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ABSTRACT

In this study, seismic events in Kula district (Manisa, Turkey) and its vicinity have been investigated
and then natural and artificial seismic activities are discriminated. Total of 77 digital vertical
component velocity seismograms of seismic activities with M, <3.5 magnitude from seismic activity
catalogs between 2009 to 2014 recorded by Manisa Kula (KULA) broadband station operated by
Bogazici University, Kandilli Observatory and Earthquake Resarch Institute Regional Earthquake-
Tsunami Monitoring Center (RETMC) were used in this study. The maximum S-wave and maximum
P-wave amplitude ratio (Ratio) of vertical component velocity seismograms and power ratio for (1
and 12 sec.) (Complexity-C) and total signal duration (Duration) of the waveform were calculated.
The earthquakes and the quarry blasts have been discriminated using linear discriminant function
(LDF) and Back Propagation-Feed Forward Neural Networks (BPNNs) that is one of the learning
algorithms at the artificial neural networks (ANNs) methods taking correlation between these
parameters into consideration. 39 (51%) of the 77 seismic activities were identified as quarry blasts
and 38 (49%) of them as earthquakes LDF and ANNs methods have been applied together for the
first time for Ratio-C, Ratio-logS and Ratio-duration parameter pairs with the data of Manisa and
surroundings, and earthquakes and quarry blasts have been distinguished from each other. LDF and
ANNs methods were compared for each pair of parameters. Both of two methods are successful but
the ANNs method has higher accuracy percentage values than LDF method when there is sufficient
number of data. The accuracy percentages are different for a pair of Ratio versus C, for a pair of
Ratio versus logS and for a pair of Ratio versus duration, respectively.

1. Introduction

scientific studies. Therefore, problems may occur in
the preparation of earthquake catalogs. In order to

While seismic recorders record seismic events in
a region, they also record artificially induced seismic
activities such as mines and quarries along with
earthquakes of natural origin. Taking these events
together in earthquake catalogs may cause errors in

determine the real seismic activity in the study areas,
earthquakes and quarry blasts should be distinguished
from each other. For this differentiation process, it may
not be sufficient to use the location, distance and time
of occurrence parameters of the area where the blast
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is made. In such a case, the waveform of the seismic
event should also be examined (Horasan et al., 2006).

So far, about to be distinguished from each
other by using different methods of earthquakes and
quarry blasts in the world and in Turkey has been
much scientific research. Baumgardt and Young
(1990) studied the separation of earthquakes and
blasts using the Pn / Sn and Pn / Lg ratio method in
Western Norway. Dowla et al. (1990), similar to the
LDF method, used the ANNs method to distinguish
between natural earthquakes and underground
nuclear blasts in the United States. Wiister (1993)
distinguished earthquakes and explosions with
Lg / Pg and Lg / Rg ratio methods in Vogland
(Germany-Czechia) region. Horasan et al. (2006;
2009) distinguished earthquakes and explosions in
Istanbul with the LDF method. Deniz (2010) in Bursa,
Ogiitcii et al. (2010) in Konya and Kartal (2010) in
Trabzon made the separation analysis of earthquake
and quarry blast with Linear Discrimination Method.
Kalafat (2010) has distinguished earthquakes and
quarry blast with extraction methods in the immediate
vicinity of Turkey. Kekovali et al. (2010; 2012a)
have characterized the seismic events with the help
of the LDF process in Turkey. Kiiyiik et al. (2011a)
conducted earthquake and blast separation analysis
in Istanbul using LDF, Quadratic Discrimination
Function (QDF), Diaquadratic Discrimination
Function (DDF) and Mahalabonis Discrimination
Function (MDF) methods. Yilmaz et al. (2013) using
the LDF methods have characterized earthquakes
and quarry blasts in the Eastern Black Sea region of
Turkey. Budakoglu and Horasan (2018) distinguished
earthquakes and explosions in Sakarya province
using the LDF method. Yavuz et al. (2018) classified
the seismic events in Armutlu by using LDF and
QDF methods. Ceydilek and Horasan (2019) have
distinguished seismic activities in and around Manisa
using the LDF method. In addition to these methods,
various ANNs algorithms are used to distinguish
earthquakes and blasts from each other. Gitterman
et al. (1998) tried to distinguish natural and artificial
earthquakes in the Middle East Region from each other
by using LDF and ANNs methods. Ursino et al. (2001)
developed a direct method in an automated consulting
classification to distinguish between earthquakes
and blasts in the southeast of Sicily. Del Pezzo et
al. (2003) developed a classification in Italy using
a consulting learning algorithm based on multiple
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neural network (MCN) structure. Kiiytik et al. (2009)
tried to distinguish natural and artificially induced
earthquakes in the Istanbul region using the reaction
surface, multivariate regression and Learning Vector
Quantization (LVQ) methods. Kiiyiik et al. (2010;
2011b) tried to distinguish earthquakes and explosions
from each other with the Self-Organizing Map (SOM)
method in Istanbul. Yildirim et al. (2011) studied the
separation of natural and artificial earthquakes using
Feedback ANNs (BPNNs), Matched Neural Fuzzy
Logic Inference Systems (ANFIS) and Probabilistic
Neural Networks (PNN) algorithms. Kekovali et al.
(2012b) made a segregation analysis with data mining
application in Tuncbilek-Kutahya region. Kundu et al.
(2012) used seismograms to distinguish between local
earthquakes and chemical explosions recorded on the
Gauribidanur Road in India, using an ANNs method
known as the "Back Propagation Network", known
as the Multilayer Artificial Neural Network (MLP).
Kiiytik et al. (2012) used K-mean, Gaussian Mixing
Model (GMM), LDF and Quadratic Discrimination
Function (QDF) methods and ANNs algorithms to
distinguish earthquakes and explosions with high
accuracy in Istanbul. Hammer et al. (2013) classified
seismic events, which they divided into three classes
as earthquakes, blasts and rock falls, with the help of
ANNSs method according to the records in the Swiss
Alps. Kortstrom et al. (2016) distinguished natural
and artificial earthquakes in Finland using the Support
Vector Machine (SVM) method. Mousavi et al. (2016)
used a machine learning technique to investigate the
relationship between the seismic properties and the
location of the focal centers where the events belong
to the signals recorded in the time, frequency and
time-frequency domain in the United States. Kaftan
et al. (2017) have calculated the monthly frequency
of earthquakes in western Turkey by using multilayer
neural network (MLP), Radial Basic Function ANNs
(RBFYS), and compatible Neural Fuzzy Logic
Inference Systems (ANFIS) methods. In addition,
many researchers have studied using LDF and ANNs
methods together or separately (Cetin et al., 2006;
Giilbag, 2006; Ustiin, 20094, b, ¢, Ustiin and Yildiz,
2009; Kiiyik et al., 2009; Yildirim et al., 2011;
Cayakan, 2012, Yildirim, 2013).

