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Özet –Kontrolör ve gözlemci tasarımında ihtiyaç duyulan 

sistem gürültüsünü kaynaklarının dağılımı sistemin kompleks 

olması nedeniyle nadiren bilinmektedir. Bu çalışmada Kalman 

Filtresi teorisine dayanan filtre kalıntısı korelasyon yöntemi 

kullanılarak proses gürültülerinin kaynağı ölçüm verisi ile 

hesaplanmıştır. Bu yöntemde rastgele bir filtre kazancı ile elde 

edilen filtre kalıntıları kovaryans matrisleri hesaplanır. Bu 

makale filtre kalıntıları korelasyonları yaklaşımını irdeler ve 

sistem gürültülerinin kaynaklarının hesaplanmasındaki 

performansını değerlendirir. Sayısal sonuçlar, bu yöntemin 

proses gürültüsünün kaynağının tespiti ve gürültü kovaryans 

matrislerinin tahmini için etkili bir şekilde kullanılabileceğini 

göstermektedir. 

 

Anahtar Kelimeler- Gürültü kaynağının tespiti, Kalman 

filtresi, Ölçüm gürültüsü, Proses gürültüsü 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract— Due to complexity in the systems, spatial 

distribution of unmeasured processnoise that is required for 

the controller and observer design are often unknown. In 

this study an innovations correlations approach developed in 

Kalman Filter theory is used to localize the process noise 

from output measurements. The approach calculates 

covariance matrices from analysis of resulting innovations 

from an arbitrary filter gain. Aim of this paper is to review 

the innovation correlations approach and to evaluate its 

performance for localization of the process noise.Numerical 

results suggest that the method can be effectively used for 

source localization of process noise as well as estimation of 

noise covariance matrices. 

 

Index Terms - Disturbance Localization, Kalman Filter, 

Measurement Noise, Process Noise, Process Noise 

Localization.  

I. INTRODUCTION 

HE basic idea in estimation theory is to obtain 

approximations of the true response by using 

information from a model and from any available 

measurements. The mathematical structure used to 

perform estimation is known as an observer. The optimal 

observer for linear systems subjected to broad band 

disturbances is the Kalman Filter (KF), [1]. In the 

classical Kalman filter theory, one of the key 

assumptions is that a priori knowledge of the spatial 

distribution of process noise and noise covariance 

matrices are known without uncertainty. In reality, due 

to the complexity in the systems, this information is 

seldom known a priori. The objective of this study is to 

estimate the spatial distribution of process noise and the 
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noise covariance matrices using correlations approaches. 

The two correlations approaches that have received most 

attention in the noise covariance estimation problem are 

based on: 1) correlations of the innovation sequence and 

2) correlations of the output. In the innovations approach 

one begins by "guessing" a filter gain and then the 

approach calculates the noise covariance matrices from 

analysis of the resulting innovations. The correlations 

approaches to estimate the covariance matrices of 

process and measurement noise for Kalman Filtering 

from the measured data began soon after introduction of 

the filter. One of the most widely quoted strategies to 

carry out the estimation of noise covariance matrices are 

due to Mehra [2] and the subsequent paper by Carew and 

Bellanger [3]. A noteworthy contribution from this early 

work is the contributions by Neethling and Young [4], 

who suggested some computational adjustments that 

could be used to improve accuracy. Recently, some other 

contributions to the Mehra's approach on the estimation 

of noise covariance matrices are presented. Odelson, 

Rajamani and Rawlings applied the suggestions of 

Neethling and Young's on Mehra's approach and used 

the vector operator solution for state error covariance 

Riccatti equation of suboptimal filter, [5]. Akesson et al. 

extended their work for mutually correlated process and 

measurement noise case, [6]. Bulut, Vines-Cavanaugh 

and Bernal compared the performance of the output and 

innovations correlations approaches to estimate noise 

covariance matrices, [7].In their study Bulut and Bayat 

[8] estimated a set of covariance matrices in order to 

characterize the uncertainty in the erroneous models 

using Kalman Filter based correlations approach. In this 

paper the same approach is utilized to estimate process 

and measurement noise covariances and to localize 

process noise using a model that is known without 

uncertainty.  

