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Abstract  
De Sitter space is a non-flat Lorentzian space form with positive constant curvature which 

plays an important role in the theory of relativity. In this paper, we define the notions of 

timelike rectifying curve and timelike conical surface in De Sitter 3-space as Lorentzian 

viewpoint. Moreover, we give some nice characterizations and results of a timelike rectifying 

curves with respect to curve-hypersurface frame in De Sitter 3-space which is a three 

dimensional pseudo-sphere in Minkowski 4-space. 
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1. Introduction          

In Euclidean 3-space 3R , let 3:x I R R →  be a unit speed regular curve with Frenet-Serret apparatus 

 , , , ,T N B    where nonzero curvature 𝜅 and torsion 𝜏 of the curve. At each point of the curve, the planes 

spanned by  ,T N ,  ,T B  and  ,N B  are known as the osculating plane, the rectifying plane, and the normal 

plane, respectively. In 3R , it is well-known that a curve lies in a plane if its position vector lies in its osculating 

plane at each point; and it lies on a sphere if its position vector lies in its normal plane at each point.  In view of 

these basic facts, in 3R , the notion of rectifying curve  which is a space curve whose position vector always lie 

in its rectifying plane, is firstly introduced by Bang-Yen Chen [1]. Thus, the position vector ( )x s  of a rectifying 

curve satisfies the equation 

1 2( ) ( ) ( ) ( ) ( )x s p c s T s c s B s− = +    (1) 

such that the fixed point  for some differentiable functions 1c  and 2c  in arc length parameter s [1,2]. It is known 

that a non-planar (twisted) curve in 3R  is a generalized helix if and only if the ratio /   is a nonzero constant 

on the curve. However, Chen shows that for any given regular curve in 3R  is satisfied 1 2/ c s c  = +  for some 

constants 1 0c   and 2c  in arc length parameter s iff the curve is congruent to a rectifying curve [1]. Centrode is 

the path of the instantaneous center of rotation. It plays an important role in mechanics and kinematics. In 3R , 

Darboux vector of a regular curve with a nonzero curvature is defined by D T B = + . However, the position 

vector of a rectifying curve is always in the direction of the Darboux vector which corresponds the instantaneous 

axis of rotation. Therefore, there is a hard relationship between the centrode and the rectifying curve. In this 

sense, Chen and Dillen give a relationship between rectifying curves and centrodes of space curves in [3]. They 

study also rectifying curve as extremal curves and give a classification of curves with nonzero constant curvature 

and linear torsion in terms of spiral type rectifying curves in [3]. After Chen's articles [1,3], rectifying curves and 

their characterizations are studied by many authors in different ambient spaces from various viewpoints. In this 

concept, some remarkable papers are [4,5,6-8]. Moreover, the eq. (1) means that "the straight line that passing 

through ( )x s  and the fixed point p, is orthogonal to the principal normal line that starting at point ( )x s  with the 

direction of ( )N s ". In this sense, Lucas and Yagües give the concept of rectifying curves in three dimensional 

spherical and hyperbolic space from the viewpoint of Riemannian Space Forms by using this idea in [9,10]. 

 

It is well known that De Sitter space is a non-flat Lorentzian space form with positive constant curvature. Also, 

De Sitter 3-space is called a three-dimensional pseudo-sphere in Minkowski 4-space as a semi-Riemannian 
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hypersurface. Especially, De Sitter space is one of the vacuum solutions of the Einstein equations, so it plays an 

important role in the theory of relativity. 

In this study, as inspiration from [9,10], we introduce the notions of timelike rectifying curve with respect to 

curve-hypersurface frame and timelike conical surface in De Sitter 3-space as non-flat Lorentzian space form 

viewpoint. After, we give relationship between timelike rectifying curve and geodesic of timelike conical surface 

in De Sitter 3-space. Moreover, we obtain a nice characterization with respect to the ratio of geodesic torsion and 

geodesic curvature for timelike rectifying curves in De Sitter 3-space. However, we have a characterization which 

determines all timelike rectifying curve in De Sitter 3-space. Finally, in viewpoint of extremal curves, we give a 

corollary that a timelike curve in  De Sitter 3-space, which has non-zero constant geodesic curvature and linear 

geodesic torsion, congruent to a timelike rectifying curve, which is generated by a spiral type unit speed timelike 

curve with certain geodesic curvature in 2-dimensional pseudo-sphere, and vice versa. 

2. Preliminary 

We give the fundamental notions for motivation to differential geometry of timelike curves and timelike surface 

in De Sitter 3-space and Minkowski 4-space. For more detail and background, see [11-14].  

 

Let 4R  be a 4-dimensional real vector space and a scalar product in 4R  be defined by 

1 1 2 2 3 3 4 4, ,x y x y x y x y x y  = − + + +   

for any vectors 1 2 3 4 1

4

2 3 4( , , , ), ( , , , )x x x x x y y y y y R= =  . Then the pair ( )4 , ,R  is called Minkowski 4-space 

(four-dimensional semi Euclidean space with index one), which is denoted by 
4

1R . We say that a nonzero vector 
4

1x R  is called spacelike, timelike and null if 0,x x   , , 0x x    and , 0x x  = , respectively. The norm of 

4

1x R  is defined by ,x x x=   . The signature of a vector x  is defined by sign( ) 1x = , 0 or 1−  while x  is 

spacelike, null or timelike, respectively. 

 

The De Sitter 3-space is defined by 

43

1 1{ | , 1},S x R x x=    =  

which is a three-dimensional unit pseudo-sphere (or a non-flat Lorentzian space form with positive constant 

curvature one) in 
4

1R . 

