. In the 

sequel 𝑈 will allways be the universe of discourse and 𝐸 the set of parameters unless stated 

otherwise. 

For the sake of simplicity we hereafter will suppose any given soft set (𝐹, 𝐴) over 𝑈 with 

parameters set 𝐸 is extended as following: 
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𝐹!: 𝐸 → ℘(𝑈), 𝐹!(𝑒) = /𝐹(𝑒) , 𝑖𝑓𝑒 ∈ 𝐴
⌀ , 𝑖𝑓𝑒 ∈ 𝐸 − 𝐴. By this extension we will denote any given 

soft set (𝐹, 𝐴) by (𝐹, 𝐸) just by replacing 𝐹! with 𝐹. 

Definition 2. Let 𝑈 be an initial universe set and E be an universe set of parameters. Let 

(𝐹, 𝐸) and (𝐺, 𝐸) be soft sets over a common universe set 𝑈. Then (𝐹, 𝐸) is a soft subset of (𝐺, 𝐸), 

denoted by (𝐹, 𝐸) ⊂
∼
(𝐺, 𝐸), if for all 𝑒 ∈ 𝐸, 𝐹(𝑒) ⊂ 𝐺(𝑒).  

	(𝐹, 𝐸) is called a soft super set of (𝐺, 𝐸), if (𝐺, 𝐸)is a soft subset of (𝐹, 𝐸). We denote it 

by (𝐹, 𝐸) ⊃
∼
(𝐺, 𝐸). 

Definition 3. Two soft set (𝐹, 𝐸) and (𝐺, 𝐸) over a common universe 𝑈 are said to be soft 

equal if, (𝐹, 𝐸) is a soft subset of (𝐺, 𝐸) and (𝐺, 𝐸) is a soft subset of (𝐹, 𝐸).  

Definition 4. A soft set (𝐹, 𝐸) over 𝑈 is said to be the empty soft set denoted by 𝛷# if for 

all 𝑒 ∈ 𝐸, 𝐹(𝑒) = ∅.  

Definition 5. A soft set (𝐹, 𝐸) over 𝑈 is said to be an absolute soft set denoted by 𝑈# if for 

all 𝑒 ∈ 𝐸, 𝐹(𝑒) = 𝑈.  

Clearly 𝑈#$ = Φ# and Φ#
$ = 𝑈#. 

Definition 6. The union (𝐻, 𝐸) of two soft sets (𝐹, 𝐸) and (𝐺, 𝐸) over the common universe 

𝑈, denoted (𝐹, 𝐸) ∪
∼
(𝐺, 𝐸), is defined as 𝐻(𝑒) = 𝐹(𝑒) ∪ 𝐺(𝑒), for all 𝑒 ∈ 𝐸.  

Definition 7. The intersection (𝐻, 𝐸) of two soft sets (𝐹, 𝐸) and (𝐺, 𝐸) over the common 

universe 𝑈, denoted (𝐹, 𝐸) ∩
∼
(𝐺, 𝐸), is defined as 𝐻(𝑒) = 𝐹(𝑒) ∩ 𝐺(𝑒), for all 𝑒 ∈ 𝐸.  

Definition 8. The complement of a soft set (𝐹, 𝐸) is denoted by (𝐹, 𝐸)$ and is defined by 

(𝐹, 𝐸)$: = (𝐹$ , 𝐸), where 𝐹$: 𝐸 ⟶ ℘(𝑈) is a mapping given by 𝐹$(𝑒) = 𝑈 − 𝐹(𝑒), for all 𝑒 ∈

𝐸.  