 

The paper is organized as follows: the next section 

provides a brief summary of the KF particularized to a 

time invariant linear system with stationary disturbances 

(which is a condition we have implicitly assumed 

throughout the previous discussion). The following 

section reviews the innovations correlations approach for 

disturbance localization and the paper concludes with a 

numerical example. 

II. THE KALMAN FILTER 

Consider a time invariant linear system with unmeasured 

disturbances 𝑤 𝑡  and available measurements 𝑦 𝑡  that are 

linearly related to the state vector 𝑥 𝑡 . The system has the 

following description in sampled time 

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑤𝑘  (1) 

 

 𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘  (2) 

 

where 𝐴𝜀𝑅𝑛𝑥𝑛 , 𝐵𝜀𝑅𝑛𝑥𝑟  and 𝐶𝜀𝑅𝑚𝑥𝑛  are the transition, input 

to state, and state to output matrices, 𝑦𝑘𝜀R𝑚𝑥1 is the 

measurement vector and 𝑥𝑘𝜀𝑅
𝑛𝑥1 is the state. The sequence 

𝑤𝑘𝜀𝑅
𝑟𝑥1 is the disturbance known as the process noise and 

𝑣𝑘𝜀𝑅
𝑚𝑥1 is the measurement noise. In the treatment here, it is 

assumed that these are mutually correlated Gaussian stationary 

white noise sequences with zero mean and known covariance 

matrices, namely 

 𝐸 𝑤𝑘 = 0 (3) 

 

 𝐸 𝑣𝑘 = 0 (4) 

 

and 

 𝐸 𝑤𝑘𝑤𝑗
𝑇 = 𝑄𝛿𝑘𝑗  (5) 

 

 𝐸 𝑣𝑘𝑣𝑗
𝑇 = 𝑅𝛿𝑘𝑗  (6) 

 

 𝐸 𝑤𝑘𝑣𝑗
𝑇 = 𝑆𝛿𝑘𝑗  (7) 

 

where 𝛿𝑘𝑗  denotes the Kronecker delta function, 

and𝐸 ⋅ denotes expectation. 𝑄 and 𝑅 are covariance matrices 

of the process and measurement noise and 𝑆 is cross-

covariance between them. For the system in Eqs.1 and 2, the 

KF estimate of the state can be computed from 

 

 𝑥 𝑘+1 = 𝐴𝑥 𝑘 + 𝐾 𝑦𝑘 − 𝐶𝑥 𝑘  (8) 

 

where 𝑥 𝑘  is the estimate of 𝑥𝑘  and 𝐾 is the (steady state) KF 

gain that can be expressed in a number of alternative ways, a 

popular one is 

 

 𝐾 = (𝐴𝑃𝐶𝑇 + 𝐵𝑆)(𝐶𝑃𝐶𝑇 + 𝑅)−1 (9) 

 

where 𝑃, the steady state covariance of the state error, is the 

solution of the Riccati equation 

 

 
𝑃 = 𝐴𝑃𝐴𝑇 − (𝐴𝑃𝐶𝑇 + 𝐵𝑆)(𝐶𝑃𝐶𝑇 + 𝑅)−1(𝐴𝑃𝐶𝑇

+ 𝐵𝑆)𝑇 + 𝐵𝑄𝐵𝑇  
(10) 

 

The KF provides an estimate of the state for which trace of is 

minimal. The difference between measured and estimated 

output, namely 𝑒𝑘 = 𝑦𝑘 − 𝐶𝑥 𝑘  in Eq.8 is known as 

innovations sequence of the filter which is a white process. 

The filter is initialized as follows 

 

 𝑥 0 = 𝐸 𝑥0  (11) 

 

III. INNOVATIONS CORRELATIONS APPROACH 

We begin with the expression for the covariance function of 

the innovation process (𝑒𝑘)for any stable observer with gain 

𝐾0. As initially shown by Mehra [2] this function is 

 

 𝐿𝑗 = 𝐶 𝑃 𝐶𝑇 + 𝑅        𝑗 = 0 (12) 

 

 𝐿𝑗 = 𝐶𝐴 𝑗𝑃 𝐶𝑇 + 𝐶𝐴 𝑗−1𝐵𝑆 − 𝐶𝐴 𝑗−1𝐾0𝑅      𝑗 > 0 (13) 
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where 𝑃  the covariance of the state error in the steady state, is 

the solution of the Riccati equation 

 