In this study, the distribution of seismic activities
in and around Manisa and the location of the KULA
station are shown in figure 1. GMT program was used
for drawing the maps (Wessel and Smith, 1995). Most
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Figure 1- The distribution of seismic events with M, < 3.5 that occurred between May 2009 and February 2014 in the study area
and the location of the KULA station (KRDAE, BDTIM). The faults were taken from Saroglu et al. (1992) and Emre et al.

(2013).

of the artificially sourced blasts recorded in the study
area originate from the mines and quarries operated
in the region to obtain mining and construction
materials. The aim of this study is to distinguish the
blasts in Kula (Manisa) and its surroundings from
earthquakes using LDF and ANNs methods, using the
numerical vertical component velocity seismograms
recorded at the KULA station between May 2009 and
February 2014. Thus, correct information can be used
in seismicity studies. In addition, reliable data will
be obtained in the creation of earthquake catalogs in
earthquake research centers. Thus, contribution will
be made to the preparation of catalogs containing
natural seismic activity in the region. In this case, the
amount of error will be significantly reduced in the
determination of active faults, seismic risk studies and
studies involving seismic activity in the region.

2. Data Acquisition

In this study, the numerical vertical component
velocity seismograms of 77 seismic events with
magnitude M, <3.5 recorded at the KULA station
between May 2009 and February 2014 in the region
between latitudes 38°-39.30°N and longitudes 28°
-29.30°E were examined. The data were taken
University Kandilli Observatory

Research Institute (KRDAE,

from Bogazici
and Earthquake

BDTIM). The Manisa-Kula (KULA) station, which
is broadband, was established on January 15, 2007
(Figure 1). Digital data were recorded at 50 samples
per second.

When the distribution of the total number of seismic
activities in the study area and only the number of
earthquake activities according to the occurrence time
is plotted, the histogram obtained is shown in figure 2.

While earthquakes and blasts are distinguished
from each other, it is not sufficient to compare them
only by day and time. Therefore, vertical component
velocity seismogram and spectrum are used since
these show significant differences in distinguishing
quarry blast and earthquake data from each other.
When the blast seismogram was examined, it was
seen that the P-wave amplitude was higher than that
of the earthquake. It is also observed that the direction
of the first movement on the signal is upwards
(Figure 3). The frequency contents of seismic events
used in this study are shown in figure 4. Spectral
corrugation is observed on the detonation spectrum
when looking at figure 4. This is due to the delayed
arrival of wave energy to the station during quarry
blasts. Although the waveform and spectrum are used
to visually distinguish earthquakes and explosions,
the parameters obtained from them are compared in
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Figure 2- The distribution of the number of seismic activities (occurrences) in each hour (UTC) between 38-39.30°N and 28-
29.30°E, May 2009-February 2014 in the study area. a) During the day, maximum activity is observed at 13:00 and a large
increase in the number of events is observed between 13:00 and 15:00, b) Distribution of the number of earthquakes after
the events determined as quarry blast as a result of this study were eliminated.
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Figure 3- Vertical component velocity seismogram recorded at KULA station; (a) Earthquake, (b) Quarry Blast.

practice. Therefore, different parameter pairs will P-wave amplitude of the vertical component
be calculated and the distribution between these velocity seismograms, the ratio of their complexities
parameter pairs will be examined. (Complexity-C) and the total signal duration of the
waveform were calculated. These parameters are

In order to obtain the parameters, the ratio of described below.

the maximum S-wave amplitude to the maximum
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Figure 4- Normalized amplitude spectrum of the signal recorded at the KULA station; (a) Earthquake, (b)

Quarry Blast.