Proposition 9. Let (𝐹, 𝐸) and (𝐺, 𝐸) be the soft sets over 𝑈. Then 

i) A(𝐹, 𝐸) ∪
∼
(𝐺, 𝐸)B

$
= (𝐹, 𝐸)$ ∩

∼
(𝐺, 𝐸)$, 

ii) A(𝐹, 𝐸) ∩
∼
(𝐺, 𝐸)B

$
= (𝐹, 𝐸)$ ∪

∼
(𝐺, 𝐸)$.  
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Definition 10. Let 𝑈 be an initial universe and 𝐸 be the non-empty set of parameters. The 

difference (𝐻, 𝐸) of two soft sets (𝐹, 𝐸) and (𝐺, 𝐸) over 𝑈, denoted by (𝐹, 𝐸)\
∼
(𝐺, 𝐸), is defined 

as 𝐻(𝑒) = 𝐹(𝑒)\𝐺(𝑒), for all 𝑒 ∈ 𝐸.  

Definition 11. Let (𝐹, 𝐸) be a soft set over 𝑈 and 𝑢 ∈ 𝑈. We say that 𝑢 ∈
∼
(𝐹, 𝐸) read as 𝑢 

belongs to the soft set (𝐹, 𝐸) whenever 𝑢 ∈ 𝐹(𝑒), for all 𝑢 ∈ 𝐸.  

Note that for any 𝑢 ∈ 𝑈, 𝑢 ∉
∼
(𝐹, 𝐸) if 𝑢 ∉ 𝐹(𝑒), for some 𝑒 ∈ 𝐸. 

Definition 12. Let 𝑌 be a non-empty subset of 𝑈, then 𝑌# denotes the soft set (𝑌, 𝐸) over 

𝑈 for which 𝑌(𝑒) = 𝑌, for all 𝑒 ∈ 𝐸.  

Definition 13. Let 𝑢 ∈ 𝑈, then (𝑢, 𝐸) denotes the soft set over 𝑈 for which 𝑢(𝑒) = {𝑢}, for 

all 𝑒 ∈ 𝐸.  

Definition 14. Let 𝜏 be a collection of soft sets over 𝑈, then 𝜏 is said to be a soft topology 

on 𝑈 if 

T1) Φ#,𝑈# belong to 𝜏, 

T2) The union of any number of soft sets in 𝜏 belongs to 𝜏, 

T3) The intersection of any two soft sets in 𝜏 belongs to 𝜏. 

The triplet (𝑈, 𝜏, 𝐸) is called a soft topological space over 𝑈.  

Definition 15. Let (𝑈, 𝜏, 𝐸) be a soft topological space over 𝑈, then the members of 𝜏 are 

said to be soft open sets in 𝑈.  

Definition 16. Let (𝑈, 𝜏, 𝐸) be a soft topological space over 𝑈. A soft set (𝐹, 𝐸) over U is 

said to be a soft closed set in 𝑈, if its complement (𝐹, 𝐸)$ belongs to 𝜏.  

Proposition 17. Let (𝑈, 𝜏, 𝐸) be a soft topological space over 𝑈 and 𝐸 be the non-empty 

set of parameters. Then 

i) Φ#,𝑈# are closed soft sets over 𝑈, 

ii) The intersection of any number of soft closed sets is a soft closed set over 𝑈, 

iii) The union of any two soft closed sets is a soft closed set over 𝑈.  
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Definition 18. Let (𝑈, 𝜏, 𝐸) be a soft space over 𝑈 and (𝐹, 𝐸) be a soft set over 𝑈. Then 

the soft closure of (𝐹, 𝐸), denoted by (𝐹, 𝐸) is the intersection of all soft closed super sets of 

(𝐹, 𝐸).  

Clearly (𝐹, 𝐸) is the smallest soft closed set over 𝑈 which contains (𝐹, 𝐸). 

Theorem 19. Let (𝑈, 𝜏, 𝐸) be soft topological space over 𝑈 and (𝐹, 𝐸), (𝐺, 𝐸) are soft sets 

over 𝑈. Then the following hold: 

i) Φ# = Φ# and 𝑈# = 𝑈#, 

ii) (𝐹, 𝐸) ⊂K (𝐹, 𝐸), 

iii) (𝐹, 𝐸) is a soft closed set if and only if (𝐹, 𝐸) = (𝐹, 𝐸), 

iv) (𝐹, 𝐸) = (𝐹, 𝐸), 

v) (𝐹, 𝐸) ⊂K (𝐺, 𝐸) implies (𝐹, 𝐸) ⊂K (𝐺, 𝐸), 

vi) (𝐹, 𝐸) ∪K (𝐺, 𝐸) = (𝐹, 𝐸) ∪K (𝐺, 𝐸), 

vii) (𝐹, 𝐸) ∩K (𝐺, 𝐸) ⊂K (𝐹, 𝐸) ∩K (𝐺, 𝐸).  