 𝑃 = 𝐴 𝑃 𝐴 + 𝐾0𝑅𝐾0
𝑇 + 𝐵𝑄𝐵𝑇 − 𝐾0𝑆𝐵

𝑇 − 𝐵𝑆𝑇𝐾0
𝑇 (14) 

 

and 

 

 𝐴 = 𝐴 − 𝐾0𝐶 (15) 

 

Applying 𝑣𝑒𝑐operator to both sides of the auto-correlation 

function of the innovations in Eqs.12-13 one obtains 

 

 𝑣𝑒𝑐 𝐿𝑗  =  𝐶 ⊗ 𝐶 𝑣𝑒𝑐 𝑃  + 𝑣𝑒𝑐 𝑅   𝑗 = 0 (16) 

 

 

 

𝑣𝑒𝑐 𝐿𝑗  =  𝐶𝐴 𝑗 ⊗ 𝐶 𝑣𝑒𝑐 𝑃  

+  𝐵𝑇 ⊗ 𝐶𝐴 𝑗−1 𝑣𝑒𝑐 𝑆 

−  𝐼 ⊗ 𝐶𝐴 𝑗−1𝐾0 𝑣𝑒𝑐 𝑅       𝑗
> 0 

(17) 

 

and applying vec operator to error covariance equation in 

Eq.14, one has 

 

 

𝑣𝑒𝑐 𝑃  =  𝐼 −  𝐴 ⊗ 𝐴   −1  𝐾0 ⊗ 𝐾0 𝑣𝑒𝑐 𝑅     
+ 𝐵 ⊗ 𝐵𝑣𝑒𝑐 𝑄 
−  𝐵 ⊗ 𝐾0 𝑣𝑒𝑐 𝑆 
−  𝐾0 ⊗ 𝐵 𝑣𝑒𝑐 𝑆𝑇   

(18) 

 

Substituting Eq.25 into Eqs.23 and 24 , and adding the terms 

related to ST
 to the terms related to S and canceling ST

, one 

finds 

 

 𝑣𝑒𝑐 𝐿𝑗  =  ℎ𝑗
𝑄ℎ𝑗

𝑆ℎ𝑗
𝑅  

𝑣𝑒𝑐 𝑄 

𝑣𝑒𝑐 𝑆 

𝑣𝑒𝑐 𝑅 
  (19) 

 

where 

 

 

 
ℎ𝑗
𝑄 = (𝐶 ⊗ 𝐶)[𝐼 − (𝐴 ⊗ 𝐴 )]−1(𝐵 ⊗ 𝐵)        𝑗

= 0 
(20) 

 

 
ℎ𝑗
𝑄 = (𝐶 ⊗ 𝐶𝐴 𝑗 )[𝐼 − (𝐴 ⊗ 𝐴 )]−1(𝐵 ⊗ 𝐵)      𝑗

> 0 
(21) 

 

 
ℎ𝑗

𝑆 = −2𝐼(𝐶 ⊗ 𝐶)[𝐼 − (𝐴 ⊗ 𝐴 )]−1(𝐵

⊗ 𝐾0)        𝑗 = 0 
(22) 

 

 
ℎ𝑗

𝑆 = (𝐵𝑇 ⊗ 𝐶𝐴 𝑗−1) − 2𝐼[ 𝐶 ⊗ 𝐶𝐴 𝑗  [𝐼

−  𝐴 ⊗ 𝐴  ]−1 𝐵 ⊗ 𝐾0 𝑗 > 0 
(23) 

 

 
ℎ𝑗
𝑅 = (𝐶 ⊗ 𝐶)[𝐼 − (𝐴 ⊗ 𝐴 )]−1(𝐾0 ⊗ 𝐾0) + 𝐼     𝑗

= 0 
(24) 

 

 
ℎ𝑗
𝑅 = (𝐶 ⊗ 𝐶𝐴 𝑗 )[𝐼 − (𝐴 ⊗ 𝐴 )]−1(𝐾0 ⊗ 𝐾0)

−  𝐼 ⊗ 𝐶𝐴 𝑗−1𝐾0 𝑗 > 0 
(25) 

Listing explicitly the correlation functions in Eq.26 for 

lags𝑗 = 1, 2, . . 𝑝 and writing in matrix form one has 

 

 𝐻𝑋 = 𝐿 (26) 

 

 where 

 

