Ferrocene as a leaving group; Unexpected rearrangement reactions for the synthesis of 2,3-diarylnapthoquinones

Nevroz Aslan Ertas1,2 Arif Kivrak1,*

1Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yıl University, 65000, Van, Turkey, akivrak@yyu.edu.tr, ORCID: 0000-0003-4770-2686
2Department of Molecular Biology and Genetics, Faculty of Sciences, Van Yüzüncü Yıl University, 65000, Van, Turkey

ABSTRACT

In general, Suzuki-Miyaura coupling reaction between aryl bromide and arylboronic acids form the new C-C bond in the presence of Pd-catalyst. In the present study, 2-bromo-3-ferrocenyl-1,4-naphthoquinone 2 intermediate is synthesized by starting from 2,3-dibromo-1,4-naphthoquinone via Suzuki-Miyaura Coupling reaction. Then, it is investigated that the reaction between 2 and arylboronic acids give a new rearrangement reaction involving free radicals. Ferrocene structure displays critical roles for the formation of 2,3-diaryl-1,4-naphthoquinones. This reaction could be first example for the radical C-C bond cleavage reactions including ferrocene.

ARTICLE INFO

Research article

Received: 29.05.2020
Accepted: 19.06.2020

Keywords:
Ferrocene, naphthoquinone, rearrangement reactions, mechanism, substitution reactions

*Corresponding author

1. Introduction

Design and synthesis of new biologically important organic compounds have been gained crucial importance over the last decades. In fact, 1,4-naphthaquinone and their derivatives have been well known organic structures in medicinal and material chemistry.\cite{1} They have two carbonyl groups increasing the activities of naphthaquinones.\cite{2} Moreover, naphthoquinone based structures show different kinds of biological properties. They have been used as antiviral,\cite{3} cardiovascular,\cite{4} antibacterial,\cite{5} antiparasitic,\cite{6} anticancer,\cite{7} and radical scavenging\cite{8} agents. Some of naphthaquinones have critical roles for the treatments of some diseases like anticancer\cite{4}. For example, Daunorubicin,\cite{8} Doxorubicin,\cite{9} Mitomycin\cite{10}, and Mitoxantron\cite{11} are commercially available naphthaquinone based drugs in the markets. Many naphthaquinone derivatives are isolated from nature.\cite{12} Naphthaquinones have been also used as oxidizing agents in organic reactions for the formation of more complex structures.\cite{13}

Ferrocene structure, consisting of two cyclopentadien and an iron, has been used for the preparation of novel organic compounds since 1951.\cite{14} Ferrocene have many vital properties in organic reactions such as; neutral, highly stable and non-toxic compound. Therefore, not only biologically active ferrocene based organic molecules\cite{15} but also high conductive ferrocene based organic materials\cite{16} have been designed and synthesized in last decades. It was reported that ferrocene moities increases biological activities\cite{17} or creates different biological properties. Ferrocenyl aspirin, ferroquine, and ferrocifen are commercial drugs consisting of ferrocene on the structures (Scheme 1).\cite{18}

There are different kinds of ferrocene based organic molecules in literature. If organic molecules are modified with ferrocene moieties, they can be change properties and create new activities \cite{14, 19, 20}.

Ferrocene have higher redox properties, with lower oxidation potential, so it may be oxidized easily to form the Fe (+3) isomers. Recently, we synthesized new ferrocene based molecules for optoelectronic and sensor applications (Figure 1).\cite{16, 21} Structure 1 may be new generation small organic structures for organic solar cells, and compound 2 displayed higher sensor activities for the detection of peroxides (Fig. 1).\cite{16} Moreover, Compound 2 has high stability and reproducibility than Pd-based electrochemical sensors.\cite{22}
In the lights of previous studies, we thought that new ferrocenyl naphthoquinones may be synthesized by using Pd-catalyzed cross coupling reactions. Hence, Pd-catalyst cross coupling reaction was applied for elaboration reactions. Suzuki-Miyaura reactions are most known coupling reactions to form the new carbon-carbon bond between aryl/alkylboronic acids and halogenated aromatics. Suzuki-Miyaura coupling reactions need to aryl halide, aryl/alkyl boronic acids, weak bases and Pd-catalyst. On the other hand, there are a variety of modified reaction procedure in literature. Generally, carbon-carbon bonds between ferrocene moieties and aromatic compounds are very strong, so it is not possible to broken these carbon-carbon bonds. Moreover, there is not any study about ferrocene which was used as a leaving group in literature. In the present study, we investigated a new rearrangement reaction involving free radicals between 2-bromo-3-ferrocene-1,4-naphthoquinone 2 and arylboronic acids. Ferrocene structures played very unique roles for the formation of 2,3-diaryl-1,4-napthoquinones (Fig. 2).