 

The wedge product of any vectors 1 2 3 4( , , , )x x x x x= , 1 2 3 4( , , , )y y y y y= , 4

4

1 2 3 1( , , , )z z z z z R=   is given by 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

,
x x x x

x y z
y y y y

z z z z

−

  =

e e e e

 

where 1 2 3 4{ , , , }e e e e  is the standard pseudo-orthonormal basis of 
4

1R . Also, it is clear that 

, det( , , , ),w x y z w x y z    =                   (2) 

for any 
4

1w R . Hence, x y z   is pseudo-orthogonal to each of the vectors ,x y  and z . In the tangent space 

3

1qT S  at any point 
3

1q S , we can give a cross product is denoted by " "  which is induced from the wedge product 

" "  in 
4

1R  Let ,u v  be tangent vectors (as considered column vectors of 
4

1R ) in 43

11qST R . Then the cross product 

u v  in 3

1qT S  is given by 

.u v q u v =                     (3) 
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By using (2) and (3), it is easy to see that 

, det( , , , ),w u v q u v w = −                   (4) 

for every 43

1 1qSw T R  . Hence, we see that the orientations of a basis  , ,u v w  in 3

1qT S  and a basis  , , ,q u v w  

in 
4

1R  are opposite.  

Let ( )M U=  be regular surface which is identified by a immersion 
2 3 4

1 1:U R S R  →   where U is open 

subset of 2R . Then, M is called spacelike or timelike surface in 
3

1S , if the tangent plane pT M  at any point p M  

is a spacelike subspace (it contains only spacelike vectors) or timelike subspace (i.e. it contains timelike, spacelike 

or null vectors) in 
4

1R , respectively. 

Let ( )M U=  be non-degenerate (spacelike or timelike) surface in 
3

1S , and   be unit normal vector field of M 

such that , 1  = =  . Then, for any differentiable vector fields 
3

1, ( ) ( )X Y M S X X , Gauss formulas of M 

are given by 

0 , ,X XY Y X Y = −                   (5) 

( ), ,X XY Y S X Y  = +                  (6) 

and the Weingarten map (or shape operator) is the map : ( ) ( )S M M→X X  defined by 

( ) XS X = −                    (7) 

where Levi-Civita connections of 
4

1R , 
3

1S  and M are denoted by 
0 ,   and  , respectively. 

 

Remark 2.1. Let   be spacelike (or timelike) three dimensional hyperplane that passing through the origin in 
4

1R , then the surface 
3

1S  is congruent to unit sphere 
2S  ( or unit pseudo-sphere 

2

1S  ), which is a  spacelike 

(or timelike) totally geodesic surface in 
3

1S . Moreover, let   be spacelike (or timelike) plane that passing through 

the origin in 
4

1R , then the curve 
3

1S  is congruent to unit circle 
1S  ( or part of unit pseudo-circle 

1

1S  ), which 

is a spacelike (or timelike) geodesic in 
3

1S . 

Let p and q be distinct non-antipodal 
3

1S , and 
3

1S =   be a geodesic that passing through the points p and q 

in 
3

1S , where  ,Sp p q = . Then, for a vector 
4

1,q p q p R = −  , the parametrization of ( )t =  is given by 

(i)  If , 1p q   (i.e. the angle ( )( , ) arccosh ,p q p q = ), then   is a timelike plane and 

( ) cosh( ) sinh( )t t p t





= +  (i.e a part of pseudo-circle) such that sign( ) 1 = − , 

(ii)  If 1 , 1p q−    (i.e. the angle ( )( , ) arccos ,p q p q = ), then   is a spacelike plane and 

( ) cos( ) sin( )t t p t





= +  (i.e a circle) such that sign( ) 1 = , 

(iii)  If , 1p q = , then   is a null plane and ( )t p t = +  (i.e a straight line) such that sign( ) 0 = , 

(iv)  If , 1p q  − , then there exists no geodesic joining p and q.  

 

Now, we consider the differential geometry of timelike regular curves in 
3

1S . Let 
3

1: I S →  be a regular curve 

where I  is an open interval in R . Then, the Gauss formula with respect to   is given by 

0 , ,X X X X    
   = −                  (8) 
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for any differentiable vector field 
3

1( ( )) ( )I SX  X X  along the curve  . We say that the regular curve   is 

spacelike, null or timelike if ( ) /t d dt  =  is a spacelike vector, a null vector or a timelike vector, respectively, 

for any t I . The regular curve   is said to be a non-null curve if   is a spacelike or a timelike curve. If   is 

a non-null curve,   can be expressed with an arc length parametrization ( )s s t= . 

 

Now, we assume that ( )s =  is a unit speed timelike curve in 
3

1S . Then the timelike unit tangent vector of   

is given by ( ) ( )T s s = . We assume that  the assumption ( ) ( ) 0T s s  −  , then the spacelike principal normal 

vector of   is given by 
( )

( )

( )
( )

( )

T s

T s

T s
N s

T s












=


, which is pseudo-orthogonal to ( )s  and ( )T s . Also, the 

spacelike binormal vector field of   is given by ( ) ( ) ( )B s T s N s  =   which is pseudo-orthogonal ( ), ( )s T s  

and ( )N s . Thus,  ( ), ( ), ( )T s N s B s    is called (intrinsic) Frenet frame of non-geodesic timelike curve   in 