 

𝐻 =

 
 
 
 
 
 ℎ0

𝑄 ℎ0
𝑆 ℎ0

𝑅

ℎ1
𝑄 ℎ1

𝑆 ℎ1
𝑅

ℎ2
𝑄 ℎ2

𝑆 ℎ2
𝑅

⋮ ⋮ ⋮

ℎ𝑝
𝑄 ℎ𝑝

𝑆 ℎ𝑝
𝑅
 
 
 
 
 
 

, L =

 
 
 
 
 
𝑣𝑒𝑐(𝐿0)

𝑣𝑒𝑐(𝐿1)
𝑣𝑒𝑐(𝐿2)

⋮
𝑣𝑒𝑐(𝐿𝑝) 

 
 
 
 

,

X =  

𝑣𝑒𝑐(𝑄)
𝑣𝑒𝑐(𝑆)

𝑣𝑒𝑐(𝑅)
  

(27) 

 

Estimates of𝑄, 𝑆and 𝑅 can be obtained from Eq.26. From its 

inspection, one finds that 𝐻 has dimensions 𝑚2𝑝𝑥 𝑟2 + 𝑚2 +
𝑚𝑟. The sufficient condition for the uniqueness of the solution 

of Eq.26 is defined as follows in the general case; the number 

of unknown parameters in 𝑄 and 𝑆 have to be smaller than the 

product of number of measurements and the state. The error in 

solving Eq.26 for 𝑋 is entirely connected to the fact that the 𝐿 

is approximate since it is constructed from sample correlation 

functions of the innovations which are estimated from finite 

duration signals, namely 

 

 𝐿 𝑗 ≝ 𝐸 𝑒𝑘𝑒𝑘−𝑗
𝑇  =

1

𝑁 − 𝑗
 𝑒𝑘𝑒𝑘−𝑗

𝑇

𝑁−𝑗

𝑘=1

 (28) 

 

where 𝑁 is the number of time steps. Substituting 𝐿  as the 

estimate of 𝐿, the solution of Eq.26 can be presented as in the 

following. 

 

 Case #1 𝑚𝑛 ≥  𝑟2 + 𝑚𝑟  (29) 

 

In this case 𝐻 is full rank and there exists a unique minimum 

norm solution for a weighting matrix 𝐼 given in the following, 

 

 𝑋 = (𝐻𝑇𝐻)−1𝐻𝑇𝐿  (30) 

 

 Case#2 𝑚𝑛 <  𝑟2 + 𝑚𝑟  (31) 

 

In this case the matrix is rank deficient, and the size of null 

space of 𝐻 can be calculated from 𝑡 = 𝑟2 − 𝑚𝑛. The solution 

is written as follows, 

 

 𝑋 = 𝑋 0 + 𝑛𝑢𝑙𝑙 𝐻 𝑌 (32) 

 

where 𝑋 0 is the minimum norm solution given in Eq.30 and 

𝑌𝜀𝑅𝑡𝑥1 is an arbitrary vector. Therefore, we conclude Eq.26 

has infinite solution when 𝑚𝑛 <  𝑟2 + 𝑚𝑟 . We note that the 
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innovations correlations approach allows to enforce the 

positive semi-definiteness when solving for 𝑄, 𝑆and 𝑅 from 

Eq.26. 

IV. NUMERICAL EXPERIMENT: FIVE-DOF SPRING MASS 

SYSTEM 

In this numerical experiment we use the five-DOF spring mass 

system depicted in Fig.1 in order to examine the innovations 

correlations approach for the estimation of spatial distribution 

of process noise and noise covariance matrices. We assume 

that true stiffness and mass values of the spring-mass system 

are given in consistent units as𝑘1, 𝑘3, 𝑘5, 𝑘7 = 100, 

𝑘2, 𝑘4, 𝑘6 = 120 and 𝑚𝑖 = 0.05, respectively. The un-damped 

frequencies of the system are depicted in Table I. We obtain 

results for output sensors at the third masses, which are 

recording velocity data at 100Hz sampling.  

