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Abstract 

 

        This paper extends the plant-nectar-pollination 

model to the Caputo-Fabrizio fractional derivative, 

following which the existence and singularity 

resolutions of the new model are studies with the 

Picard-Lindelöf method. Afterwards Hyers-Ulam 

stability is utilized to analyse the stability of the PNP 

model. Lastly, Adams-Bashforth numerical approach 

is used for numerical resolutions. 

 

Keywords: PNP model, Caputo-Fabrizio fractional 
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1. Introduction 

 

        Many natural and flowering plants survive 

thanks to the accessibility of appropriate actors that 

pollenate or disperse seeds. Flowering plants require 

mechanisms, which will introduce pollen to their 

roots that will enable them to breed. In this respect, 

pollen transposition is termed pollination. The 

occurrence of pollination and the appropriateness of 

pollen and stigma lead to the formation of a pollen 

tube from a particle of pollen and this pollen tube 

transmits sperm into the ovule in the ovary. The life 

of the species necessitates the existence of seeds in 

most seed plants. 

 

In this respect, a mathematical model has been 

brought forth. One can list the crucial studies in the 

literature as follows:  
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Wang (2019) made use of pollination-mutuality in his 

analysis of the impact of nectar. He showed the 

mechanism through which the pollinator can lead to 

nectar consumption ratio, nectar degeneration ratio 

and through which the nectar production ratio can 

result in the perpetuity/demolition of pollination-

mutuality in his examination of the model. 

 

Wang (2018) has examined the global dynamics of 

plant-pollinator-robber systems, which comprise two 

opponent consumers being pollinator and nectar 

robber. In this example, whereas the nectar robber is a 

plant parasite pollinator is reciprocity. Vanbergen et 

al. (2017) examined the hardiness of insect flower 

visitor networks, the impacts of terrain disruption 

among species and the degree of mutuality among 

species. They were found to be in accord with the 

network structure in the integral and troubled terrain. 

In addition, they patterned whether the internal 

dependency of species on reciprocity affects the 

inclination of extinction cascades in the network. 

Khan et al. (2020) have popularized a PNP model that 

comprises Atangana-Baleanu gradual order 

differentials. They have acquired crucial data 

regarding the variables used in the complex system 

thanks to this new differential type. The presence and 

singularity of the Atangana-Baleanu differential were 

examined with the PL method and the stability 

analysis was conducted with Picard’s stability 

technique for the fractional-order plant-nectar-

pollinator model. The model brought forth also 

revealed different schemes of the plant-nectar-

pollinator (PNP) model with numerical examples. In 

addition, there are many studies in the literature on 

the expansion of new fractional derivative operators 

to mathematical models (Dokuyucu et al. 2018a; 

Dokuyucu et al. 2018b; Dokuyucu 2020a; Dokuyucu 

and Dutta 2020; Dokuyucu 2020b; Rashid et al. 

2019a; Nie et al. 2019; Rashid et al 2019b, Ekinci and 

Ozdemir 2019).  
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There are five chapters in this article. The first part 

presents general information concerning the plant-

nectar-pollinator (PNP) model. The second part offers 

essential definitions and theorems concerning the new 

Caputo differential. The third part comprises the 

analysis of the existence and singularity of the 

mathematical model. The Picard- Lindelöf theorem 

helped in revealing the existence of the model. In the 

fourth part, the stability of the model is studied with 

Hyers-Ulam stability theorem. In the last part, the 

model’s numerical solution is performed by 

integrating Adams-Bashforth’s numerical approach 

into the Caputo-Fabrizio fractional differential. 

Simulations were also performed and the model was 

examined thoroughly.  

 

2. Preliminaries 

 

        Descriptions and theorems regarding the non-

singular fractional Caputo-Fabrizio operator are 

presented in this part. Please see (Caputo 1967; 

Caputo and Fabrizio 2015; Losada and Nieto 2015) 

articles for more detailed information. 

  

Definition 2.1. The well-known fractional order 

Caputo derivative is defined as follows (Caputo 

1967), let 𝑓 ∈ 𝐻1(𝑎, 𝑏) 

 

𝐷𝑡
𝜌
𝑓(𝑡) =

1

Γ(𝑛 − 𝜌)
∫

𝑓(𝑛)(𝑟)

(𝑡 − 𝑟)𝜌+1−𝑛

𝑡

𝑎
𝑎
𝐶 , 

 

 

(1) 

where 𝑛 − 1 < 𝜌 < 𝑛 ∈ 𝑁.  

 

Definition 2.2. Let 𝑓 ∈ 𝐻1(𝑎, 𝑏), 0 < 𝜌 < 1. The 

new Caputo fractional derivative is defined as follows 

(Caputo and Fabrizio 2015),   

 

𝐷𝑡
𝜌
𝑓(𝑡) =

𝜌𝑀(𝜌)

1 − 𝜌
∫
𝑑𝑓(𝑥)

𝑑𝑥
 𝑒𝑥𝑝 [𝜌

𝑥 − 𝑡

1 − 𝜌
]𝑑𝑥,

𝑡

𝑎
𝑎
𝐶𝐹  

 

 

(2) 

Here 𝑀(𝜌) is a normalization constant. Also 𝑀(0) 
and 𝑀(1) are equal to 1. Further it can be written 

below, if the 𝑓 does not belong to 𝐻1(𝑎, 𝑏). 
 

𝐷𝑡
𝜌
𝑓(𝑡) =

𝜌𝑀(𝜌)

1 − 𝜌
∫

(𝑓(𝑡) − 𝑓(𝑥)) 

× 𝑒𝑥𝑝 [𝜌
𝑥 − 𝑡

1 − 𝜌
]𝑑𝑥,

𝑡

𝑎
𝑎
𝐶𝐹  

 

 

(3) 

 

Definition 2.3. Let 𝑓 ∈ 𝐻1(𝑎, 𝑏), 0 < 𝜌 < 1. The 

Caputo-Fabrizio fractional derivative of order 𝑓  is as 

follows (Losada and Nieto 2015),  

𝐷⋆
𝜌
𝑓(𝑡) =

1

1 − 𝜌
∫ 𝑓′(𝑥)𝑒𝑥𝑝 [𝜌

𝑥 − 𝑡

1 − 𝜌
]𝑑𝑥.