Definition 20. Let (𝑈, 𝜏, 𝐸) be a soft topological space over U then soft interior of soft set 

(𝐹, 𝐸) over U is denoted by (𝐹, 𝐸)∘ and is defined as the union of all soft open sets contained in 

(𝐹, 𝐸).  

Thus (𝐹, 𝐸)∘ is the largest soft open set contained in (𝐹, 𝐸).  

Theorem 21. Let (𝑈, 𝜏, 𝐸) be a soft topological space over 𝑈 and (𝐹, 𝐸), (𝐺, 𝐸) are soft 

sets over 𝑈. Then the followings hold: 

i) Φ#
∘ = Φ# and 𝑈#∘ = 𝑈#, 

ii) (𝐹, 𝐸)∘ ⊂K (𝐹, 𝐸), 

iii) ((𝐹, 𝐸)∘)∘ = (𝐹, 𝐸)∘, 

iv) (𝐹, 𝐸) is a soft open set if and only if (𝐹, 𝐸)∘ = (𝐹, 𝐸), 

v) (𝐹, 𝐸) ⊂K (𝐺, 𝐸) implies (𝐹, 𝐸)∘ ⊂K (𝐺, 𝐸)∘, 
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vi) ((𝐹, 𝐸) ∩K (𝐺, 𝐸))∘ = (𝐹, 𝐸)∘ ∩K (𝐺, 𝐸)∘, 

vii) (𝐹, 𝐸)∘ ∪K (𝐺, 𝐸)∘ ⊂K ((𝐹, 𝐸) ∪K (𝐺, 𝐸))∘.  

Theorem 22. Let (𝐹, 𝐸) be a soft set of soft topological space over 𝑈. Then 

i) ((𝐹, 𝐸)$)∘ = L(𝐹, 𝐸)M
$
, 

ii) ((𝐹, 𝐸)$) = ((𝐹, 𝐸)∘)$, 

iii) (𝐹, 𝐸)∘ = A((𝐹, 𝐸)$)B
$
.  

Definition 23. Let (𝑈, 𝜏, 𝐸) be a soft topological space over 𝑈 then the soft boundary of 

soft set (𝐹, 𝐸) over 𝑈 is denoted by (𝐹, 𝐸) and defined as (𝐹, 𝐸) = (𝐹, 𝐸) ∩
∼
((𝐹, 𝐸)$).  

Remark 24. From the above definition it follows directly that the soft sets (𝐹, 𝐸) and 

(𝐹, 𝐸)$ have same soft boundary.  

Theorem 25. Let (𝐹, 𝐸) be a soft set of soft topological space over 𝑈. Then the followings 

hold: 

(1) ((𝐹, 𝐸))$ = (𝐹, 𝐸)∘ ∪
∼
((𝐹, 𝐸)$)∘ = (𝐹, 𝐸)∘ ∪

∼
(𝐹, 𝐸)∘ 

(2) (𝐹, 𝐸) = (𝐹, 𝐸)∘ ∪
∼
(𝐹, 𝐸) 

(3) (𝐹, 𝐸) = (𝐹, 𝐸) ∩
∼
((𝐹, 𝐸)$) = (𝐹, 𝐸)\

∼
(𝐹, 𝐸)∘ 

(4) (𝐹, 𝐸)∘ = (𝐹, 𝐸)\
∼
(𝐹, 𝐸).  