2.1. Calculating the Ratio (C) of the Powers of the
Two Time Windows Defined in the Seismogram

The ratios of the vertical component velocity
seismograms for each seismic event, i.e. the complexity
(C), are calculated according to the equation 1 below
(Arai and Yosida, 2004).

t, 1

C=( S2Mdv [ §° (Hdt )
[

where

t, is expressed as arrival time of the P wave

t, and t, are expressed as time window range.

In this study, t, and t, values are taken as 1 and
12 seconds for the KULA station, respectively. The
1-second time window is based on the P wave signal.
The second time window is determined by considering
the time difference ts-tp of events at different distances
used in the study.

2.2. Calculation of Amplitude Ratio (S / P Maximum
Amplitude Ratio, Ratio)

After defining the maximum P-wave and maximum
S-wave amplitudes from the vertical component
velocity seismograms of earthquakes and blasts, the
S / P maximum amplitude ratio (Ratio) for seismic
events was calculated.

2.3. Defining Total Signal Duration (Duration)

The duration parameter is determined from the
duration of the signal. After these parameters were
calculated, normalization process as [-1, +1] was
applied to the data set. The reason for this is to provide
ease of establishing relationships between parameters.
According to Patro and Sahu (2015), normalization
process is shown in equation 2:

A= ( (4-Maximum value of 4)
=\ (Maximum value of 4)-(Minimum value of 4)

)< E-D)+D (2)

A*: Maximum-Minimum normalized data
[D, E]: Predefined border

A: Original data set

For [-1,+1]; D=-1 and E =+1

After the data set was normalized, LDF and ANNs
methods were applied to distinguish earthquakes and
explosions using the parameters described above.

3. Methods

3.1. Linear Discrimination Function (LDF) Method

LDF method is used to distinguish different
data groups from each other (Fisher 1936). Linear
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Discrimination Functions are generally shown in
equation 3 in a simplified form:

FLDF =a + b]_Xl + b2X2+.+mem (3)
a: Constant number

b, ..., b : Regression coefficients
1 m

X,, ..., X_: normalized values of discrimination
parameters.

Using the vertical component velocity seismograms
of the KULA station in the study area, the ratio of the
maximum S-wave amplitude to the maximum P-wave
amplitude is plotted against the ratio (C) of the powers
of the two time windows defined in the seismogram. In
this graph (Figure 5a) earthquakes and explosions are

distinguished from each other by linear discrimination
function. For this, Statistical Package Program of
Social Sciences (SPSS, 2005) was used.

For the LDF method, the amplitude ratio versus
logS and signal duration graphs are shown in figure
5b, c. The accuracy percentage results and diagnoses
obtained by the LDF method for each parameter pair
(Ratio-C, Ratio-logS and Ratio-Duration) of the data
set belonging to KULA are shown in table 1.

3.2. Artificial Neural Networks (ANNs) Method

Seismic events in the region were also distinguished
from each other by the method called Artificial Neural
Networks (ANNs). According to Giilbag (2006), the

(@)

054

ir

E 004

08

.’e =L
¢

oy
b

.
e
”~
e
e
e
»~
-
°

(©)

0,01

Ratio

1.04
1.0 0.8 0.0 0.8 1.0
Duration

(b)

1.0

Ratio
=
.

0.54 -

1.0 0.8 0.0 0s 1.0

logS

Quarry Blast
9 Earthquake

Figure 5- Percent accuracy values obtained by LDF method according to parameter pairs for KULA data. (a) 94% for Ratio-C parameter pair;
(b) 93.5% for ratio-logS parameter pair and (c) 89.6% for Ratio-Duration parameter pair.
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Table 1- Distinguishing seismic events recorded at Kula station by LDF method. Criteria: 1: The accuracy percentage obtained for the Ratio-C
parameter pair is 94%; 2: The accuracy percentage obtained for the ratio-logS parameter pair is 93.5% and 3: The accuracy percentage

obtained for the Ratio-Duration parameter pair is 89.6%.