𝑡

𝑎

𝐶𝐹  

 

 

(4) 

Definition 2.4. Let 0 < 𝜌 < 1. The fractional integral 

order 𝜌 of a function 𝑓 is defined by (Losada and 

Nieto 2015), 

 

𝐼
𝜌
𝑓(𝑡) =

2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
𝑢(𝑡) 

+
2𝜌

(2 − 𝜌)𝑀(𝜌)
∫ 𝑢(𝑠)𝑑𝑠
𝑡

𝑎

 

 

 

 

 

(5) 

 

3. Analysis of the existence and uniqueness of the 

new system 

3.1. Existence Solution for the Plant-Nectar-

Pollinator Model 

 

Our system of equations comprises two types, 

one being the first plant and the other, a pollinator 

that interacts with the plant. As Revilla (2015) puts 

forth, one can describe the dynamic equations 

generated for these two types as follows. 

 

(𝒩1)𝑡 = 𝒢1(. )𝒩1 + 𝜎1𝛽0ℱ𝒩0 + 𝜎1𝛽2ℱ𝒩2,  

(𝒩2)𝑡 = 𝒢2(. )𝒩2 + 𝜎2𝛽2ℱ𝒩2, (6) 

ℱ𝑡 = 𝛼𝒩1 − (𝜔 + 𝛽0𝒩0 + 𝛽2𝒩2)ℱ.  

 

The term "𝜎1𝛽0𝒩0" in the first equation indicates that 

pollination can be accomplished by abiotic factors. 

We can give the wind flow at the very beginning of 
the abiotic factors. For convenience, let’s assume that 

𝒢1𝒩1 = 𝑏1𝑁1, 𝒢2𝒩2 = −𝑏2. Here, the 𝑟1 parameter 

represents the plant’s internal growth rate, and 𝑐1 

indicates the intraspecific competition level of 𝑟1 , 

while 𝑟2  indicates the pollinator’s mortality rate. Also, 

all parameters are positive in the system (6). 

 

In the equation system (6), 𝑁1  indicates the plant 

population density, while 𝑁2  indicates the population 

density of the pollinator. Also, 𝐹 represents the 

number of fruit or flowers produced by the plant. In 

addition, the explanation of each parameter is given in 

the table below. 

 

 



Analysis of a Fractional Plant-Nectar-Pollinator Model with the Exponential Kernel 

EAJS, Vol. VI Issue I                                                                                                                                                                          | 13 

 

 

E
x

p
la

n
at

io
n
 

P
er

ce
n

ta
g

e 
ch

an
g

e 
o

f 
sp

ec
ie

s 
𝑖 

p
er

 
p
er

so
n
 

w
h
en

 
it

 
d
o
es

 
n
o
t 

in
te

ra
ct

 
w

it
h 

𝑗 
sp

ec
ie

s 
b
y

 m
u

tu
al

is
m

 

P
ar

am
et

er
 o

f 
p

la
n

t 
co

n
v

er
si

o
n
 r

at
e 

fr
o
m

 a
 f

lo
w

er
 o

r 
fr

u
it

 t
o
 n

ew
 a

d
u
lt

 p
la

n
ts

 

C
o

n
v

er
si

o
n

 r
at

e 
to

 b
io

m
as

s 

P
o

ll
in

at
io

n
 r

at
e 

b
y
 p

o
ll

in
at

o
r 

o
r 

n
ec

ta
r 

co
n
su

m
p
ti

o
n
 r

at
e 

b
y
 p

o
ll

in
at

o
r 

P
er

 c
ap

it
a 

ra
te

 o
f 

p
la

n
ts

 i
n

 n
ec

ta
r 

p
ro

d
u
ct

io
n

 

R
at

e 
o
f 

lo
ss

 o
r 

d
et

er
io

ra
ti

o
n
 o

f 
n

ec
ta

r 

P
ar

am
et

er
 

𝒢
𝑖(
.)

 

𝜎 1
 

𝜎
2
 

𝛽 1
 

𝛼
 

𝜔
 

 

 

Now let 𝑁1 = 𝐴,  𝛽2𝑁2 = 𝐵, 𝛼 = 𝑎, 𝜎1 = 𝑑1,
𝜎2𝛽2 = 𝑑2,  𝛽0𝑁0 = 𝑒1 and  𝜔 + 𝛽0𝑁0 = 𝑒2. this case, 
if the system (6) is regulated, the following system is 

obtained. 

 

𝐴𝑡 = 𝐴(𝑡)(𝑏1 − 𝑐1𝐴(𝑡)) + 𝑑1(𝑒1 +𝐵(𝑡))𝐶(𝑡),  

𝐵𝑡 = 𝐵(𝑡)(−𝑏2 + 𝑑2𝐶(𝑡)), (7) 

𝐶𝑡 = 𝑎𝐴(𝑡) − (𝑒2 + 𝐵(𝑡))𝐶(𝑡),  

 

with initial conditions 

 

𝐴(0) ≥ 0,   𝐵(0) ≥ 0,   𝐶(0) ≥ 0. 

 

When the equation system (7) is extended to the 

Caputo-Fabrizio fractional derivative obtained using 

the exponential kernel, the following system is 

obtained. 

 

𝐷𝑡
𝜌
 𝐴(𝑡)𝑎

𝐶𝐹 = 𝐴(𝑡)(𝑏1 − 𝑐1𝐴(𝑡))  

                         +𝑑1(𝑒1 +𝐵(𝑡))𝐶(𝑡), 

 

𝐷𝑡
𝜌
 𝑎

𝐶𝐹 𝐵(𝑡) = 𝐵(𝑡)(−𝑏2 + 𝑑2𝐶(𝑡)), (8) 

𝐷𝑡
𝜌
 𝑎

𝐶𝐹 𝐶(𝑡) = 𝑎𝐴(𝑡) − (𝑒2 +𝐵(𝑡))𝐶(𝑡).  