3. Soft Kuratowski Closure Operator 

Theorem 26. Let (𝑈, 𝜏, 𝐸) be a soft topological space. The operator 𝜑:℘(𝑈#) → ℘(𝑈#), 

defined by 𝜑O((𝐹, 𝐸)) = (𝐹, 𝐸) satisfies following properties: 

K1) (𝐹, 𝐸) ⊂K 𝜑O((𝐹, 𝐸)), 

K2) 𝜑O(𝜑O((𝐹, 𝐸))) = 𝜑O((𝐹, 𝐸)), 

K3) 𝜑O((𝐹, 𝐸) ∪K (𝐺, 𝐸)) = 𝜑O((𝐹, 𝐸)) ∪K 𝜑O((𝐺, 𝐸)), 

K4) 𝜑O(Φ#) = Φ#. 
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Conversely for any operator 𝜑O:℘(𝑈#) → ℘(𝑈#) satisfying these four conditions there 

exists a unique soft topology  𝜏	&'  on 𝑈 such that for all (𝐹, 𝐸) ⊂K 𝑈# the soft closure of (𝐹, 𝐸)is 

just 𝜑O((𝐹, 𝐸)).  

Proof. (K1)-(K4) are obvious from Theorem 19. 

For the second part of the theorem let us define  𝜏	&'  as following:  

												𝜏&' = {(𝐹, 𝐸) ⊂K 𝑈#: 𝜑O((𝐹, 𝐸)$) = (𝐹, 𝐸)$} 

We will show that the family  𝜏	&'  is a soft topology on 𝑈# . 

T1) 𝜑O(𝑈#$) = 𝜑O(Φ#) and by (K4) 𝜑O(Φ#) = Φ# therefore 𝑈# ∈ 𝜏	&' . 𝜑O(Φ#
$ ) = 𝜑O(𝑈#) and 

since by (K1) 𝑈# ⊂ 𝜑O(𝑈#) we obeserve that 𝜑O(𝑈#) = 𝑈# and Φ# ∈ 𝜏	&' . 

T2) Let (𝐹, 𝐸), (𝐺, 𝐸) ∈ 𝜏	&'  then we have 𝜑O((𝐹, 𝐸)$) = (𝐹, 𝐸)$ and 𝜑O((𝐺, 𝐸)$) = (𝐺, 𝐸)$. 

Now by the Morgan’s 𝜑O(((𝐹, 𝐸) ∩K (𝐺, 𝐸))$) = 𝜑O((𝐹, 𝐸)$ ∪K (𝐺, 𝐸)$) and by (K3) 

𝜑O((𝐹, 𝐸)$ ∪K (𝐺, 𝐸)$) = 𝜑O((𝐹, 𝐸)$) ∪K 𝜑O((𝐺, 𝐸)$) = (𝐹, 𝐸)$ ∪K (𝐺, 𝐸)$ = ((𝐹, 𝐸) ∩K (𝐺, 𝐸))$ 

which means that (𝐹, 𝐸) ∩K (𝐺, 𝐸) ∈ 𝜏	&' . 

T3) Let (𝐹( , 𝐸) ∈ 𝜏	&'  for ∀𝑖 ∈ 𝐼. For ∀𝑖 ∈ 𝐼 we have (𝐹( , 𝐸) ⊂K ∪K(∈* (𝐹( , 𝐸) therefore,  

𝑈#\R ∪K(∈* (𝐹( , 𝐸) ⊂K 𝑈#\
R(𝐹( , 𝐸) and with help of (K3) it can be seen that for ∀𝑖 ∈ 𝐼, 

𝜑O A𝑈#\R ∪K(∈* (𝐹( , 𝐸)B ⊂K 𝜑O(𝑈#\
R(𝐹( , 𝐸)). Since each (𝐹( , 𝐸) is a member of  𝜏	&'  we have 

𝜑O(𝑈#\R(𝐹( , 𝐸)) = 𝑈#\R(𝐹( , 𝐸)thus, 𝜑O A𝑈#\R ∪K(∈* (𝐹( , 𝐸)B ⊂K∩
K L𝑈#\R(𝐹( , 𝐸)M and finally by De 

Morgan’s  

𝜑O A𝑈#\R ⋃T
(∈*
(𝐹( , 𝐸)B ⊂K A𝑈#\R ⋃T

(∈*
(𝐹( , 𝐸)B.                                                                                     (1) 