 

Case I: (𝑄 𝑎𝑛𝑑 𝑅 𝑎𝑟𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛, 𝐵 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛) 

The unmeasured disturbances are acting on the masses #2 and 

#4. The measurement noise is prescribed to have a root-mean-

square (RMS) equal to approximately 10% of the RMS of the 

response measured (R=0.090). Unmeasured disturbances and 

measurement noise are assumed to be mutually uncorrelated, 

with the covariance matrices, 

 

𝑄 =  
15 0
0 30

    𝑅 = 0.090   𝑆 = 0 

 

The arbitrary filter gain 𝐾0, that is chosen such that 

eigenvalues of the matrix 𝐴 − 𝐾0𝐶  are assumed to have the 

same phase as those of 𝐴 but with a 20% smaller radius. 80 

lags of correlation functions of innovations process is taken 

into consideration and the sample innovation correlations 

functions are calculated using 200 seconds of data. 100 

simulations are carried out and the disturbance covariance 

matrices are calculated from innovations correlations approach 

based on the assumption that the distribution of the 

unmeasured disturbances, namely input to state matrix  𝐵  is 

known. The process noise covariance estimates 

 𝑄 11 , 𝑎𝑛𝑑 𝑄 22  obtained from the innovations correlations 

approach are presented in Fig.2.  The mean value ofthe 

process noise covariance and measurement matrices obtained 

from 100 simulations are 

 

𝑄 =  
14.82 0

0 30.14
 𝑅 = 0.084    

 

Case II:(𝑄, 𝑅 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛) 

The unmeasured disturbances are acting on the masses #2 and 

#4, however, it’s assumed that the locations of the 

disturbancesare unknown.In this case, as the distribution of 

process noise is unknown the input to state matrix is used as 

identity (I5x5). 

 

𝑄 =

 
 
 
 
 
0 0 0 0 0
0 15 0 0 0
0 0 0 0 0
0 0 0 30 0
0 0 0 0 0 

 
 
 
 

  𝑅 = 0.090   𝑆 = 0 

 

The mean value of the process and measurementnoise 

covariance matrices obtained from 100 simulations are 

 

𝑄 =

 
 
 
 
 
0.23 0 0 0 0

0 14.73 0 0 0
0 0 0.02 0 0
0 0 0 29.74 0
0 0 0 0 0.16 

 
 
 
 

𝑅 = 0.085    

 

 

As seen in Fig.2. an identity of input to state matrix (B) lead to 

additional unknowns in the process noise covariance matrix 

𝑄  𝑄 11 , 𝑄 22 , 𝑄 33 , 𝑄 44 , 𝑄 55 . However, the large diagonal 

elements corresponding to the masses #2 and #4 show that the 

process noise source are located at these positions.  

V. CONCLUSIONS 

In this paper innovations correlation approach based on 

Kalman Filter for estimation of noise covariance matrices is 

described. The classical innovations correlationsmethod to 

estimate the noise covariance matrices from output 

measurements is reviewed. This method produces a linear 

system of equations, based on innovations correlation function 

which are calculated from measurements. The method 

assumes that the system is subjected to unmeasured Gaussian 

stationary process and measurement noise, which are mutually 

correlated and the system is linear time invariant. The 

numerical examinations showed that when the duration is 300 

times the fundamental period the mean of 100 simulations 

proved in good agreement of estimates with the noise 

covariance matrices. Numerical results suggest that the 

method can be effectively used for source localization of 

process noiseas well as estimation of noise covariance 

matrices. 

APPENDIX 

Fig. 1. Five-DOF spring mass system, 𝑚𝑖 = 0.05, 𝑘1 , 𝑘3, 𝑘5 , 𝑘7 =
100,𝑘2 , 𝑘4 , 𝑘6 = 120 (inconsistent units). Damping is 2% in all 

modes. 

Fig. 2. Process Noiseand Measurement Noise Covariance 

Estimates for 100 Simulations 

Table I: The un-damped frequencies of the spring mass 

system. 
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APPENDIX 

 
 

Fig. 1.Five-DOF spring mass system, 𝑚𝑖 = 0.05, 𝑘1 , 𝑘3 , 𝑘5, 𝑘7 = 100,𝑘2 , 𝑘4 , 𝑘6 = 120 (inconsistent units). Damping is 2% in all modes. 
 

 

 

 
Fig. 2.Process Noiseand Measurement Noise Covariance Estimates for 100 Simulations 

 

 

 

Table I: The un-damped frequencies of the spring mass system. 
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1 2.666 

2 7.208 

3 13.306 

4 14.745 

5 16.304 