Criteria Classification Predicted group Total
Quarry Blast (QB) | Earthquake (E)
Quarry Blast 39 0 39
Total Number
1 Earthquake 5 33 38
o Quarry Blast 100 0 100
’ Earthquake 13.2 86.8 100
Quarry Blast 39 0 39
Total Number
5 Earthquake 5 33 38
o Quarry Blast 100 0 100
° Earthquake 13.2 86.8 100
Quarry Blast 39 0 39
Total Number
3 Earthquake 8 30 38
% Quarry Blast 100 0 100
° Earthquake 21.1 78.9 100

human brain is a complex system consisting of nerve
cells called neurons and the connections between them.
Neurons communicate with each other through these
connections. ANNs learning algorithms are inspired
by human nervous system architecture. According to
Yildirim (2013), after determining the problem, while
deciding to train the network; "Unsupervised learning"
with only inputs and "supervised learning" with input-
output pairs are taken into account according to the
type of learning. Choosing the learning algorithm that
will train the artificial neural network is very important.
There are different learning algorithms such as ANFIS
(Compatible Neural Fuzzy Logic Inference Systems),
LVQ (Learning Vector Quantization), BFNNs
(Feedback ANNs), PNN (Probabilistic ANNs), BPNNs
(Backpropagation - Feed Forward ANNs), MLP (Multi
Layered ANNs) and RBFYSA (Radial Basic Function
ANNSs) (Cetin et al., 2006; Giilbag, 2006; Kiiyiik et
al., 2009; Ustiin, 2009a, b, c; Ustiin and Yildiz, 2009;
Yildirim et al., 2011; Cayakan, 2012; Yildirim, 2013;
Kaftan et al., 2017).

3.2.1. Back Propagation - Feed Forward Anns
(Bpnns) Learning Algorithm

The learning algorithm used in this study was
selected as Back Propagation-Feed Forward Neural
Networks. The reason for this is that it is a solution
to our problem and it is a reliable learning algorithm
because it is widely used (Cetin et al., 2006; Giilbag,
2006; Kiiyiik et al., 2009; Ustiin, 2009a, b, c; Ustiin
and Yildiz, 2009; Yildirim et al., 2011; Cayakan,

2012; Yildirim, 2013; Kaftan et al.,, 2017). This
algorithm got this name because it tries to reduce
errors backwards, ie from output to input (Cetin et al.,
2006). This network structure is simple and although
it gives a lot of correct results, it is a slow learning
algorithm (Cayakan, 2012). The weights according
to the amount of error between the desired output
and the actual value are arranged with this learning
algorithm to obtain the most appropriate output values
(Yildirim, 2013). After deciding on the learning
algorithm, the network topology, ie architecture, of
the artificial neural network was created. In general,
the elements of the network topology are shown as in
figure 6 (Giilbag, 2006).

After the learning algorithm is determined
according to the type of the problem, a network
structure in the form of input layer, hidden layer and
output layer is created. In general, the elements of
the network topology are defined as inputs, outputs,
weights, sum function, activation (Transfer) function
(Rumelhart et al., 1986). Entries are information
entering the cell from other cells or external
environments, and enter the cell over the weights on
the connections. The weights (w) determine the effect
of the relevant input on the cell (Figure 6).

In this study, the artificial neural network
represents the feed forward artificial neural network
according to its structure and the counseling learning
according to the learning algorithm. In the artificial
neural network model that we have determined
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Figure 6 - Elements of network topology (Giilbag, 2006).

according to our problem, in the learning algorithm
applied to the network topology we have created, the
artificial neural network is given both input values and
output values that must be produced in response to this
input, consulting learning has been applied according
to the learning algorithm. In addition, the parameter
pair to be tested was used as the input parameter to
the system, and the diagnosis as the output parameter.
These parameter pairs are, respectively, the ratio of the
maximum S wave amplitude to the maximum P wave
amplitude (Ratio) and the power ratio (C) (Figure 7a),
the ratio of the maximum S wave amplitude to the
maximum P wave amplitude (Ratio) and the logarithm
of the maximum S wave amplitude (log S) (Figure
7b) and the amplitude ratio (Ratio) of the maximum
S wave to the maximum P wave and the total signal
duration (Duration) of the waveform (Figure 7c¢).

3.2.2. Choosing the Number of Neurons (Nn)

While creating an artificial neural network
topology, the choice of the number of neurons
(Nn) is of great importance on the learning process
(Giilbag, 2006). The same researcher emphasized
that the number of neurons is of great importance
to achieve generalization. In general, a very small
number of neurons normally causes less learning,
ie poor learning, while an excessive number of
neurons indicates that it can lead to over learning,
or memorization. The problem of finding an optimal
network architecture complicates the solution because
each unique architecture has its own unique set of
suitable parameters (Kermani et al., 2005). The choice
of the number of neurons is very important in ANNs
as it is one of the determining factors in distinguishing
data groups. Using less than necessary number of
neurons in the hidden layer results in less sensitive
output than input data. Likewise, if more neurons are
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used than necessary, difficulties arise in processing
new types of data groups within the same network
(Cetin et al., 2006). While creating the structure of the
ANN:Ss, the number of neurons (Nn) is decided by trial
and error method (Y1ldirim, 2013; Kaftan et al., 2017).