On the other hand by (K1),  

𝑈#\R ⋃T
(∈*
(𝐹( , 𝐸) ⊂K 𝜑O A𝑈#\R ⋃T

(∈*
(𝐹( , 𝐸)B.                                                                                           (2) 

Combining Eqn. (1) and Eqn. (2) we get the equality 𝜑O A𝑈#\R ∪K(∈* (𝐹( , 𝐸)B = 𝑈#\R ∪K(∈* (𝐹( , 𝐸) hence  

∪K
(∈*
(𝐹( , 𝐸) ∈ 𝜏	&' . 
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Once we have seen that 𝜏	&'  is a soft topolgy the property (K2) will help us showing that 

𝜑O((𝐹, 𝐸)) = (𝐹, 𝐸): 

Since by (K2) 𝜑O(𝜑O((𝐹, 𝐸))) = 𝜑O((𝐹, 𝐸)) we have by definition of 𝜏	&' , 𝜑O((𝐹, 𝐸))$ ∈ 𝜏	&'  

and therefore 𝜑O((𝐹, 𝐸)) is a soft closed set which means,  

(𝐹, 𝐸) ⊂K 𝜑O((𝐹, 𝐸)).                                                                                                                 (3) 

For the reverse inclusion we first observe that since (𝐹, 𝐸) is a closed set, by definition of  

𝜏	&' , 𝜑O(((𝐹, 𝐸))) = (𝐹, 𝐸). Additionally we have (𝐹, 𝐸) ⊂K (𝐹, 𝐸) and by (K1) 

𝜑O((𝐹, 𝐸)) ⊂K 𝜑O((𝐹, 𝐸)) = (𝐹, 𝐸) which is the required inclusion,  

𝜑O((𝐹, 𝐸)) ⊂K (𝐹, 𝐸).                                                                                                                    (4) 

Thus by Eqn. (3) and Eqn. (4) 𝜑O((𝐹, 𝐸)) = (𝐹, 𝐸). The operator 𝜑O  in this theorem is called 

to be a Kuratowski soft closure operator.  

Example 27. Let 𝑈 = ℝ, 𝐸 = {𝑒+, 𝑒,, . . . , 𝑒-} and 𝜑O:℘(ℝ#) → ℘(ℝ#) be defined as 

following: 

											𝜑O((𝐹, 𝐸)) = V
Φ# , if	(𝐹, 𝐸) = Φ#;
(𝐹, 𝐸) ∪K L√2, 𝐸M, if	(𝐹, 𝐸) ≠ Φ#;

 

𝜑O  is a soft Kuratowski closure operator. 

It can be easily verified that 𝜑O  satisfies (K1)-(K4). The topology generated by 𝜑O  is 

𝜏	&' = ](𝐹, 𝐸): (√2, 𝐸) ⊂K (𝐹, 𝐸)$^ ∪K 𝑈# .  

For sure the duallity between closednes and opennes of soft sets in soft topological spaces 

reflects a dual concept to Soft Closure Operators: In the sequel we introduce the Soft Interior 

Operator.  

Theorem 28. In a soft topological space (𝑋, 𝜏, 𝐸) the operator 𝛹T:℘(𝑈#) → ℘(𝑈#), 

𝛹T((𝐹, 𝐸)) = (𝐹, 𝐸)∘ satisfies following properties: 

I1) ΨT((𝐹, 𝐸)) ⊂K (𝐹, 𝐸), 

I2) ΨTLΨT((𝐹, 𝐸))M = ΨT((𝐹, 𝐸)), 

I3) ΨT((𝐹, 𝐸) ∩K (𝐺, 𝐸)) = ΨTL(𝐹, 𝐸)) ∩K ΨT((𝐺, 𝐸)M, 
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I4) ΨT(𝑈#) = 𝑈#. 

Conversely, suppose that the operator ΨT:℘(𝑈#) → ℘(𝑈#) satisfies the 4 conditions given 

above then there exists a soft topology 𝜏./  on 𝑈 such that for each (𝐹, 𝐸) ⊂K 𝑈# the soft interior 

of (𝐹, 𝐸) is just ΨT((𝐹, 𝐸)).  