 

It is crucial to verify the existence and singularity of 

the solution for the equation or system of equations in 

derivative calculations. Hence, this part initially aims 

to demonstrate the presence of the system (8) of 

equations. System 𝐴,𝐵 and 𝐶 are created and the 

constants used are just the same as Wang (2019). In 

the light of the integral form acquired with the help of 

Laplace transform of the new Caputo fractional 

differential, we can initially write the following 

theorem. 

 

Theorem 3.1. Fractional differential equation below,  

 

𝐷𝑡
𝜌
 𝑎

𝐶𝐹 𝑓(𝑡) = 𝑢(𝑡) − 𝑢(0), 

 

has a unique solution that takes the inverse Laplace 

transform and uses the following convolution 

theorem. 

 

 

𝑓(𝑡) − 𝑓(0) =
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
𝑢(𝑡) 

                                        +
2𝜌

(2 − 𝜌)𝑀(𝜌)
∫ 𝑢(𝑠)𝑑𝑠
𝑡

𝑎

 

 

 

 

 

(9) 

With the help of the above theorem, the following 

system of equations can be obtained. 

 

𝐴(𝑡) − 𝑔1(𝑡) 

=
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
 (𝐴(𝑡)(𝑏1 − 𝑐1𝐴(𝑡))+𝑑1(𝑒1

+𝐵(𝑡))𝐶(𝑡)) 

+
2𝜌

(2 − 𝜌)𝑀(𝜌)
 ∫ (𝐴(𝑠)(𝑏1 − 𝑐1𝐴(𝑠))

𝑡

0

+ 𝑑1(𝑒1 +𝐵(𝑠))𝐶(𝑠))𝑑𝑠 

𝐵(𝑡) − 𝑔2(𝑡)

=
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
(𝐵(𝑡)(−𝑏2+ 𝑑2𝐶(𝑡)))

+
2𝜌

(2 − 𝜌)𝑀(𝜌)
∫ (𝐵(𝑠)(−𝑏2 + 𝑑2𝐶(𝑠))) 𝑑𝑠
𝑡

0

 

 

 

 

 

 

 

 

 

(10) 
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𝐶(𝑡) − 𝑔3(𝑡) 

=
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
(𝑎𝐴(𝑡) − (𝑒2 +𝐵(𝑡))𝐶(𝑡))

+
2𝜌

(2 − 𝜌)𝑀(𝜌)
∫ (𝑎𝐴(𝑠)
𝑡

0

− (𝑒2 +𝐵(𝑠))𝐶(𝑠)) 𝑑𝑠 

 

If it is taken as follows for iteration application for the 

system (10), we have 

 

𝐴0(𝑡) = 𝑔1(𝑡)  

𝐵0(𝑡) = 𝑔2(𝑡) (11) 

𝐶0(𝑡) = 𝑔3(𝑡)  

and 

 

𝐴𝑛+1(𝑡) 

=
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
 (𝐴𝑛(𝑡)(𝑏1 − 𝑐1𝐴𝑛(𝑡))+𝑑1(𝑒1

+𝐵𝑛(𝑡))𝐶𝑛(𝑡)) 

+
2𝜌

(2 − 𝜌)𝑀(𝜌)
 ∫ (𝐴𝑛(𝑠)(𝑏1 − 𝑐1𝐴𝑛(𝑠))

𝑡

0

+ 𝑑1(𝑒1 + 𝐵𝑛(𝑠))𝐶𝑛(𝑠))𝑑𝑠 

𝐵𝑛+1(𝑡)

=
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
(𝐵𝑛(𝑡)(−𝑏2 + 𝑑2𝐶𝑛(𝑡)))

+
2𝜌

(2 − 𝜌)𝑀(𝜌)
∫ (𝐵𝑛(𝑠)(−𝑏2

𝑡

0

+ 𝑑2𝐶𝑛(𝑠)))𝑑𝑠 

 

𝐶𝑛+1(𝑡) 

=
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
(𝑎𝐴𝑛(𝑡)

− (𝑒2 + 𝐵𝑛(𝑡))𝐶𝑛(𝑡)) 

+
2𝜌

(2 − 𝜌)𝑀(𝜌)
∫ (𝑎𝐴𝑛(𝑠)
𝑡

0

− (𝑒2 + 𝐵𝑛(𝑠))𝐶𝑛(𝑠)) 𝑑𝑠 

 

 

 

 

 

 

 

 

 

(12) 

We will try to find the exact solution by limiting a 

large enough 𝑛 value. 

 

𝑔1(𝑡, 𝑥) = 𝐴(𝑡)(𝑏1 − 𝑐1𝐴(𝑡))+𝑑1(𝑒1+

𝐵(𝑡))𝐶(𝑡),  

 

𝑔2(𝑡, 𝑥) = 𝐵(𝑡)(−𝑏2 + 𝑑2𝐶(𝑡)),  (13) 

𝑔3(𝑡, 𝑥) = 𝑎𝐴(𝑡) − (𝑒2 +𝐵(𝑡))𝐶(𝑡),   

 

If the kernels are taken as above, it is clear that the 

𝑔1, 𝑔2and  𝑔3 functions have a contraction of 𝑝, 𝑟 and 

𝑠, respectively. Let 

 

𝐶1 = 𝑠𝑢𝑝
𝑁𝑦,𝑧!

||𝑔1(𝑡, 𝑝)||,  

𝐶2 = 𝑠𝑢𝑝
𝑁𝑦,𝑧2

||𝑔2(𝑡, 𝑟)||, (14) 

𝐶3 = 𝑠𝑢𝑝
𝑁𝑦,𝑧3

||𝑔3(𝑡, 𝑠)||,  

 

where  

 

𝑁𝑦,𝑧𝑖 = [𝑡 − 𝑦, 𝑡 + 𝑦] × [𝑥 − 𝑧𝑖 , 𝑥 + 𝑧𝑖]

= 𝑌𝑖 × 𝑍𝑖 ,    𝑖 = 1,2,3. 
(15) 

  

The equation system can also be used together with 

the metric in Banach space by means of the fixed- 

point theorem. 