Figure 1. Previously synthesized ferrocene based molecules.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>Br</td>
</tr>
</tbody>
</table>

Figure 2. Synthesis of 2,3-diaryl-1,4-naphthoquinone.

2. Results and discussion

Naphthoquinone derivatives have been well known organic structures for a variety of applications. They have critical roles not only biological applications, but also material sciences. Recently, we synthesized novel ferrocene based naphthoquinone derivatives, and found its electrochemical properties, there are a few studies about the synthesis of ferrocene based naphthoquinones.[20] In the present study, ferrocenyl-naphthoquinone was prepared by using Suzuki-Miyaura cross-coupling reaction [24] under the mild reaction conditions. There are different kinds of modified Suzuki-Miyaura coupling procedure between boronic acids and halogenated aromatics in literature.[25] Our previous study, 2,3-dibromo-1,4-naphthoquinone was reacted with ferroceneboronic acid, under reflux for overnights to gave the 2-bromo-3-ferrocenyl-1,4-naphthoquinone 2 (38% yield) and 2,3-diferrocenyl-1,4-naphthoquinone 5 (17% yield) [16] (Fig. 3).

Figure 3. Synthesis of 2-bromo-3-ferrocenyl-1,4-naphthoquinone 2.

After isolation of structure 2, we tried to synthesized 2-aryl-3-ferrocenyl- naphthoquinone (7 and 10) derivatives via Suzuki-Miyaura reactions. When 2-bromo-3-ferrocene-1,4-naphthoquinone 2 was underwent to react with phenylboronic acid 6 with Pd-catalyst under reflux for 24 hours, desired compound 7 was not formed. Unexpectedly, we isolated only 2,3-diphenyl-1,4-naphthoquinone 8 in 49% yield (Fig. 4). The same reaction condition was repeated for the synthesis of compound 10 by the reaction between 2-bromo-3-ferrocene-1,4-naphthoquinone 2 and p-tolylboronic acid 9, 80% yields of compound 11 was isolated after purification (Fig. 4). Unexpectedly, we did not obtain our desired products (7 and 10).

Figure 4. The reaction between compound 2 and arylboronic acids.

There are different reaction methodologies for the formation of 2,3-diaryl-1,4-naphthoquinone derivatives in literature. In general, 2,3-diaryl-1,4-naphthoquinones are obtained via Suzuki-Miyaura or Stille cross coupling reactions between 2,3-dibromo/chloro-1,4-naphthoquinones and ArB(OH)3/ArSnBu3. [26] [27] [23] They are also prepared...
Moreover, Patil et al. was reported that oxidative arylation of naphthaquinones using o-iodoxybenzoic acid and phenylhydrazines formed the 2,3-diaryl-1,4-naphthaquinones.[30] A new method for the direct arylation of quinones was demonstrated by Baran et al. by using arylation agents as AgNO₃/K₂S₂O₈ and arylboronic acids for the preparation of arylated quinones.[31] Then, it was found that FeS/K₂S₂O₈ catalyst was to be formed the monosubstituted quinones under mild reaction conditions.[32] Different kind of boronic acids were undergone to coupling reactions with 1,4-benzoquinone. In 2013, Komeyama et al. investigated the direct arylation reactions of benzoquinones with arylboronic acids in the presence of FeSO₄/K₂S₂O₈ catalyst system.[33] Related with these studies, Fe(acac)₂, Fe(NO₃)₃ and Mn(OAc)₃ were also used as a catalyst for the preparation of 2-aryl-1,4-naphthaquinone by the reaction between 1,4-naphthaquinone and arylboronic acids.[34] The direct arylation of quinones with arylboronic acids without any metal catalyst was tested in the presence of K₂S₂O₈ by Ilangoovan et al.[35] They improved that arylboronic acids turned to corresponding aryl radicals before addition of quinones. Therefore, this formation could be important for the proposing reaction mechanism for the formation of 2,3-diaryl-1,4-naphthaquinone derivatives.