Proof. The fırst part of the theorem is obvious from Theorem 21. For the converse part it 

can be first varified that 𝜑O((𝐹, 𝐸)) = 𝑈#\R𝛹T((𝐹, 𝐸)$) is a soft Kuratowski closure. Afterwards it 

can be seen that for the topology 𝜏0/ = ](𝐹, 𝐸) ⊂K 𝑈#: 𝛹T((𝐹, 𝐸)) = (𝐹, 𝐸)^ we have the equality 

(𝐹, 𝐸)∘ = 𝛹T((𝐹, 𝐸)).  

Example 29. Let 𝑈 = ℝ, 𝐸 = {𝑒+, 𝑒,, . . . , 𝑒-} and 𝛹T:℘(ℝ#) → ℘(ℝ#) be defined as 

following: 

											ΨT((𝐹, 𝐸)) = V
ℝ# , if	(𝐹, 𝐸) = ℝ;
(𝐹, 𝐸)\RL√2, 𝐸M, if	(𝐹, 𝐸) ≠ ℝ. 

ΨT  is a soft interior operator and the corresponding soft topology is the family  

𝜏./ = ](𝐹, 𝐸) ∈ ℘(ℝ#): (𝐹, 𝐸)) ∩K (√2, 𝐸) = Φ#^.  

4. Soft Kuratowski Closure-Complement Theorem 

The Kuratowski Closure-Complement Theorem which was first proved by the Polish 

mathematician Kazimierz Kuratowski in 1922 can be given by using soft sets as follows: 

Theorem 30. Let (𝑈, 𝜏, 𝐸) be a soft topological space and (𝐹, 𝐸) be a soft set over 𝑈. The 

number of different soft sets obtained by soft complementing and soft closing the set (𝐹, 𝐸) can 

not exceed 14. Moreover, this number can be attained for a soft set in the soft standard topology.  

Several proofs of the classical version of this theorem are demonstrated by different 

mathematicians. The way we have choosen is analoguous to the proof of Strabel [11] but before 

going to the proof of the theorem, we will review some algebraic notions that are in connection 

with the operators used in the proof. Given a soft topological space (𝑈, 𝜏, 𝐸) define the soft 

complement operator 𝑎 and the soft closure operator 𝑏 on soft subsets (𝐹, 𝐸) ⊂K 𝑈# by 𝑎(𝐹, 𝐸) =

𝑈#\R(𝐹, 𝐸) and 𝑏(𝐹, 𝐸) = (𝐹, 𝐸), respectively. Obviously 𝑎𝑎(𝐹, 𝐸) = (𝐹, 𝐸). Starting with any 

soft topological space (𝑈, 𝜏, 𝐸), possible distinct operators on (𝑈, 𝜏, 𝐸) that can be obtained by 

composing the elements of the set {𝑎, 𝑏} yield to a monoid with the identity element 𝑎𝑎. This 

monoid is called the Kuratowski monoid on (𝑈, 𝜏, 𝐸). 
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For any soft topological space (𝑈, 𝜏, 𝐸), a natural partial order on the Kuratowski monoid 

exists.(𝑈, 𝜏, 𝐸) If ∘+ and ∘, are elements of the Kuratowski monoid on (𝑈, 𝜏, 𝐸), we define the 

partial order ≤ as ∘+≤∘, if for every (𝐹, 𝐸) ⊂K 𝑈#, ∘+ (𝐹, 𝐸) ≤∘, (𝐹, 𝐸). 

After this short introduction we are ready for the proof of the theorem. 