 

‖𝑔(𝑡)‖∞ = 𝑠𝑢𝑝
𝑡∈[𝑡−𝑦,𝑡+𝑦]

|𝑓(𝑡)|. (16) 

 

Another operator is described among uninterrupted 

functions and is identified by the Picard operator. 

 

𝑇:𝑁(𝑌1, 𝑍1, 𝑍2, 𝑍3) → 𝑁(𝑌1, 𝑍1, 𝑍2, 𝑍3)  (17) 

 

Defined as follows 

 

𝑇Φ(𝑡) = Φ0(𝑡) +
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
𝑋(𝑡) 

                 +
2𝜌

(2 − 𝜌)𝑀(𝜌)
∫ 𝐹(𝑠, 𝑋(𝑠))𝑑𝑠,
𝑡

0

 

 

 

 

 

 (18) 

where Φ is the given matrix 

 

Φ(𝑡) = {

𝐴(𝑡)
𝐵(𝑡)
𝐶(𝑡)

 Φ0(𝑡) = {

𝑔1(𝑡)
𝑔2(𝑡)
𝑔3(𝑡)

                (19) 

 

                  G(t,Φ(𝑡)) = {

𝑔1(𝑡, 𝑥)
𝑔2(𝑡, 𝑥)
𝑔3(𝑡, 𝑥)

                 (20) 

 

Since all plants are unlikely to be pollinated, the 

solutions can be considered to be limited in a time 

frame. 

 

‖𝑥(𝑡)‖∞ ≤ max{𝑏1, 𝑏2, 𝑏3}, (21) 
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‖𝑇Φ(𝑡) −Φ0(𝑡)‖

= ‖
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
𝐹(𝑡,Φ(𝑡))‖ 

 

+‖
2𝜌

(2 − 𝜌)𝑀(𝜌)
∫ 𝐹(𝑠, Φ(s))𝑑𝑠
𝑡

0

‖ 
 

≤
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
‖𝐹(𝑡, Φ(𝑡))‖

+
2𝜌

(2 − 𝜌)𝑀(𝜌)
‖∫ 𝐹(𝑠, Φ(s))𝑑𝑠

𝑡

0

‖ 

(22) 

≤
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
𝑀 +

2𝜌

(2 − 𝜌)𝑀(𝜌)
𝑀 

 

≤ 𝑎𝑀 ≤ 𝑏 = 𝑚𝑎𝑥{𝑏1, 𝑏2, 𝑏3},  

 

where  𝑀 = max {𝑀1,𝑀2,𝑀3}. As a result, 

 

𝑎 <
𝑏

𝑀
 

 

In addition to the above, the following inequality can 

be found. 

 

‖𝑇Φ1 − 𝑇Φ2‖∞ = 𝑠𝑢𝑝
𝑡∈𝐴

|Φ1 −Φ2| (23) 

 

With the definition of the defined operator in hand, 

we produce the following 

 

‖𝑇Φ1 − 𝑇Φ2‖

= ‖
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
(𝐹(𝑡,Φ1(𝑡))

− 𝐹(𝑡,Φ2(𝑡)))

+
2𝜌

(2 − 𝜌)𝑀(𝜌)
∫ (𝐹(𝑠,Φ1(s))
𝑡

0

− 𝐹(𝑠,Φ2(s)))𝑑𝑠‖ 

 

≤
2(1 − 𝜌)

(2 − 𝜌)𝑀(𝜌)
‖(𝐹(𝑡,Φ1(𝑡))

− 𝐹(𝑡,Φ2(𝑡)))‖

+
2𝜌

(2 − 𝜌)𝑀(𝜌)
∫ ‖(𝐹(𝑠,Φ1(s))
𝑡

0

− 𝐹(𝑠,Φ2(s)))‖𝑑𝑠 

 

(24) 

≤
2(1−𝜌)

(2−𝜌)𝑀(𝜌)
𝑞 +

2𝜌𝑞

(2−𝜌)𝑀(𝜌)
‖Φ1(𝑡) − Φ2(𝑡)‖  

 

 

≤ 𝑎𝑞‖Φ1(𝑡) − Φ2(𝑡)‖.  

 

According to the last inequality, 𝑞 less than 1. 

Namely, 𝐺 has a contraction. At the same time, 𝑇 has 

a contraction since 𝑎𝑞 <  1. This result shows us that 

there is a unique solution set. 

 

3.2. Uniqueness Solution for the Plant-Nectar-

Pollinator Model 

 

In this section we will show you the unique solution 

of Plant-Nectar-Pollinator mathematical model. 

 

Theorem 3.2. The Plant-Nectar-Pollinator 

mathematical model shown in system (10) will have a 

unique solution if the following inequality hold true: 

 

( 
2(1 − 𝜌)

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
+

2𝜌

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
)Ξ𝑖 ≤  1 (25) 

 

where 𝑖 = 1,2,3. 