At the stage of determining the appropriate model,
the number of neurons in a certain range, with a certain
amount of increase is given to the algorithm, and then
the artificial neural network model is selected with the
highest percentage of accuracy (Giilbag, 2006). In the
literature, researchers have determined the number of
neurons in increasing values with different number
intervals. Giilbag (2006) created ANNs models with
the number of neurons increasing by 10 between 0
and 100. Kiyiik et al. (2009) compared the models
with an increasing number of intermittent neurons
increasing by 1 from 1 to 20 in their study and created
an artificial neural network model with 5 neurons with
the least error, that is, the best result. Yildirim (2013)
created ANNs topology with the number of neurons
increasing by 2 between 0 and 22. Kaftan et al. (2017)
created their own network network models by using
the number of neurons increasing by 1 between 1 and
6.

In this study, before the application of the ANNs
Method, the models with the number of neurons in
increasing intervals of 5 from 1 to 25 were compared.
Then, the number of neurons (Nn = 10 for Ratio-C,
Nn = 5 for Ratio-log S, Nn = 5 for Ratio-Duration)
was determined for both parameter groups that were
different from each other. An artificial neural network
model has been created with the least error, that is, the
number of neurons that give the best result. Training
continued until the determination coefficient (R?)
approached 1. When the value of the determination
coefficient (R?) approaches 1, it actually means the
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stopping criterion. At the same time, this means
that the learning algorithm is successful for these
parameters on the network structure created. Once the
proper value has been obtained, the network has been

Figure 7- Artificial neural network structure for seismic events a) ratio versus C, b) ratio versus logS, c) ratio versus

duration.

tested.

Since it is necessary to decide on the number of
neurons first, the number of neurons obtained in the
following table (Table 2) is obtained by trial and error
method. While creating an artificial neural network

suitable for the problem in this study, the obtained

Table 2- The change of the total number of data and its relation with the Number of Neurons (Nn) for the parameter pairs belonging to the
Manisa study area. Parameter pair for all data set belonging to KULA station Criteria: 1: Ratio-C, 2: Ratio-logS, 3: Ratio-Duration.

Criteria ANNSs (%) ANNSs (%) ANNSs (%) ANNSs (%) ANNSs (%)
Nn:5 Nn:10 Nn:15 Nn:20 Nn:25
1 88 100 100 88 100
2 100 100 100 96 96
3 100 100 100 100 100
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accuracy percentage values are shown in table 2
against the number of neurons determined for each
parameter pair.

Since the number of neurons is decided according
to the accuracy percentage values in the ANNs
method, the number of neurons in the situation with
the highest accuracy percentage value is selected.
But if the accuracy percentage values are equal,
the lowest value of the number of neurons is taken.
This is because the artificial neural network model is
desired to be less complex (Giilbag, 2006). Therefore,
Nn: 10 for the Ratio-C parameter pair, and Nn: 5 for
Ratio-logS and Ratio-Duration parameter pairs were
selected according to the ANNs method.

In addition, the training algorithm used in this
study is Levenberg-Marquardt and the activation
function is Tangent-Sigmoid activation function.
Application of Levenberg-Marquardt ANNs learning
has been explained in some studies (Hagan and
Menhaj, 1994; Kermani et al., 2005). This algorithm
(up to several hundred weights) has been shown to be
the fastest method for advanced feed-forward ANNs
learning. At the same time, the effective representation
of the function in matrix form, as in the MATLAB
programming language, offers an important solution
in some studies (Charrier et al., 2007; Matlab, 2011).

With the help of MATLAB programming language
"nntool", ANNs model with inputs, weights and
activation function was developed and Levenberg-
Marquardt was chosen as the training algorithm
(Levenberg, 1944 and Marquardt, 1963) (Matlab,
2011) since this training algorithm has an important
role in the functioning of this process. Kipli et al.
(2012) also used the Levenberg-Marquardt training
algorithm in their studies.

For the network architecture determined in this
study, the hyperbolic tangent sigmoid activation
function, also known as the tangent sigmoid activation
function, is used. Tangent-Sigmoid, <P(U), describes
the neuron output with respect to the local induced
v field. In fact, this activation function assumes a
continuous function in the value range from -1 to
+1. Therefore, the activation function expresses the
positive function of the induced local area, as seen in
equation 4.
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1 if v>0
0 if v=0 C)
-1 if v<0

o) =

This function is shown in combination as a sign
function. For the corresponding form of the sigmoid
function, the hyperbolic tangent sigmoid function was
used in the form as shown below:

¢(v) = tanh (v) )

The hyperbolic tangent sigmoid activation function
takes positive and negative values as indicated in
equation 5 (Haykin, 2009).

Therefore, the hyperbolic tangent function, which
was examined at the beginning, is used for values that
provide input to all output layers except output layer.
The hyperbolic tangent sigmoid activation function is
defined as in equation 6.

o) = - — (6)

1re2v)

In equation 6, ¢ () is "Hyperbolic tangent sigmoid
activation function". The change of the function is [-1
1] and this function varies according to the total input
and the number of neurons. (Gradshteyn and Ryzhik,
2007).