3

( ) 1sT S
 along the curve  . Also, from the equations (3) and (4), we see that ( ) ( ) ( ) ( )B s s T s N s  =    and so 

we have pseudo-orthonormal frame { ( ), ( ), ( ), ( )}s T s N s B s    of 
4

1R  along  . The frame is also called the 

curve- hypersurface frame of unit speed timelike curve   on 
3

1S . By using Gauss formula (8), under the 

assumptions ( ) ( ) 0T s s  −  , the Frenet equations of   in 
3

1S  is given by 

, , ,T g T g g T gT N N T B B N
            =  = +  =−              (9) 

where the geodesic curvature g  and the geodesic torsion g  of   is given by 

( )( ) ( ) ( ) ( ) ,g T ss T s T s s
   =  = −               (10) 

( ) 2

det( ( ), ( ), ( ), ( ))
( ) ( ), ( )

( ( ))
g T s

g

s s s s
s N s B s

s  

   




  
=  = .           (11) 

By using Gauss formula (8), Frenet equations of   is also given by 

0 0 0, , ,T g T g g T gT N N T B B N
             = +  = +  =− .           (12) 

with respect to Levi-Civita connection of 
4

1R . 

A non-degenerate curve in 
3

1S  is a geodesic iff its geodesic curvature g  is zero at all points. By using (8) and 

(10), we see that the assumption ( ) ( ) 0T s s  −   (or equivalently ( ), ( ) 1s s    ) corresponds to the curve 

  is not a geodesic (i.e. 0g  ). A non-degenerate curve in 
3

1S  is a planar curve iff it lies in a non-degenerate 

two-dimensional totally geodesic surface (i.e. geodesic torsion g  is zero at all point) in 
3

1S . By Remark 2.1, we 

say that timelike planar curve in 
3

1S , lies fully in two-dimensional unit pseudo-sphere 
2 3

1 1S S . 

Remark 2.2. Let ( )M U=  be non-degenerate surface in 
3

1S  with the unit normal vector field  , and T  be 

the unit tangent vector field of a non-degenerate unit speed curve   which lies on the surface M. Then,   is a 

geodesic of M iff 0T T
  = . By using (6), we conclude that T T

   is parallel to  . Namely, T T
   is orthogonal 

to the surface M. 

 

Let 
3

1p S  and 3

1pw T S . The exponential map 3 3

1 1exp :p pS ST →  at 
3

1p S  is defined by exp ( ) (1)p ww =  where 

3

1:[0, )w S  →  is the constant speed geodesic starting from p with the initial velocity (0)w w = . Also, the 

property exp ( ) (1) ( )p tw wtw t = =  is satisfied for any t R . In that case, for any point ( )s  in the timelike 

curve  , the spacelike principal normal geodesic in 
3

1S  starting at ( )s  is defined by the geodesic curve 
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( )exp ( ( )) cos( ) ( ) sin( ) ( ),s tN s u s u N s  = +   

for every t R .  

Let's remind an important property of the parallel transport. A vector field which is pseudo-orthogonal to tangent 

vector of a geodesic ( ) exp ( )w pt tw =  in 
3

1S , is invariant under parallel transport P  along the geodesic. Thus, 

the parallel transport P  from ( )s  to ( )exp ( ( ))s tN s   along the spacelike principal normal geodesic satisfies the 

following statements: 

( ( )) sin( ) ( ) cos( ) ( ),P N s u s u N s = − +  

and 

( ( )) ( ),  ( ( )) ( ).P T s T s P B s B s   = =  

 

 

3. Timelike Rectifying Curves in de Sitter 3-Space 

In this section, we give the notions of timelike rectifying curve and timelike conical surface 
3

1S . After, we obtain 

some characterizations for timelike rectifying curves in 
3

1S . 

Definition 3.1. Let ( )s =  be a timelike non-geodesic unit speed curve in 
3

1S  and p be a fixed point in 
3

1S  such 

that   Im( )p   . Then   is called a timelike rectifying curve in 
3

1S  iff the geodesics in 
3

1S  that passing through 

p and ( )s  are pseudo-orthogonal to the spacelike principal normal geodesics at ( )s  for every s. 

From the Definition 3.1, the geodesics that passing through p and ( )s  are tangent to the timelike rectifying 

planes  ( )span ( ), ( )T s B s   of   in 43

1( ) 1sT S R  . Namely,  ( )( ) span ( ), ( )s

d
t T s B s

dt
   , and so it is easily 

seen that rectifying condition is given by  

( ), ( ) 0, ,s

d
t N s t R

dt
 =    

where ( )s t  is a geodesic that passing through p and ( )s  such that 

( ) exp ( ( )) cos( ) sin( ) ( ), .s pt t s t p t s t R  = = +    

Remark 3.1. The principal normal vector field of any non-degenerate planar curve in 
3

1S  is tangent to 
2 3

1 1S S  

or 1

2 3S S  since its geodesic torsion is zero at all points. So, the tangent vector of geodesic connecting the planar 

curve with any point which is not element to the curve's image is orthogonal to principal normal vector field of 

the planar curve (see [9]). Hence, we say that every non-degenerate planar curve in 
3

1S  is a rectifying curve. From 

now on, we will assume that the curve   is a timelike non-geodesic (i.e. 0g  ) and non-planar curve (i.e. 

0g  ) in 
3

1S . 

Definition 3.2. Let ( )M U=  be a timelike regular surface in 
3

1S  via timelike immersion 
3
1: ( )U U S →   

such that open subset 2U R . Then M is called a timelike conical surface in 
3

1S  if and only if M is constructed 

by the union of all the geodesics that pass through a fixed point (the apex) 
3

1p S  and any point of some regular 

timelike curve (the directrix) that does not contain the apex. Also, each of those geodesics is called a generatrix 

of the surface. 