 

Proof  Let us assume that the system (10) has 

solutions 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), as well as �̅�(𝑡), �̅�(𝑡), �̅�(𝑡). 
that, the following system can be written, 

 

�̅�(𝑡) =
2(1 − 𝜌)

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
ℑ1(𝑡, �̅�(𝑡)) 

+
2𝜌

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
∫ ℑ1(𝑦, �̅�(𝑦))
𝑡

0

𝑑𝑦 

 

�̅�(𝑡) =
2(1 − 𝜌)

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
ℑ1(𝑡, �̅�(𝑡)) 

+
2𝜌

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
∫ ℑ1(𝑦, �̅�(𝑦))
𝑡

0

𝑑𝑦 

   

(26) 

𝐶̅(𝑡) =
2(1 − 𝜌)

2𝑀(𝜌)− 𝜌 𝑀(𝜌)
ℑ1(𝑡, �̅�(𝑡)) 

+
2𝜌

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
∫ ℑ1(𝑦, �̅�(𝑦))
𝑡

0

𝑑𝑦 

 

 

When the norm is taken from both sides of the system 

of equations above, firstly 

 

‖𝐴(𝑡) − �̅�(𝑡)‖ 

≤
2(1−𝜌)

2𝑀(𝜌)−𝜌 𝑀(𝜌)
‖ℑ1(𝑡, 𝐴(𝑡)) − ℑ1(𝑡, �̅�(𝑡))‖+

2𝜌

2𝑀(𝜌)−𝜌 𝑀(𝜌)
∫ ‖ℑ1(𝑦,𝐴(𝑦)) − ℑ1(𝑦, �̅�(𝑦))‖𝑑𝑦
𝑡

0
  

 

 

(27) 

≤
2(1−𝜌)

2𝑀(𝜌)−𝜌 𝑀(𝜌)
Ξ1‖𝐴 − �̅�‖ +

2𝜌Ξ1

2𝑀(𝜌)−𝜌 𝑀(𝜌)
‖𝐴 − �̅�‖   

 

 

The following inequality can be written, 
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(

 
 

2(1 − 𝜌)

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
Ξ1‖𝐴 − �̅�‖

+
2𝜌Ξ1

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
‖𝐴 − �̅�‖

)

 
 
≥ 0 (28) 

 

Thus ‖𝐴 − �̅�‖ = 0. This implies 𝐴(𝑡) = �̅�(𝑡). When 

the same method is applied that 𝐵(𝑡) = �̅�(𝑡), 𝐶(𝑡) =

�̅�(𝑡). According to these results, the model has a 

unique solution. 

 

4. Stability Analysis 

 

        Exploring the stability of a mathematical model 

is as crucial as discovering resolutions. The stability 

of the Plant-Nectar-Pollinator model will be studied 

in this part. The following description should initially 

be provided. 

 

Definition 4.1. The system (30) Hyers-Ulam stable if 

exists constants Θ𝑖 , 𝑖 = 1,2,3 satisfying for every 𝜍𝑖 >

0, 𝑖 = 1,2,3. 

 

|𝐴(𝑡) −
2(1 − 𝜌)

2𝑀(𝜌)− 𝜌 𝑀(𝜌)
ℑ1(𝑡, 𝐴(𝑡))

+
2𝜌

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
∫ℑ1(𝑦, 𝐴(𝑦))𝑑𝑦

𝑡

0

| ≤ 𝜍1, 

 

|𝐵(𝑡) −
2(1 − 𝜌)

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
ℑ2(𝑡, 𝐵(𝑡))

+
2𝜌

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
∫ℑ2(𝑦, 𝐵(𝑦))𝑑𝑦

𝑡

0

| ≤ 𝜍2, 

(29) 

|𝐶(𝑡) −
2(1 − 𝜌)

2𝑀(𝜌)− 𝜌 𝑀(𝜌)
ℑ3(𝑡, 𝐶(𝑡))

+
2𝜌

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
∫ℑ3(𝑦, 𝐶(𝑦))𝑑𝑦

𝑡

0

| ≤ 𝜍3. 

 

  

There exist �̅�(𝑡), �̅�(𝑡), �̅�(𝑡) are satisfying, 

 

|�̅�(𝑡) −
2(1 − 𝜌)

2𝑀(𝜌)− 𝜌 𝑀(𝜌)
ℑ1(𝑡, �̅�(𝑡))

+
2𝜌

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
∫ℑ1(𝑦, �̅�(𝑦))𝑑𝑦

𝑡

0

| ≤ 𝜍1, 

 

|�̅�(𝑡) −
2(1 − 𝜌)

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
ℑ2(𝑡, �̅�(𝑡))

+
2𝜌

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
∫ℑ2(𝑦, �̅�(𝑦))𝑑𝑦

𝑡

0

| ≤ 𝜍2, 

(30) 

|�̅�(𝑡) −
2(1 − 𝜌)

2𝑀(𝜌)− 𝜌 𝑀(𝜌)
ℑ3(𝑡, �̅�(𝑡))

+
2𝜌

2𝑀(𝜌) − 𝜌 𝑀(𝜌)
∫ℑ3(𝑦, 𝐶̅(𝑦))𝑑𝑦

𝑡

0

| ≤ 𝜍3, 

 

 

such that,  

 

|𝐴(𝑡) − �̅�(𝑡)| ≤ Θ1𝜍1  

|𝐵(𝑡) − �̅�(𝑡)| ≤ Θ2𝜍2 (31) 

|𝐶(𝑡) − �̅�(𝑡)| ≤ Θ3𝜍3  

 

Theorem 4.2. The fractional system (8) is Hyers-

Ulam stable with assumption 𝐻. 

 

Proof. In theorem (3.2) 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), were shown 

to have a unique solution. Let �̅�(𝑡), �̅�(𝑡), �̅�(𝑡) be an 
approximate solution of system (8) satisfying system 

(25). After, we can say that  

 
‖𝐴(𝑡) − �̅�(𝑡)‖ 

≤
2(1−𝜌)

2𝑀(𝜌)−𝜌 𝑀(𝜌)
‖ℑ1(𝑡, 𝐴(𝑡)) − ℑ1(𝑡, �̅�(𝑡))‖+

2𝜌

2𝑀(𝜌)−𝜌 𝑀(𝜌)
∫ ‖ℑ1(𝑦,𝐴(𝑦)) − ℑ1(𝑦, �̅�(𝑦))‖𝑑𝑦
𝑡

0
  

 

 

(32) 

≤
2(1−𝜌)

2𝑀(𝜌)−𝜌 𝑀(𝜌)
Ξ1‖𝐴 − �̅�‖ +

2𝜌Ξ1

2𝑀(𝜌)−𝜌 𝑀(𝜌)
‖𝐴 − �̅�‖.   