3.2.3. Preparation of Data Set for ANNs Network
Topology

After the number of neurons is determined, data
sets of inputs and outputs are started to be arranged.
After the normalization process, a new data set is
created by randomly selecting a certain percentage
of the data as training data and the rest as test data
from the whole data set. Similarly, Kermani et al.
(2005) randomly selected their data in their study. The
reason for this is that the training data is trained with
the learning algorithm used in ANNs and the training
is completed when the determination coefficient (R?)
value approaches 1. The reason for continuing the
ANNSs process with test data is to provide the rule that
“The designed artificial neural network has learned the
learning algorithm with training data, so it can test its
knowledge with test data”. Then, the obtained results
are compared with the test outputs and the accuracy
percentage is calculated.
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Different researchers prepared data sets using
different percentage values to distinguish between
training data and test data. Ursino et al. (2001) used
50% of the data set as training set and the other 50%
as test data. Giilbag (2006) created the ANNSs data set
as 84% training data and 16% test data in his study.
Yildirim et al. (2011) organized 25% of the data set
as training and 75% as test data in their study, in
accordance with their own problems. Kundu et al.,
(2012) allocated 51% of their data as training data
and 49% as test data. In addition, Yildirim (2013)
divided 80% into training data and 20% as test data by
selecting random data from the data set in his study.
Kaftan et al. (2017) separated 85% of their data as
training data and the remaining 15% as test data.

In this study, random data was selected from the
whole data set belonging to the KULA station, and
70% of the data was divided into training data and
30% as test data. In this case, since all data is 77,
training data is 53 and test data is 24.

In addition, reasonable results were obtained by
applying the k-fold cross validation method (James et
al., 2017) to the data. Thus, by obtaining reasonable
results similar to the high accuracy percentages
obtained by the ANNs method, the ANNs method was
once again verified.

Each pair of parameters used in the LDF method is
also used in the second method, the ANNs method, to
distinguish earthquake and quarry blast data.

The determination coefficient (R?) values
corresponding to the number of neurons (Nn) values
determined by ANNs method for ratio versus C, ratio
versus logS and ratio versus duration values in Manisa
are given in table 3. It is seen in this table that the R?
values are different for each parameter pair. When R?
values are close to 1, it can be said that the created
artificial neural network structure is successfully
created according to these parameter pairs. The R?
values seen in table 3 are accepted as a stopping
criterion for the feed-back learning algorithm that
we use in this study. It shows that when the R? value
approaches 1, the predicted artificial neural network
structure has been successfully learned. The number
of neurons (Nn) is designed to increase by 5 between
5 and 25 (Table 3).

R values alone are not sufficient to decide the
number of neurons (Nn) representing the model, they
are only a stopping criterion. Accuracy percentages of
ANNSs models corresponding to these neuron numbers
selected with the help of table 3 are shown in table 4.

Accordingly, it was found that the accuracy
percentage values obtained by the ANNs method were
high and this method was also successful. In addition,
the numbers of earthquakes and quarry blast in the
training and test data of KULA data are shown in table
S.

For ANNs method, amplitude ratio versus
complexity (C), logS and signal duration values are
given in figure 8a, b, c.

Table 3- The change in the relationship between the coefficient of determination (R?) and the number of neurons (Nn) for the parameter pairs
belonging to the Manisa study area. Parameter pair for the data set of the Kula station Criteria: 1: Ratio-C, 2: Ratio-logS, 3: Ratio-

Duration.
. Determination Coefficient
Criteria
Nn:5 Nn:10 Nn:15 Nn:20 Nn:25
1 0.96 1 1 0.96 1
2 1 1 1 0.93 0.93
3 1 1 1 1 1

Table 4- The change of the number of incorrectly defined earthquakes and quarry blasts with the number of data in the training and test data set
for the whole data set of the KULA station using the ANNs method, and the percentage of accuracy.

Criteria | Station Total Number of Data | Number of Data Misclassified Misclassified Quarry ANNs (%)
Number of Data | in the Training Set | in the Test Set | Earthquake (ME) Blast (MQB)
1 KULA 77 53 24 0 0 100
KULA 77 53 24 0 0 100
3 KULA 77 53 24 0 0 100
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Table 5- Number of training and test data modeled for the KULA region. The accuracy percentages obtained from the classification of the data
set of the KULA station (Criteria 1: Ratio-C, 2: Ratio-logS, 3: Ratio-Duration) using the ANNs method are respectively 100%, 100%

and 100%.
Training Data Set* Test Data Set**
Criteria | Station Total Number of Data | Earthquake | Quarry Blast | Number of Data | Earthquake | Quarry Blast
Number of Data | in the Training Set (E) (QB) in the Test Set (E) (QB)
1 KULA 77 53 31 22 24 19 5
2 KULA 77 53 31 22 24 19 5
3 KULA 77 53 31 22 24 19 5