Let the fixed point 
3

1p S  be apex of M and   be the directrix of M, which is a unit speed timelike curve in 
2 3 4

1 1 1pS T S R  . Then the parametrization of timelike conical surface M is given by  
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( , ) exp ( ( )) cos( ) sin( ) ( ), 0 .pu v v u v p v u v  = = +              (13) 

 

Let P  be the parallel transport along the geodesic ( ) exp ( ( )) ( , )u pt t u u t = =   that passing through p and ( )u

. Also, it is known that a vector field which is pseudo-orthogonal to ( )u

d
t

dt
 , is invariant under parallel transport 

P  along the geodesic 
u . Then the timelike tangent plane of M is spanned by the timelike vectors ( , )u u v  and 

spacelike vector ( , )v u v  is given by 

( , ) sin( ) ( ) sin( ) ( ( ))u u v v u v P u   = =               (14) 

( , ) -sin( ) cos( ) ( ) ( ( )).v u v v p v u P u  = + =              (15) 

Coefficients of the first fundamental form of M is  

2, sin ( ), , 0, , 1.u u u v v vE v F G=   = − =   = =   =            (16) 

The spacelike unit normal vector field ( , )u v  of M is given by 

( )
( )

( ) ( )( ) ( )
2

sin
( , ) , ( ) ( ) ( ) ( ),u v

u v

v
u v u v P u P u P N u N u

EG F
   

 
= =  = − = −

  −
        (17) 

where ( ) ( ) ( )N u u u   =   is a spacelike unit vector field tangent to 2 3

1 1pS T S . 

 

Let : ( ) ( )S M M→X X  be the Weingarten map of M, and det( , , , )p    =  be the geodesic curvature of the 

unit speed timelike curve   with respect to Sabban frame (curve-surface frame)  , ,T N T    = =   in 

2 3

1 1pS T S  such that  

,

.

T

T

T N

N T





  

  





 =

 =

                (18) 

Then, we obtain following equations  

( )

( )
( ) ( ) ,

si )
 

n(uu T u u

u
S N u

v






 = − = =    

0 ( ) 0.
v vvS    =− =− =   

by using (7), (14), (17) and (18). Thus, the Gaussian curvature K and the mean curvature H of M is  

( )1
det( ) 1, ( )

2 2sin( )
e

u
K K S H tr S

v


= + = = =   

where eK  is extrinsic Gaussian curvature of M. Moreover, we obtain the following equations 

sin( )cos( ) ( )sin( ) ,
u u vv v u v   =  −              (19) 

cot( ) ,
u vv u uv   =  =                 (20) 

0,
v v  =                  (21) 

by using (5), (14) and (15). 

 

Now, we give the relationship between timelike rectifying curves and timelike conical surface in 
3

1S .  
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Theorem 3.1. Let ( )s =  be a unit speed timelike curve in 
3

1S , and 
3

1p S  be a fixed point such that Im( )p 

. Then,   is a timelike rectifying curve if and only if   is a geodesic of the timelike conical surface M with apex 

p and timelike director curve   which is a unit speed timelike  curve in 2-dimensional pseudo-sphere 2 3

1 1pS T S

. 

Proof. Let ( )s =  be a unit speed timelike rectifying curve in 
3

1S , and 
3

1p S  be a fixed point such that 

Im( )p  . Then, the parametrization of   can be given by ( ) exp ( ( ) ( ( )))ps v s u s =  for some functions ( )u s  

and ( )v s  such that a unit speed timelike curve ( )u =  in 2 3

1 1pS T S . By using (13), ( ) ( ( ), ( ))s u s v s =  is a 

timelike curve on timelike conical surface M which is determined by the apex p and the directrix  . Hence,  the 

spacelike geodesic that passing through p and ( )s  is given by ( ) ( ( ), )s t u s t = , and also we get the rectifying 

condition 

( ( )), ( ) 0,
s

T v s N s  =                 (22) 

where 
s

T  is the spacelike unit tangent vector of s . So, the timelike tangent plane at point ( )s  of M consists 

of tangent vectors to the generatrix including the point ( )s  of M. Namely, ( ) { ( ( )), ( )}
ssT M T v s T s  = . Then, 

by using (22), we obtain that ( )N s  is orthogonal to M. Thus, 
T T
   is parallel unit normal vector field of M by 

using (9), and so   is a geodesic of M  by Remark 2.2. On the other hand, let   be a unit speed timelike geodesic 

of the timelike conical surface M with apex p, and its parametrization be given by ( ) ( ( ), ( ))s u s v s =  with arc 

length parameter s. Then the spacelike principal normal vector ( )N s  of   is orthogonal to timelike surface M. 

From here, ( )N s  is also orthogonal to s , which is the unit speed spacelike generatrix that passing through  

(0)sp =  and ( ) ( ( ))ss v s = . Thus, we get that the rectifying condition (22), and so   is a timelike rectifying 

curve. 

Now, we give a characterization with respect to the ratio of geodesic torsion and geodesic curvature for timelike 

rectifying curves in 
3

1S . 

Let 
3
1: , ( ) ( ( ), ( ))I M S s u s v s →  =  be a unit speed timelike curve in a timelike conical surface  which is 

given by the parametrization (13) such that some differentiable functions ( )u u s=  and ( )v v s= . By using (14) 

and (15), we obtain that  

2 2 21 , ( ) sin ( ) ( ) .T T u v v 
 − = = − +               (23) 

Moreover, from (5), we write 0

T TT T
   = −  for ( )T M X . Thus, we have the following equation 

2 2( 2 cot( )) ( ( ) sin( )cos( )) ( ) ( )sin( ) ,T u vT u u v v v u v v u u v
         = +  + +  −          (24) 

by using (16), (19), (20) and (21). 