 

When we take 𝜍1 = Ξ1 and Θ1 =
2(1−𝜌)

2𝑀(𝜌)−𝜌 𝑀(𝜌)
+

2𝜌

2𝑀(𝜌)−𝜌 𝑀(𝜌)
 , we have,  

 

‖𝐴(𝑡) − �̅�(𝑡)‖ ≤ 𝜍1Θ1. (33) 

 

 

In this way, the following inequalities can be easily 
written. 
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‖𝐵(𝑡) − �̅�(𝑡)‖ ≤ 𝜍2Θ2  

(34) 

‖𝐶(𝑡) − �̅�(𝑡)‖ ≤ 𝜍3Θ3  

 

With the help of inequalities (33) and (34), the system 

(18) Hyers-Ulam is stable. Thus, the theorem is 

proved. 

 

 

5. Numerical Simulations 

  

        Atangana and Owolabi (2018) resorted to the 

Adams-Bashforth numeric approach to distinguish 

fractional differential equations, utilized the new 

Caputo fractional derivative and acquired a new 
numeric approach. 

 

𝐷𝑡
𝜌
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)),0

𝐶𝐹  

 

(35) 

 

or  

 

 

𝑓(𝑡, 𝑥(𝑡)) =
𝑀(𝜌)

1 − 𝜌
∫ 𝑥′(𝜏)𝑒𝑥𝑝 [−𝜌

𝑡 − 𝜏

1 − 𝜌
]𝑑𝜏.

𝑡

0

 

 

(36) 

 

When the above equation is edited with the help of 

basic analysis theorem, we have, 

 

𝑥(𝑡) − 𝑥(0) =
1 − 𝜌

𝑀(𝜌)
𝑓(𝑡, 𝑥(𝑡))

+
𝜌

𝑀(𝜌)
∫ 𝑓(𝜏, 𝑥(𝜏))𝑑𝜏,
𝑡

0

 

(37) 

 

consequently, 

 

𝑥(𝑡𝑛+1) − 𝑥(0) =
1 − 𝜌

𝑀(𝜌)
𝑓(𝑡𝑛 , 𝑥(𝑡𝑛))

+
𝜌

𝑀(𝜌)
∫ 𝑓(𝑡, 𝑥(𝑡))𝑑𝑡,
𝑡𝑛+1

0

 

(38) 

 

and  

 

𝑥(𝑡𝑛) − 𝑥(0) =
1 − 𝜌

𝑀(𝜌)
𝑓(𝑡𝑛−1, 𝑥(𝑡𝑛−1))

+
𝜌

𝑀(𝜌)
∫ 𝑓(𝑡, 𝑥(𝑡))𝑑𝑡,
𝑡𝑛

0

 

 

using the equations (38) and (39), 

(39) 

 

𝑥(𝑡𝑛+1) − 𝑥(𝑡𝑛) =
1 − 𝜌

𝑀(𝜌)
{𝑓(𝑡𝑛 , 𝑥(𝑡𝑛))

− 𝑓(𝑡𝑛−1, 𝑥(𝑡𝑛−1))}

+
𝜌

𝑀(𝜌)
∫ 𝑓(𝑡, 𝑥(𝑡))𝑑𝑡,
𝑡𝑛

0

 

(40) 

 

where  

 

∫ 𝑓(𝑡, 𝑥(𝑡))𝑑𝑡
𝑡𝑛+1

𝑡𝑛

= ∫ {

𝑓(𝑡𝑛 , 𝑥𝑛)

ℎ
(𝑡 − 𝑡𝑛−1)

−
𝑓(𝑡𝑛−1, 𝑥𝑛−1)

ℎ
(𝑡 − 𝑡𝑛)

}𝑑𝑡
𝑡𝑛+1

𝑡𝑛

 

=
3ℎ

2
𝑓(𝑡𝑛 , 𝑥𝑛) −

ℎ

2
𝑓(𝑡𝑛−1, 𝑥𝑛−1). 

 

(41) 

 

Thus,  

 

𝑥(𝑡𝑛+1) − 𝑥(𝑡𝑛) =
1−𝜌

𝑀(𝜌)
{𝑓(𝑡𝑛 , 𝑥(𝑡𝑛)) −

𝑓(𝑡𝑛−1, 𝑥(𝑡𝑛−1))} +
3𝜌ℎ

2𝑀(𝜌)
𝑓(𝑡𝑛 , 𝑥𝑛) −

𝜌ℎ

2𝑀(𝜌)
𝑓(𝑡𝑛−1, 𝑥𝑛−1),  

(42) 

 

which implies that 

 

𝑥(𝑡𝑛+1) − 𝑥(𝑡𝑛) = (
1 − 𝜌

𝑀(𝜌)

+
3𝜌ℎ

2𝑀(𝜌)
) {𝑓(𝑡𝑛, 𝑥(𝑡𝑛))

+ (
1 − 𝜌

𝑀(𝜌)

+
3𝜌ℎ

2𝑀(𝜌)
)𝑓(𝑡𝑛−1, 𝑥(𝑡𝑛−1))} 

(43) 

 

 

Hence,  

 

𝑥(𝑡𝑛+1) = 𝑥(𝑡𝑛) + (
1 − 𝜌

𝑀(𝜌)

+
3𝜌ℎ

2𝑀(𝜌)
) {𝑓(𝑡𝑛 , 𝑥(𝑡𝑛))

+ (
1 − 𝜌

𝑀(𝜌)

+
3𝜌ℎ

2𝑀(𝜌)
)𝑓(𝑡𝑛−1, 𝑥(𝑡𝑛−1))} 

(44) 
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Theorem 5.1. Let 𝑓 is a continuous function and 
𝑥(𝑡) be a solution of   

 
𝐷𝑡
𝜌
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))0

𝐶𝐹  

 
for the Caputo-Fabrizio fractional derivative 
(Atangana and Owolabi 2018). 
  