Proof. Let (𝑈, 𝜏, 𝐸) be a soft topological space. We mentioned above that 𝑎𝑎 = 𝑖𝑑. At the 

same time 𝑏𝑏 = 𝑏. Therefore it can be easily observed that a member of the Kuratowski monoid 

on (𝑈, 𝜏, 𝐸) has to be equivalent to one of the operators: 𝑖𝑑, 𝑎, 𝑏, 𝑎𝑏, 𝑏𝑎, 𝑎𝑏𝑎, 𝑏𝑎𝑏, 𝑎𝑏𝑎𝑏, 𝑏𝑎𝑏𝑎, 

𝑎𝑏𝑎𝑏𝑎, 𝑏𝑎𝑏𝑎𝑏, 𝑎𝑏𝑎𝑏…𝑎𝑏, 𝑏𝑎𝑏𝑎…𝑏𝑎, 𝑎𝑏𝑎𝑏…𝑎𝑏𝑎 or 𝑏𝑎𝑏𝑎…𝑏𝑎𝑏. 

We will now obtain that 𝑏𝑎𝑏 = 𝑏𝑎𝑏𝑎𝑏𝑎𝑏. Firstly,  

												𝑎𝑏𝑎L(𝐹, 𝐸)M = 𝑎𝑏L𝑈#\R(𝐹, 𝐸)M 

  					= 𝑎 AL𝑈#\R(𝐹, 𝐸)M
∘ ∪K (𝐹, 𝐸)B 

     = (𝐹, 𝐸)∘ 

Now 𝑎𝑏𝑎𝑏𝑎𝑏 ≤ 𝑏𝑎𝑏 since 𝑎𝑏𝑎𝑏𝑎𝑏(𝐹, 𝐸) is the interior of 𝑏𝑎𝑏(𝐹, 𝐸). By the fact that 

𝑏𝑏 = 𝑏, it follows that 𝑏𝑎𝑏𝑎𝑏𝑎𝑏 ≤ 𝑏𝑏𝑎𝑏 = 𝑏𝑎𝑏. Also, 𝑎𝑏𝑎𝑏 ≤ 𝑏 since 𝑎𝑏𝑎𝑏(𝐹, 𝐸) is the 

interior of 𝑏(𝐹, 𝐸). Hence, 𝑏𝑎𝑏𝑎𝑏 ≤ 𝑏𝑏 = 𝑏. Then 𝑎𝑏𝑎𝑏𝑎𝑏 ≥ 𝑎𝑏, and therefore 𝑏𝑎𝑏𝑎𝑏𝑎𝑏 ≥

𝑏𝑎𝑏. We conclude that 𝑏𝑎𝑏 = 𝑏𝑎𝑏𝑎𝑏𝑎𝑏. From this it can be deduced that any word on {𝑎, 𝑏} that 

is longer than 7 places has to be equivalent to a word of length at most 7. Thus, for any soft 

topological space (𝑈, 𝜏, 𝐸), each operator in the Kuratowski monoid on (𝑈, 𝜏, 𝐸) is equivalent to 

at least one of the following: 

𝑖𝑑, 𝑎, 𝑏, 𝑎𝑏, 𝑏𝑎, 𝑎𝑏𝑎, 𝑏𝑎𝑏, 𝑎𝑏𝑎𝑏, 𝑏𝑎𝑏𝑎, 𝑎𝑏𝑎𝑏𝑎, 𝑏𝑎𝑏𝑎𝑏, 𝑎𝑏𝑎𝑏𝑎𝑏, 𝑏𝑎𝑏𝑎𝑏𝑎, 𝑎𝑏𝑎𝑏𝑎𝑏𝑎 

Therefore, for a soft topological space (𝑈, 𝜏, 𝐸), the Kuratowski monoid on (𝑈, 𝜏, 𝐸) can 

have order at most 14 and hence for any (𝐹, 𝐸) ⊂K 𝑈#, there are at most 14 distinct soft sets that 

can be obtained via soft closures and soft complements of (𝐹, 𝐸). 