 

Let   be a geodesic in timelike conical surface M (namely, a timelike rectifying curve in 
3

1S ). Then, it is easily 

seen that spacelike principal normal N  of   is parallel to spacelike unit normal vector field   of M from 

Theorem 3.1, and so we obtain the following differential equation system 

2 cot( ) 0,u u v v  + =                 (25) 

2( ) sin( )cos( ) 0,v u v v v  + =                (26) 

2( ) ( )sin( ) 0.gu u v − =                 (27) 

with respect to functions ( )u s  and ( )v s . 
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If we take ( ) cos( ( ))f s v s= , then we get the following differential equation 

( ) ( ) 0,f s f s− =  

by using (23) and (26). Therefore, the solution is given by 

1 0 2 0( ) sinh( ) cosh( ),f s s s s s = + + +               (28) 

and so 

1 0 2 0( ) arccos( sinh( ) cosh( )),v s s s s s = + + +              (29) 

where some constants 
1 2,   and 

0s . Since ( )N s  is parallel to ( ( ), ( ))u s v s , In without loss of generality, we 

can write that   

( ) ( ) ( ( ), ( )) ( ) ( ( ), ( )),u vB s s u s v s s u s v s  =  +   

where 
,

sin( )

uB v

E v


  

= =  and 
,

sin( )vB
u v

G


  

= = − . After straightforward calculation, we get that 

( ) ( ) .
u uT u v u vB u v u

       
     =  +  +   + +    

By using (9), (19) and (20), we obtain that the geodesic torsion which is given by 

( ).g u v u  =  

From the last equation and (27), we get that  

.
sin( )

g

g

v

u v






=


                 (30) 

Now, by using (25), we obtain  

2sin ( ) 2 sin( )cos( ) 0,u v u v v v  + =  

and after changing of variable, we have 

2sin ( ) ,u v c =                  (31) 

for a nonzero constant c. If we consider together the equations (23), (28), (29) and (31), then we get the relation 

2 2 2

1 2 1,c  = − +                 (32) 

for the constants 1 2,   and c . Finally, after required calculations by using (29), (30) and (31), we obtain that  

1 0 2 0( ) sinh( ) cosh( ),
g

g

s s s s s


 


= + + +              (33) 

for some constants 2
1

c




−
= , 1

2
c




−
=   and 0s  such that 

2 2
2 1 1 −  . 

 

On the other hand, let ( )s =  be a unit speed timelike  curve in 
3
1S  whose geodesic curvatures  satisfying the 

equation (33) for some constants 1  and 2  such that 
2 2

2 1 1 −  . Let c  be a nonzero constant such that 

2

2 2

1 2

1
,

1
c

 
=

− +
 

and define two constants 1 2c = −  and 2 1c = − . Let the function ( )v s  be defined by (29) and the function 

( )u s  be a solution of (31), which is given by 
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2
1 1 2 1

0

1
( ) tanh tanh( ) .u s s s

c c

  −
  +

= + +   
  

 

Now, let M be the timelike conical surface with apex 
3
1Im( )p S   and timelike director curve   which is a 

unit speed timelike curve in 2 3
1 1pS T S  such that geodesic curvature   of   is given by (27). Then, we consider 

a unit speed timelike curve ( ) exp ( ( ) ( ( ))) ( ( ), ( ))ps v s u s u s v s = =   in M, which is given by the parametrization 

(13) for some differentiable functions ( )u u s= and ( )v v s= . It is easily seen that   is a geodesic of M, whose 

geodesic curvatures are the same with geodesic curvatures of the curve  , and so   is congruent to a geodesic 

in a timelike conical surface. Thus, we show that the equation (33) determines the timelike curves in 
3
1S  that are 

geodesics in a timelike conical surface whose parametrization is ( ( ), ( ))u s v s . As a result, we say that   is 

congruent to a timelike rectifying curve in 
3
1S  by Theorem 3.1. 

Consequently, we obtain the following characterization for timelike rectifying curves in 
3
1S  with respect to the 

ratio of the geodesic curvatures. 

Theorem 3.2.  Let ( )s =  be a unit speed timelike curve in 
3

1S  with geodesic curvature g  and geodesic 

torsion g . Then   is congruent to a timelike rectifying curve iff the ratio of geodesic torsion and geodesic 

curvature of the timelike curve is given by 

1 0 2 0( ) sinh( ) cosh( ),
g

g

s s s s s


 


= + + +  

for some constants 1 2,   and 0s  such that 
2 2

2 1 1 −  .  

 

Now, we give some characterizations for timelike rectifying curves in 
3

1S . 

 

Theorem 3.3. Let ( )s =  be a unit speed timelike curve in 
3

1S  and p be the fixed point in 
3

1S  such that 

Im( )p  . Then the following statements are equivalent: 

(i)    is a timelike rectifying curve. 

(ii)  p⊥
 is the component of p which is orthogonal to T  in  

3

1S  such that 

( ) ( )1 0 2 0, ( ) sinh cosh ,p T s n s s n s s = + + +              (34) 

2 2| | ,p n⊥ =                  (35) 

for some constants 1 2, ,n n n  and 0s , with 
2 2 2

1 2 1n n n− + = .  

(iii)  , ( ) 0.p N s =  

(iv)  , ( )p B s  =  for some constant  . 

(v)  ( ) ( )1 0 2 0, ( ) sinh coshp s m s s m s s = + + +  for some constants 1 2,m m  and 0s  such that 
2 2

2 1 1m m−  . 