Training Data Set* = Training Set; Test Data Set ** = Test Set
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Figure 8- Accuracy percentage values obtained by ANNs method according to parameter pairs for KULA data. (a) 100% for ratio-C parameter
pair; (b) 100% for ratio-logS parameter pair and (c) 100% for the Ratio-Duration parameter pair.
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The accuracy percentage of the method was
calculated by testing the data prepared with the help of
MATLAB software (Matlab, 2011). ANNs method was
applied for each parameter pair (C against Ratio, log S
against Ratio and Duration against Ratio) and accuracy
percentages were obtained for each. In addition, the
number of neurons for Ratio versus C was taken as
10, for Ratio versus log S as 5, and for Ratio versus
Duration, as 5. Accuracy percentages obtained from
LDF and ANNs methods are given in table 6.

4. Results and Discussion

In this study, while LDF and ANNs methods
were applied to the data in Manisa region for the first
time, earthquakes and blasts were distinguished from
each other. In order to distinguish earthquake and
quarry blast events, 77 seismic events with M, < 3.5
magnitude recorded at KULA station between May
2009 and June 2013 in the region between latitudes 38-
39.30°N and longitudes 28-29.30°E were examined.

From the vertical component velocity seismograms
recorded in the KULA station in the study area,
parameters such as the ratio of the maximum S-wave
amplitude to the maximum P-wave amplitude, the ratio
of the strengths of the two time windows defined in
the seismogram (C) and the signal duration (Duration)
are determined, and their relationship with each other
is examined by LDF and ANNs methods.

The results obtained by LDF and ANNs method
for each parameter pair (Ratio-C, Ratio-logS and
Ratio-Duration) of the data set belonging to KULA
are given in table 6. In both methods, earthquakes
and explosions were determined with high accuracy
percentages.

As aresult of the study, 39 (51%) of the 77 seismic
events examined were determined as quarry blasts and
38 (49%) as earthquakes (Figure 9).

Table 6- Comparison of accuracy percentage values according to LDF and ANNs methods for the data set of KULA station (Criteria: 1.

Ratio-C, 2. Ratio-logsS, 3. Ratio-Duration).

Criteria Method Percentage of Accuracy (%)
LDF 94
! ANNs 100
LDF 93.5
2 ANNs 100
LDF 89.6
3 ANNs 100
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Figure 9- Earthquakes and blasts, M, < 3.5, occurred in the study area between May 2009 and February 2014. The KULA

station is marked with a blue triangle (KRDAE, BDTIM).
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In this study, it was understood that the number of
neurons is a very important criterion for ANNs. The
reason for this is that the number of neurons directly
affects the results in the creation of the artificial neural
network topology. This shows that if the number of
neurons is correctly decided during the preliminary
study before the ANNs method is applied, the accuracy
percentage value will be higher. In addition, when the
ANNs method is applied, when the determination
coefficient (R?) value approaches 1 during training,
the training is stopped and then, the test is started and
information about the learning process is provided.
In other words, the determination coefficient is a
stopping criterion.

Comparing  the  differentiation  accuracy
percentages obtained by LDF and ANNs for different
parameter pairs, it is seen that both methods are
successful in distinguishing earthquakes and blasts
from each other, but the ANNs method is more
successful than the LDF method (Figure 5a, b, c,
figure 7a, b, c; table 6).

In addition, when international and Turkish
scientific studies are examined, it is seen that LDF
and ANNs methods are frequently used to distinguish
blasts from earthquakes in different study regions.
Ceydilek and Horasan (2019) used the LDF method
at four stations (AKHS, BLN, CAM and KTT) to
distinguish earthquakes and explosions in the Manisa
region. The accuracy percentages for the Ratio-logS
parameter pair obtained from the events recorded by
each of the AKHS, BLN, CAM and KTT stations
are 94.4%, 95.8%, 90.0%, 93.2%, respectively.
The accuracy percentages for the Ratio-Duration
parameter pair obtained from the events recorded by
the same stations are 91.2%, 89.6%, 91.4%, 88.6%,
respectively. In this study, 94%, 93.5% and 89.6%
accuracy values were obtained with the LDF method
for Ratio-C, Ratio-logS and Ratio-Duration parameter
pairs, respectively. It is seen that the results obtained
from this study are compatible with the results
obtained by Ceydilek and Horasan (2019) in Manisa
region.