The possible reaction mechanism was proposed for the formation of 2,3-diaryl-1,4-naphthaquinones (Fig. 5). Firstly, Suzuki-Miyaura cross coupling reaction between compound 2 and arylboronic acids in the presence of Pd-catalyst was carried out. Oxidative addition, transmetallation and reductive elimination reactions gave the coupled intermediate 15. After formation of intermediate 15, ferrocene moieties may be activated radical reactions, because it was improved that Fe-catalyst help to generation of radical intermediates for the direct arylation of naphthaquinones. As shown in Figure 5, ferrocene may be oxidized to +3, this electron combine with arylboronic acids to form hypothetical intermediates 17. Then, cleavage of the aryl-boron bond produces the nucleophilic aryl radical 18. Subsequent, this radical attack to intermediate 16 for the formation of intermediate 19. Then the final product 20 was obtained by the rearrangement reaction and cleavage C-C bonds between ferrocene and naphthaquinone (Fig. 5).

The effects of two ferrocene moieties was also tested for the formation 2,3-diaryl-1,4-naphthaquinones. When diferrocenyl-1,4-naphthaquinone was allowed to react with arylboronic acids by using same reaction conditions (Fig. 6), only starting compound was recovered.

3. Conclusions

Herein, new rearrangement reactions between 2-bromo-3-ferrocenyl-1,4-naphthaquinone 2 and arylboronic acids was investigated. In the first part, we prepared 2-bromo-3-ferrocenyl-1,4-naphthaquinone 2 by using Suzuki-Miyaura coupling reactions between 2,3-dibromo-1,4-naphthaquinone.
and ferrocene boronic acid. Then, new rearrangement reactions involving radical intermediates for the formation of 2,3-diaryl-1,4-naphthaquione derivatives was investigated. It could be first example for the C-C bond cleavage of ferrocene structure and naphthaquinones in literature. According to proposed mechanism, ferrocene played very unique roles for the formation of arylation of naphthaquinones as a leaving group. As a result, this study could also be useful for the design of novel rearrangement reactions for future chemical synthesis applications.

4. Experimental

2.1. Synthesis of 2-bromo-3-ferrocenyl-1,4-naphthoquinone

2,3-Dibromo-1,4-naphthoquinone (200 mg, 0.63 mmol) and ferroceneboronic acid (30.6 mg, 0.19 mmol) were stirred in dioxane at room temperature. Then, Pd(PPh3)4 (34.6 mg, 0.03 mmol) and potassium carbonate (105 mg, 0.75 mmol) were stirred in dioxane/water (16/2 mL) under argon atmospheres. The resulting mixture was undergone to MW irradiation at 120 °C for 45 minutes. After reaction was over, reaction mixture extracted with EtOAc (3×25 mL). The combined organic layers were dried over anhyd. MgSO4 and organic solvent was removed under reduced pressure. Compounds was purified by flash chromatography on silica gel using EtOAc/Hexane (1:19) as the eluent to afford 2,3-diphenylnaphthalene-1,4-dione (80% yield). 1H NMR (400 MHz, CDCl3) δ 8.2 (m, 2H), 7.77 (m, 2H), 7.05 (d, J = 8 Hz, 4H), 6.99 (d, J = 8 Hz, 4H), 3.98 (m, 2H). 13C NMR (100 MHz, CDCl3) δ 184.9, 145.4, 138.0, 133.7, 132.2, 130.5, 130.4, 128.4, 126.5, 21.3. The spectral data were in agreement with those reported previously for this compound.[23]

Acknowledgment

We want to express our thanks to the Scientific and Technical Research Council of Turkey (TUBITAK-114Z042) for financial supports of Microwave Reactor and Van Yüzüncü Yil University (FBA-2019-7910) for financial supports of chemicals. N. A. also thanks to YÖK 100/2000 for scholarships.

References

Heteroarylstannanes”, Chemistry Letters, (1996), 139-140.