𝑥(𝑡𝑛+1) = 𝑥(𝑡𝑛) + (
1 − 𝜌

𝑀(𝜌)

+
3𝜌ℎ

2𝑀(𝜌)
) {𝑓(𝑡𝑛 , 𝑥(𝑡𝑛))

+ (
1 − 𝜌

𝑀(𝜌)

+
3𝜌ℎ

2𝑀(𝜌)
)𝑓(𝑡𝑛−1, 𝑥(𝑡𝑛−1))}

+ 𝑅𝜌
𝑛 

  

(45) 

where ‖𝑅𝜌
𝑛‖ ≤ 𝑀. 

 

 

5.1. Numerical Simulations 

 

The extended Plant-Nectar-Pollinator model for the 
new Caputo fractional differential was brought in the 
system (8). The next system of equations is acquired 
for Υ𝑖 , 𝑖 = 1,2,3. 
 

𝐴(𝑡) − 𝐴(0) =
1 − 𝜌

𝑀(𝜌)
Υ1(𝑡, 𝐴(𝑡))

+
𝜌

𝑀(𝜌)
∫ Υ1(𝜏, 𝐴(𝜏))
𝑡

0

𝑑𝜏, 

 

𝐵(𝑡) − 𝐵(0) =
1 − 𝜌

𝑀(𝜌)
Υ2(𝑡, 𝐵(𝑡))

+
𝜌

𝑀(𝜌)
∫ Υ2(𝜏, 𝐵(𝜏))
𝑡

0

𝑑𝜏, 

(46) 

𝐶(𝑡) − 𝐶(0) =
1 − 𝜌

𝑀(𝜌)
Υ3(𝑡, 𝐶(𝑡))

+
𝜌

𝑀(𝜌)
∫ Υ3(𝜏, 𝐶(𝜏))
𝑡

0

𝑑𝜏. 

 

 

Thus,  

 

𝐴(𝑡𝑛+1) − 𝐴(0) =
1 − 𝜌

𝑀(𝜌)
Υ1(𝑡𝑛 , 𝐴(𝑡𝑛))

+
𝜌

𝑀(𝜌)
∫ Υ1(𝑡, 𝐴(𝑡))
𝑡𝑛+1

0

𝑑𝑡, 

 

𝐵(𝑡𝑛+1) − 𝐵(0) =
1 − 𝜌

𝑀(𝜌)
Υ2(𝑡𝑛 ,𝐵(𝑡𝑛))

+
𝜌

𝑀(𝜌)
∫ Υ2(𝑡, 𝐵(𝑡))
𝑡𝑛+1

0

𝑑𝑡, 

 

 

(47) 

𝐶(𝑡𝑛+1) − 𝐶(0) =
1 − 𝜌

𝑀(𝜌)
Υ3(𝑡𝑛 , 𝐶(𝑡𝑛))

+
𝜌

𝑀(𝜌)
∫ Υ3(𝑡, 𝐶(𝑡))
𝑡𝑛+1

0

𝑑𝑡, 

 

 

and  

 

𝐴(𝑡𝑛) − 𝐴(0) =
1 − 𝜌

𝑀(𝜌)
Υ1(𝑡𝑛−1, 𝐴(𝑡𝑛−1))

+
𝜌

𝑀(𝜌)
∫ Υ1(𝑡, 𝐴(𝑡))
𝑡𝑛

0

𝑑𝑡, 

 

𝐵(𝑡𝑛) − 𝐵(0) =
1 − 𝜌

𝑀(𝜌)
Υ2(𝑡𝑛−1, 𝐵(𝑡𝑛−1))

+
𝜌

𝑀(𝜌)
∫ Υ2(𝑡, 𝐵(𝑡))
𝑡𝑛

0

𝑑𝑡, 

(48) 

𝐶(𝑡𝑛) − 𝐶(0) =
1 − 𝜌

𝑀(𝜌)
Υ3(𝑡𝑛−1, 𝐶(𝑡𝑛−1))

+
𝜌

𝑀(𝜌)
∫ Υ3(𝑡, 𝐶(𝑡))
𝑡𝑛

0

𝑑𝑡. 

 

 

When we removing (48) from (47), the following 

equation system is obtained. 

 

𝐴(𝑡𝑛+1) − 𝐴(0) =
1 − 𝜌

𝑀(𝜌)
{Υ1(𝑡𝑛 , 𝐴(𝑡𝑛))

− Υ1(𝑡𝑛−1, 𝐴(𝑡𝑛−1))}

+
𝜌

𝑀(𝜌)
∫ Υ1(𝑡, 𝐴(𝑡))
𝑡𝑛+1

𝑡𝑛

𝑑𝑡, 

 

𝐵(𝑡𝑛+1) − 𝐵(0) =
1 − 𝜌

𝑀(𝜌)
{Υ2(𝑡𝑛, 𝐵(𝑡𝑛))

− Υ2(𝑡𝑛−1, 𝐵(𝑡𝑛−1))}

+
𝜌

𝑀(𝜌)
∫ Υ2(𝑡, 𝐵(𝑡))𝑑𝑡,
𝑡𝑛+1

𝑡𝑛

 

(49) 

𝐶(𝑡𝑛+1) − 𝐶(0) =
1 − 𝜌

𝑀(𝜌)
{Υ3(𝑡𝑛 , 𝐶(𝑡𝑛))

− Υ3(𝑡𝑛−1, 𝐶(𝑡𝑛−1))}

+
𝜌

𝑀(𝜌)
∫ Υ3(𝑡, 𝐶(𝑡))𝑑𝑡,
𝑡𝑛+1

𝑡𝑛

 

 

 

where  

 

∫ Υ1(𝑡, 𝐴(𝑡))𝑑𝑡 = ∫ {
Υ1(𝑡𝑛,𝐴𝑛)

ℎ
(𝑡 −

𝑡𝑛+1

𝑡𝑛

𝑡𝑛+1

𝑡𝑛
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𝑡𝑛−1) −
Υ1(𝑡𝑛−1,𝐴𝑛−1)