To complete the proof of the theorem we need to show that this bound of 14 can be attained 

for a soft set. The following set will serve to this objective. (𝐹, 𝐸) ⊂K ℝ# given by  

 (𝐹, 𝐸) = ]L𝑒+, (0,1)M, L𝑒,, (1,2)M, (𝑒1, {3}), (𝑒2, [4,5] ∩ ℚ)^ 

attains the bound of 14; that is, we can produce 14 distinct soft sets from (𝐹, 𝐸) by taking soft 

complements and soft closures. These soft sets are:  
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													𝑖𝑑(𝐹, 𝐸) = ]L𝑒+, (0,1)M, L𝑒,, (1,2)M, (𝑒1, {3}), (𝑒2, [4,5] ∩ ℚ)^,                                             (i) 

𝑎(𝐹, 𝐸) = V
L𝑒+, (−∞, 0] ∪ [1, +∞)M, L𝑒,, (−∞, 1] ∪ [2, +∞)M,
(𝑒1, (−∞, 3] ∪ (3,+∞)), L𝑒2, (−∞, 4) ∪ (5,+∞) ∪ ([4,5] ∩ 𝐼)M

t,                  (ii) 

												𝑏(𝐹, 𝐸) = {(𝑒+, [0,1]), (𝑒,, [1,2]), (𝑒1, {3}), (𝑒2, [4,5])},                                                       (iii) 

	𝑎𝑏(𝐹, 𝐸) = V
L𝑒+, (−∞, 0) ∪ (1,+∞)M, L𝑒,, (−∞, 1) ∪ (2,+∞)M,
(𝑒1, (−∞, 3) ∪ (3,+∞)), L𝑒2, (−∞, 4) ∪ (5,+∞)M

t,                                (iv) 

 𝑏𝑎(𝐹, 𝐸) = VL𝑒+,
(−∞, 0] ∪ [1, +∞)M, L𝑒,, (−∞, 1] ∪ [2, +∞)M,

(𝑒1, ℝ), (𝑒2, ℝ)
t,                                  (v) 

 𝑎𝑏𝑎(𝐹, 𝐸) = ]L𝑒+, (0,1)M, L𝑒,, (1,2)M^,                                                                                   (vi) 

 𝑏𝑎𝑏(𝐹, 𝐸) = V
L𝑒+, (−∞, 0] ∪ [1, +∞)M, L𝑒,, (−∞, 1] ∪ [2, +∞)M,
(𝑒1, ℝ), L𝑒2, (−∞, 4] ∪ [5, +∞)M

t,                                 (vii) 

 𝑎𝑏𝑎𝑏(𝐹, 𝐸) = ]L𝑒+, (0,1)M, L𝑒,, (1,2)M, L𝑒2, (4,5)M^,                                                               (viii) 

 𝑏𝑎𝑏𝑎(𝐹, 𝐸) = {(𝑒+, [0,1]), (𝑒,, [1,2])},                                                                               (ix) 

 𝑎𝑏𝑎𝑏𝑎(𝐹, 𝐸) = VL𝑒+,
(−∞, 0) ∪ (1,+∞)M, L𝑒,, (−∞, 1) ∪ (2,+∞)M,

(𝑒1, ℝ), (𝑒2, ℝ)
t,                              (x) 

 𝑏𝑎𝑏𝑎𝑏(𝐹, 𝐸) = {(𝑒+, [0,1]), (𝑒,, [1,2]), (𝑒2, [4,5])},                                                             (xi) 

 𝑎𝑏𝑎𝑏𝑎𝑏(𝐹, 𝐸) = V
L𝑒+, (−∞, 0) ∪ (1,+∞)M, L𝑒,, (−∞, 1) ∪ (2,+∞)M,
(𝑒1, ℝ), L𝑒2, (−∞, 4) ∪ (5,+∞)M

t,                         (xii) 

 𝑏𝑎𝑏𝑎𝑏𝑎(𝐹, 𝐸) = VL𝑒+,
(−∞, 0] ∪ [1, +∞)M, L𝑒,, (−∞, 1] ∪ [2, +∞)M,

(𝑒1, ℝ), (𝑒2, ℝ)
t,                        (xiii) 

 𝑎𝑏𝑎𝑏𝑎𝑏𝑎(𝐹, 𝐸) = ]L𝑒+, (0,1)M, L𝑒,, (1,2)M^.                                                                       (xiv) 
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