(vi)  Distance function in 
3

1S  between p and ( )s , ( ) ( , ( ))s d p s = , satisfies 

( ) ( )1 0 2 0cos( ( )) sinh cosh ,s k s s k s s = + + +  

for some constants 1 2,k k  and 0s  such that 
2 2

2 1 1k k−  . 

 

Proof. Firstly, let the statement (i) is valid. From Teorem 3.1, we say that 
3

1: , ( ) ( ( ), ( ))I M s u s v s →  =  

be a geodesic in timelike conical surface M which is given by the parametrization (13) such that some 
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differentiable functions ( )u u s=  and ( )v v s=  which are satisfying (25)-(27). Then, we obtain 

, ( ) cos( ( ))p s v s =  and we get statement (v) by using (29) and (32). 

 

Now, let the statement (v) be valid. By using (12) and take into consideration hypothesis, then we obtain  

0

( ) 1 0 2 0( ) , ( ) , ( ) , ( ) sinh( ) cosh( ) , ( ) .g T ss p N s p s p T s m s s m s s p s
   + =  = + + + =  

From this equation, it must be , ( ) 0p N s = , since 0g  . Thus, we obtain the statement (iii). 

 

Now, let the statement (iii) be valid. Let ( )s t  be the spacelike geodesic that passing through (0)sp =  and 

( ) ( ( ))ss v s =  for some function ( )v s . From definition of spacelike geodesic in 
3
1S , we can write 

( ) ( ) ( ) ( ),s t f t p g t s  = +  

for some differentiable functions ( )f t  and ( )g t  which satisfy the condition 
2 2( ) ( ) 1f t g t+ = . Taking into 

account that hypothesis and , ( ) 0N s =  by curve-hypersurface frame of  , then we obtain the rectifying 

condition 

( ( )), ( ) 0.s v s N s  =  

Namely, the statement (i) is obtained. Thus, we say that statements (i), (iii) and (v) are equivalent. 

 

Now, let us show that the statements (iii) and (iv) are equivalent. We suppose that the statement (iii) is valid. 

After using (12) and hypothesis, we get  

, ( ) ( ) , ( ) 0.g

d
p B s s p N s

ds
 = − =               (36) 

then the statement (iv) is obtained. Conversely, let the statement (iv) is valid. if we take into consideration that 

hypothesis and 0g  , it has easily seen that by using (36). Hence, we see that (iii) (iv) . 

Now, let us show that the statements (v) and (vi) are equivalent. Since the position vector of ( )s  and the point 

3
1p S  are spacelike, in without lost of generality, we may write , ( ) cos( ( ))p s s =  for some function ( )s . 

Thus, it is easily seen that (v) (vi) . 

 

Finally, let us show that the statements (i) and (ii) are equivalent. Now, let the statement (i) be valid. In this case, 

we say that the statements (iii), (iv) and (v) are hold from the previous results. If we take derivative in (v), we get 

1 0 2 0, ( ) cosh( ) sinh( ),p T s m s s m s s = + + +  

and so the equation (34) is obtained. Moreover, we have 

2 22 2| | , ,p p N p B  ⊥ = + =  

where  ,p Sp N B 
⊥  by using the statements (iii) and (iv). Also, taking into account that T  is timelike, it is 

easily seen that 

2 22 2 2 2
2 11 , , , , ,p p p p T p B m m  = = − + = − +  

for some constants 1 2 2 1,m n m n= =  and n = . Thus the equation (35) is obtained. Namely, we see that (i) (ii)

. Conversely, let the statement (ii) is valid. After integrating the equation (34), we have 

( ) ( )1 0 2 0 0, ( ) cosh sinh ,p s n s s n s s c = + + + +             (37) 

for some constant 0c . Moreover, we have 
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2 22 2 2

1 2 , , 1 .n n p p T n− = − = −               (38) 

by using the equation (35). By considering together the equations (34), (37) and (38), then it is easily seen that 

0 0c = . Hence, the statement (v) is obtained and so (v) (i) . Consequently, we show that (i) (ii) .The proof 

is complete. 

 

Now, we give the following theorem which characterizes all timelike rectifying curve in 
3
1S . 

 

Theorem 3.4. Let   be a timelike non-planar curve in 
3
1S . Then,   is a timelike rectifying curve if and only if, 

up to reparametrization, it is given by 

( ) exp ( ( ) ( )) cos( ( )) sin( ( )) ( ),pt t t t p t t     = = +             (39) 

where p is the fixed point in 
3
1S  such that Im( )p  , ( )t =  is a unit speed timelike curve in 2 3

1 1pS T S , and 

0( ) arctan( sech( ))t a t t = +  for some constants 0a   and 0t .  

 

Proof. Let 
3
1p S  be a fixed point, ( )t =  be a positive function and ( )t =  be an unit speed timelike curve 

in 2 3
1 1pS T S . If we take as ( ) exp ( ( ) ( ))pt t t  =  where Im( )p  , then the timelike unit tangent vector field 

T  of   is  

sin( ) cos( ) sin( )
,T p

     
 

   

  −
= = + +

   
            (40) 

where 

sin( ) cos( ) sin( ) ,p          = − + +  

and 

2 2 2sin ( ) ( ) 0.   = −                 (41) 

Moreover, let ( )s s t=  be the arc length parameter of   such that ( ) ( )t s t = . Then we have 

( ) ( )( )g

T
t N s

 



 

− =   
 by using (12). It means that N  is parallel to the spacelike vector field 

T 



 

−   
. 