ℎ
(𝑡 − 𝑡𝑛)}𝑑𝑡  

=
3ℎ

2
Υ1(𝑡𝑛, 𝐴𝑛) −

ℎ

2
Υ1(𝑡𝑛−1, 𝐴𝑛−1), 

∫ Υ2(𝑡, 𝐵(𝑡))𝑑𝑡 = ∫ {
Υ2(𝑡𝑛,𝐵𝑛)

ℎ
(𝑡 −

𝑡𝑛+1

𝑡𝑛

𝑡𝑛+1

𝑡𝑛

𝑡𝑛−1) −
Υ2(𝑡𝑛−1,𝐵𝑛−1)

ℎ
(𝑡 − 𝑡𝑛)}𝑑𝑡  

=
3ℎ

2
Υ2(𝑡𝑛 ,𝐵𝑛) −

ℎ

2
Υ2(𝑡𝑛−1, 𝐵𝑛−1), 

(50) 

∫ Υ3(𝑡, 𝐶(𝑡))𝑑𝑡 = ∫ {
Υ3(𝑡𝑛,𝐶𝑛)

ℎ
(𝑡 −

𝑡𝑛+1

𝑡𝑛

𝑡𝑛+1

𝑡𝑛

𝑡𝑛−1) −
Υ3(𝑡𝑛−1,𝐶𝑛−1)

ℎ
(𝑡 − 𝑡𝑛)}𝑑𝑡  

=
3ℎ

2
Υ3(𝑡𝑛 , 𝐶𝑛) −

ℎ

2
Υ3(𝑡𝑛−1, 𝐶𝑛−1), 

 

 

Therefore,  

 

𝐴(𝑡𝑛+1) − 𝐴(0) =
1 − 𝜌

𝑀(𝜌)
Υ1(𝑡𝑛 , 𝐴(𝑡𝑛))

+
𝜌

𝑀(𝜌)
∫ Υ1(𝑡, 𝐴(𝑡))
𝑡𝑛+1

0

𝑑𝑡, 

 

𝐵(𝑡𝑛+1) − 𝐵(0) =
1 − 𝜌

𝑀(𝜌)
Υ2(𝑡𝑛 ,𝐵(𝑡𝑛))

+
𝜌

𝑀(𝜌)
∫ Υ2(𝑡, 𝐵(𝑡))
𝑡𝑛+1

0

𝑑𝑡, 

(51) 

𝐶(𝑡𝑛+1) − 𝐶(0) =
1 − 𝜌

𝑀(𝜌)
Υ3(𝑡𝑛 , 𝐶(𝑡𝑛))

+
𝜌

𝑀(𝜌)
∫ Υ3(𝑡, 𝐶(𝑡))
𝑡𝑛+1

0

𝑑𝑡, 

 

which implies that, 

 

𝐴𝑛+1  = 𝐴𝑛 + (
1 − 𝜌

𝑀(𝜌)
+

3𝜌ℎ

2𝑀(𝜌)
)Υ1(𝑡𝑛 , 𝐴𝑛)

+ (
1 − 𝜌

𝑀(𝜌)

+
𝜌ℎ

2𝑀(𝜌)
) Υ1(𝑡𝑛−1, 𝐴𝑛−1), 

 

𝐵𝑛+1  = 𝐵𝑛 + (
1 − 𝜌

𝑀(𝜌)
+

3𝜌ℎ

2𝑀(𝜌)
)Υ2(𝑡𝑛, 𝐵𝑛)

+ (
1 − 𝜌

𝑀(𝜌)

+
𝜌ℎ

2𝑀(𝜌)
) Υ2(𝑡𝑛−1, 𝐵𝑛−1), 

(52) 

𝐶𝑛+1  = 𝐶𝑛 + (
1 − 𝜌

𝑀(𝜌)
+

3𝜌ℎ

2𝑀(𝜌)
)Υ3(𝑡𝑛, 𝐶𝑛)

+ (
1 − 𝜌

𝑀(𝜌)

+
𝜌ℎ

2𝑀(𝜌)
)Υ3(𝑡𝑛−1, 𝐶𝑛−1). 

 

 

According to theorem (5.1), we get, 

 

𝐴𝑛+1  = 𝐴𝑛 + (
1 − 𝜌

𝑀(𝜌)
+

3𝜌ℎ

2𝑀(𝜌)
)Υ1(𝑡𝑛, 𝐴𝑛)

+ (
1 − 𝜌

𝑀(𝜌)

+
𝜌ℎ

2𝑀(𝜌)
)Υ1(𝑡𝑛−1, 𝐴𝑛−1)

+ 𝑅𝜌
𝑛1 , 

 

𝐵𝑛+1  = 𝐵𝑛 + (
1 − 𝜌

𝑀(𝜌)
+

3𝜌ℎ

2𝑀(𝜌)
)Υ2(𝑡𝑛, 𝐵𝑛)

+ (
1 − 𝜌

𝑀(𝜌)

+
𝜌ℎ

2𝑀(𝜌)
)Υ2(𝑡𝑛−1, 𝐵𝑛−1)

+ 𝑅𝜌
𝑛2 , 

(53) 

𝐶𝑛+1  = 𝐶𝑛 + (
1 − 𝜌

𝑀(𝜌)
+

3𝜌ℎ

2𝑀(𝜌)
)Υ3(𝑡𝑛 , 𝐶𝑛)

+ (
1 − 𝜌

𝑀(𝜌)

+
𝜌ℎ

2𝑀(𝜌)
)Υ3(𝑡𝑛−1, 𝐶𝑛−1)

+ 𝑅𝜌
𝑛3 . 

 

 

where  

 

‖ 𝑅𝜌
𝑛𝑖 ‖
∞
<

𝜌

𝑀(𝜌)
(𝑛 + 1)! ℎ𝑛+1,   𝑖 = 1,2,3. (54) 
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