In addition, the LDF method is one of the most
popular and successful methods used in earth sciences
to distinguish between natural and artificial seismic
events. Horasan et al. (2009) obtained the accuracy
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percentage values with the Ratio-logS parameter pair
for Istanbul-Gaziosmanpasa, Catalca, Gebze-Hereke,
and Istanbul-Omerli regions as 98.6%, 93.8%, 97.7%
and 95.8%, respectively. Yilmaz et al. (2013) defined
the accuracy percentage values as 96.3%, 89.3%,
100%, 100%, 96.5% and 100% for KTUT, ESPY,
BAYT, PZAR, GUMT and BCA stations in Trabzon,
respectively. Badawy et al. (2019) applied the LDF
method to the Ratio versus logS values in Egypt, and
the accuracy percentages for AYT, MYD and GLL
stations were 91.7%, 83.7% and 83.2%, respectively.
By applying the same method to Spectral Ratio values
against C for the same study, Badawy et al. (2019)
obtained the accuracy percentages as 95.7%, 98% and
98.4% for AYT, MYD and GLL stations, respectively.
These values show that the method gives successful
results. The accuracy percentages of the parameters
may vary depending on the number of data, geological
features and local ground effects.

ANNs method has also been used for about the
last decade to distinguish natural and artificial seismic
events from each other. Yildirim et al. (2011) used
three methods to distinguish natural and artificial
seismic events in and around Istanbul. They achieved
99% accuracy with Back Propagation - Feed Forward
ANNs (BPNNs), 97% accuracy with Probabilistic
Artificial Neural Networks (PNN) and 96% accuracy
with Fuzzy Logic Systems (ANFIS). In this study,
the accuracy percentage values obtained by using the
BPNNs learning algorithm with the ANNs method
applied for the KULA station and its vicinity is 100%
for each pair of parameters. In other words, accuracy
percentage values close to each other were obtained.
In this study, the BPNNs learning algorithm preferred
in the ANNs method has been quite successful in
distinguishing seismic events from each other.

In addition, the determination coefficient (R?)
values corresponding to the number of neurons (Nn),
which are important in the ANNs method - 0.96 and
1 for the Ratio-C parameter pair, 0.93 and 1 for the
Ratio-logS parameter pair, and 1 for the Ratio-Duration
parameter pair - was obtained at different value ranges
for all neuron count values ranging from 25 to 5
increments (Table 3). This situation indicates that the
BPNNS s learning algorithm used in the artificial neural
network architecture created in this study is successful
on these parameters.
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In addition, if we compare the results obtained
with LDF and ANNs methods with each other, 94% in
LDF method and 100% in ANNs method for Ratio-C
parameter pair; for the ratio-logS parameter pair,
93.5% in the LDF method and 100% in the ANNs
method; for the Ratio-Duration parameter pair, 89.6%
accuracy was obtained in the LDF method and 100%
in the ANNs method.

In the LDF method, 39 of the 39 quarry blast
events were determined as quarry blast in Table 1 for
the Ratio-C parameter pair. Of the 38 events defined
as earthquakes, 33 of them were earthquakes and 5
of them were quarry blasts. Thus, earthquakes and
explosions were distinguished from each other with
94% accuracy with the LDF method. For the ratio-
logS parameter pair, 39 of 39 blasts were determined as
blasts with the LDF method. Of the 38 events defined
as earthquakes, 33 were determined as earthquakes
and 5 were quarry blasts (Table 1). The accuracy
percentage in the LDF method for this parameter
pair is 93.5%. For the Ratio-Duration parameter pair,
the accuracy percentage value obtained by the LDF
method is 89.6%. These accuracy percentage values
show that the method is successful.

Accuracy percentage was evaluated by using only
test data with ANNs method. The reason for this is
to test the success of the learning algorithm used on
the artificial neural network model. Accordingly, 19 of
the 24 test data for each parameter pair were correctly
identified as earthquakes and the remaining 5 as
quarry blast. Thus, earthquakes and explosions were
distinguished from each other with 100% accuracy
by ANNs method. These results show that the ANNs
method distinguishes earthquakes and explosions
with high accuracy. Comparing the two methods
with each other, both methods are very successful in
distinguishing earthquakes and explosions from each
other. In this application, it is seen that the ANNs
method is more successful than the LDF method.

Studies to distinguish earthquakes and blasts from
each other are important for seismicity studies in
seismology. By correctly distinguishing earthquakes
and blasts, it will contribute to the preparation of
seismic catalogs with only earthquakes and therefore
to more accurately determining active faults and
seismic risk studies in the region. As in the relation
proposed by Gutenberg and Richter (1949) given
below,

LogN=a-bM @)

coefficients a and b can be found. In this relation, a
and b are constant coefficients. While b-value is the
slope of the line obtained by plotting the logarithm
of the number corresponding to the magnitude, the
coefficient a is where the line intersects the LogN axis
(Bayraketal.,2013). With the help of these coefficients,
the correct determination of the linear relationship
between the numbers and magnitudes of earthquakes
occurring in a certain area will provide correct results.
In fact, by applying the linear regression method to
calculate the Gutenberg-Richter (1949) relation for
each seismic source zone in Kizilbuga (2016) study,
a and b parameters were obtained in the study area.
Thus, by estimating the maximum acceleration values
of earthquakes that may occur in that region, the
earthquake hazard map of the region was obtained.
Therefore, in the light of our study, parameters a and b,
which will be determined correctly, will contribute to
the preparation of earthquake hazard maps of a region.
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