 

However, let  , ,N    be Sabban frame (curve-surface frame) of the unit speed timelike curve   in 2 3
1 1pS T S  

where geodesic curvature of   is defined by ( )det , , , p    = . Then, by using (18) and Gauss formula, we 

have 

N    = +                  (42) 

where spacelike principal normal N   =   is tangent to 
2

1S , but normal to p and  . We get 

1 1
, sin( ) cos( ).p T


  

  


 
 − = +     
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by using (40) and (42). According to the Theorem 3.3,   is a timelike rectifying curve in 
3
1S  if and only if 

, 0p N = . Thus, it must be 
1

sin( ) cos( ) 0


 
 

 
+ =    

. After basic calculations, we reach to the 

differential equation 

2 2sin( ) 2cos( )( ) cos( )sin ( ) 0,      − + =              (43) 

since N  is parallel to 
1

T 




 
−   

. Now, we consider a differentiable function ( )h h t=  such that 

( ) arctan( ( ))t h t =  for solving the equation (43). In that case, we reach to the equation 

2 2

2 3/2

1
( 2( ) ) 0.

(1 )
hh h h

h
 − + =

+
 

The nontrivial solutions of this differential equation are given by the function 0( ) sech( )h t a t t= +  for some 

constants 0a   and 0t . Thus, we have that ( ) exp ( ( ) ( ))pt t t  =  is a timelike rectifying curve in 
3
1S  iff 

1
0( ) tan ( sech( ))t a t t −= +  for some constants 0a   and 0t . 

 

Chen and Dillen give some characterizations for rectifying curves with the viewpoint of extremal curves in 

Euclidean 3-space [3]. Riemannian viewpoint of this idea is introduced by Lucas and Yagües in Minkowski 

model of hyperbolic 3-space as Riemannian space form with negative constant curvature [10]. 

Now, we give some characterizations for Lorentzian version of timelike rectifying curves from the viewpoint of 

extremal curves in 
3
1S  which is Lorentzian space form with positive constant curvature one. 

 

Definition 3.3. Let   be a timelike curve in 
3
1S , is given by ( ) exp ( ( ) ( ))pt t t  =  where 

3
1p S , ( ) 0t   is an 

arbitrary function and ( )t  is a timelike curve lying in 2 3
1 1pS T S . Then   is called the timelike pseudo-spherical 

projection of  . 

 

The following characterization means that a timelike rectifying curve in 
3
1S  is actually an extremal curve which 

assumes the the minimum value of the function 

4 2

2sin ( )

g 




 at each point among the curves with the same timelike 

pseudo-spherical projection. 

 

Theorem 3.5. Let p be a fixed point in 
3
1S  and ( )t =  be a unit speed timelike curve with geodesic curvature 

  in 2 3
1 1pS T S . Then, for any nonzero function  ( )t , the geodesic curvature g  of a timelike regular curve 

  in 
3
1S  which is given by ( ) exp ( ( ) ( ))pt t t  = , and   satisfy the inequality 

4 2

2

2
,

sin ( )

g



 





                  (44) 

with the equality sign holding identically if and only if   is a timelike rectifying curve in 
3
1S . 

 

Proof. Let   be a nonzero function and   be a timelike regular curve in 
3
1S  which is given by 

( ) exp ( ( ) ( ))pt t t  = , where   is a unit speed timelike curve in 2 3
1 1pS T S . If we consider together the equation 
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(40) with definition the map exp p , and taking account that N  is a spacelike vector orthogonal to timelike 

subspace   span , ,p    , and so we find that  N  is orthogonal to both   and T . Then, we have 

cos( ) sin( )N N B     =  = +               (45) 

such that ( )t =  is a arbitrary function. By differentiating of (45) with respect to t, in addition to applying (12) 

and (42), we obtain 

( cos( )) ( )( sin( ) cos( ) )g gT N B               = + + − +            (46) 

where    satisfies the eq. (41). Since , 1   = −  and , 1T T  = − , we have 

2 2 2( cos( )) ( ) .g g        = − +               (47) 

Now, we will give the point p with respect to the curve-hypersurface frame  , , ,T N B    of  . By using (39), 

we get 

, cos( ),p  =                 (48) 

and after differentiating of (48), 

sin( )
,p T

 




= −


                (49) 

by using (40). Now, suppose that 

1 2 ( sin( ) cos( ) )T N B       = + − +   

such that 

1 2

cos( )
, 

g g

 

     
 

 

  +
= =  

by using (46). Since , 0p   =  and , 0p N = , we obtain linear equation system depending on ,p N  and 

,p B  by using (45) and (49) and so its solution is given by  

1

2

, sin( )sin( ),p N

 
 

 


=


               (50) 

1

2

, cos( )sin( ).p B

 
 

 


= −


              (51) 

From the equations (48)-(51), we get 

1 1

2 2

sin( )sin( ) cos( )sin( )sin( )
cos( ) .p T N B  

        
 

    

 
= − + −

  
 

Then,  

2 2

2 2 1

2

1 , cos ( ) sin ( ) 1p p


 
 

    
 = = + −          

 

and so it must be  
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2 2

1

2

1 1.


 

    
 − =          

 

Also, if we put 1  and 2  in this equaiton, we reach to the equation 

2
2 2

2 2

( )
( ) ( cos( )) .

( )
g g


     

 


  + =

 +
             (52) 

After putting (52) in (47), and also considering the equation (41), we get 

4 2 2

2

2

cos ( )

sin ( )

g



  





=                 (53) 

which implies inequality (44). It is clear, equality situation of (44), it must be sin( ) 0 = . Also, take into 

consideration the equation (45), we get N N = . It means that N  and N  are parallel. Then, by Theorem 3.1, 

  is a geodesic in timelike conical surface M which is given by the parametrization (13) and so it is a timelike 

rectifying curve. Therefore,   is a timelike rectifying curve in 
3
1S  iff equality situation of (44) is satisfied.  

 

Now, we show that a timelike curve in  De Sitter 3-space, which has non-zero constant geodesic curvature and 

linear geodesic torsion, congruent to a timelike rectifying curve, which is generated by a spiral type unit speed 

timelike curve with certain geodesic curvature in 2-dimensional pseudo-sphere, and vice versa. Namely, the 

following corollary is a construction method for timelike spiral type rectifying curves in 
3
1S . 

 

Corollary 3.1. A timelike regular curve   is given by ( ) exp ( ( ) ( ))ps s s  =  in 
3
1S  with nonzero constant 

geodesic curvature 0  and linear geodesic torsion 

( ) ( )1 0 2 0( ) sinh coshg s c s s c s s = + + +  

such that 
2 2 2

2 1 0 0c c − −   for some constants 1c , 2c  and 0s  iff   is congruent to a timelike rectifying curve 

which is generated by a unit speed timelike spiral type curve ( )t  in 2 3
1 1pS T S  with geodesic curvature 

2 2 3/2
0( ) (cosh ( ) )t b t t a

−= + +  for some constants 0, 0a b   and 0t . 

Proof. Let  exp ( )p =  be a timelike regular curve in 
3
1S  with nonzero constant geodesic curvature 0  and 

geodesic torsion 1 0 2 0( ) sinh( ) cosh( )g s c s s c s s = + + +  in arc length parameter s where  
2 2 2

2 1 0 0c c − −   for 

some constants 1c , 2c  and 0s . Then,   is a timelike rectifying curve by Theorem 3.2. Hence, by using Theorem 

3.4, we take 0( ) arctan( sech( ))t a t t = +  for some constants 0a   and 0t . Also, taking account of Theorem 3.5, 

we obtain that 2 2 3/2
0( ) (cosh ( ) )t b t t a

−= + +  for nonzero constant 
2

0(1 )b a a = + . 

 

On the other hand, let  exp ( )p =  be a timelike rectifying curve in 
3
1S  which is generated by a unit speed 

timelike curve ( )t =  which is lying in 2 3
1 1pTS S  with geodesic curvature 2 2 3/2

0( ) (cosh ( ) )t b t t a
−= + +  

such that 0b  . Then, by using Theorem 3.4, we get function 0( ) arctan( sech( ))t a t t = +  for some constants  

0a   and 0t , and so, we have 

4 2 2

2 2 2 3
0

(1 )
.

sin ( ) ( cosh ( ))

a a

a t t





 +
=

+ +
 

Since   is a timelike rectifying curve, in accordance with Theorem 3.5,  



 

341 

 

Mak / Cumhuriyet Sci. J., 41(2) (2020) 327-343 

 

4 2

2

2
.

sin ( )

g



 





=  

Thus, we obtain that the nonzero constant 

2
2

2 2 2
.

(1 )
g

b

a a
 =

+
 

Finally, if we take into account Theorem 3.2, the proof is complete. 

 

Remark 3.2. We obtain also characterizations for spacelike rectifying curves in 
3
1S  by using similar methods 

which is given in Section 3.  

 

4. Some Examples of Non-Degenerate Rectifying Curves 

Now, we give some examples for timelike or spacelike rectifying curve in 
3
1S . 

 

Example 4.1. Let   be a timelike rectifying curve in 
3
1S  with geodesic curvature ( ) 10g s =  and geodesic 

torsion ( ) 2sinh( ) 2cosh( )g s s s = + . Then, we obtain stereographic projection in Minkowski 3-space which is 

congruent to   by using numeric methods in Mathematica (see Figure 1) 

 

Example 4.2. Let a timelike pseudo-spherical projection curve be given by 

( ) ( ) ( ) ( ) ( )
15 25 9 25 9

( ) cos 17 ,0, cos 9 cos 25 , sin 9 sin 25 ,
8 16 16 16 16

t t t t t t
 

= + − 
 

 

in 2 3
1 1pS ST  (see Figure 2). Then, the parametrization of timelike rectifying curve   is 

2

sech( ) 16
( ) 30cos(17 )sech( ), ,25cos(9 ) 9cos(25 ),25sin(9 ) 9sin(25 )

sech( )16 1 sech ( )

t
t t t t t t t

tt


 
= + − 

 +
 

where the point 
3
1(0,1,0,0)p S=   and the function ( ) arctan(sech( ))t t =  (see Figure 3). 

 

Example 4.3. Let a spacelike pseudo-spherical projection curve be given by 

( ) sinh( ), cosh( )cos( ), cosh( )sin( ),0 ,
15 15 15

t t t
t t t

 
=  
 

 

in 2 3
1 1pS ST  (see Figure 4). Then, the parametrization of spacelike rectifying curve   is 

2

1
( ) sec( )sinh( ),cosh( ),cosh( ) tan( ),1

15 15 151 sec ( )

t t t
t t t

t


 
=  

 +
 

where the point 
3
1(0,0,0,1)p S=   and the function ( ) arctan(sec( ))t t =  (see Figure 5). 
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Figure 1. Stereographic projection in Minkowski 3-space of timelike rectifying curve  . 

 

  
Figure 2. Timelike pseudo-spherical projection curve 

( )t  in 
2
1S  of timelike rectifying curve   

 Figure 3. Stereographic projection in Minkowski 

3-space of timelike rectifying curve   

 

  
Figure 4. Spacelike pseudo-spherical projection curve

( )t  in 
2
1S  of spacelike rectifying curve   

 Figure 5. Stereographic projection in Minkowski 3-space 

of spacelike rectifying curve   
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