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1. Introduction  

Time scales have made a name in many branches of science for the last 30 years. The theory of 

time scales was initiated by Stefan Hilger [1] in 1988 and it was developed by many mathematicians. 

They have demonstrated various aspects of integral inequalities [2-32]. The most important examples 

of time scale studies are differential calculus and inequalities [12]. In 2014, Agarwal, O’Regan, and 

Saker revealed many features of dynamic inequalities in time scales. Dynamic equations and 

inequalities have many applications in other disciplines besides mathematics. For example; population 

dynamics, quantum mechanics, physical problems, wave equations, heat transfer, optical problems, 

and finance problems [12, 27, 29, 30].  

Hölder inequalities have a very important place in harmonic analysis. Many mathematicians 

have achieved very important results using Hölder inequality [10, 11, 13]. The article aims to 

demonstrate some results of weighted Hölder’s inequality in the two-dimensional case on time scale 

via the ⋄𝜶-integral. 

2. Materials and Method 

Now, let’s briefly give information about time scales and necessary definitions and notations for 

our article. The details can be followed from the studies conducted by some researchers [1-31]. 

 

𝕋 is a time scale (𝕋 ≠ ∅ and 𝕋 ⊂ ℝ). 

https://dergipark.org.tr/mejs
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Let 𝜎(𝑡), 𝜌(𝑡) be the forward jump operator and the backward jump operator in 𝕋. And jump 

operators are defined by 

 

𝜎(𝑡) = inf{𝑠 ∈ 𝕋: 𝑠 > 𝑡} ,     𝜌(𝑡) = sup{𝑠 ∈ 𝕋: 𝑠 > 𝑡} 

for 𝑡 ∈ 𝕋. 

 

If 𝜎: 𝕋 → 𝕋, 𝜎(𝑡) > 𝑡, then 𝑡 is right-scattered and if 𝜎: 𝕋 → 𝕋, 𝜎(𝑡) = 𝑡, then 𝑡 is called right-

dense. If 𝜌: 𝕋 → 𝕋, 𝜌(𝑡) < 𝑡, then 𝑡 is left-scattered and if 𝜌: 𝕋 → 𝕋, 𝜌(𝑡) = 𝑡, then 𝑡 is called left-

dense. Let two mappings 𝜇, 𝜗: 𝕋 → ℝ+ such that 𝜇(𝑡) = 𝜎(𝑡) − 𝑡, 𝜗(𝑡) = 𝑡 − 𝜌(𝑡) are called 

graininess mappings.  

Let 𝑔: 𝕋 → ℝ and 𝑔𝜎: 𝕋 → ℝ by 𝑔𝜎(𝑡) = 𝑔(𝜎(𝑡)) for ∀𝑡 ∈ 𝕋, i.e., 𝑔𝜎 = 𝑔 ∘ 𝜎. And let 𝑔: 𝕋 →

ℝ and 𝑔𝜌: 𝕋 → ℝ by 𝑔𝜌(𝑡) = 𝑔(𝜌(𝑡)) for ∀𝑡 ∈ 𝕋, i.e., 𝑔𝜌 = 𝑔 ∘ 𝜌. 

 

The generalized derivative 𝑔∆(𝑡) of 𝑔: 𝕋 → ℝ, becomes 𝑔∆(𝑡) = 𝑔′(𝑡) when 𝕋 = ℝ. And if 

𝕋 = ℤ, then 𝑔∆(𝑡) reduces to 𝑔∆(𝑡) = ∆𝑔(𝑡). 
 

Definition 2.1. If 𝐺: 𝕋 → ℝ is called a ∆-antiderivative of 𝑔: 𝕋 → ℝ, then we define 
 

∫ 𝑔(𝛿)∆𝛿

𝑡

𝑠

= 𝐺(𝑡) − 𝐺(𝑠), 

for  ∀𝑠, 𝑡 ∈ 𝕋. [12] 
 

Definition 2.2. Let ℎ: 𝕋𝑘 → ℝ is called ∇-differentiable at 𝑡 ∈ 𝕋𝑘. If 𝜀 > 0, then there exists a 

neighborhood 𝑉 of 𝑡 such that 
 

|ℎ(𝜌(𝑡)) − ℎ(𝑠) − ℎ∇(𝑡)(𝜌(𝑡) − 𝑠)| ≤ 𝜀|𝜌(𝑡) − 𝑠|, 
 

for ∀𝑠 ∈ 𝑉. [14] 
 

Definition 2.3. Let 𝐻: 𝕋 → ℝ is called a ∇-antiderivative of ℎ: 𝕋 → ℝ, then we define  
 

∫ ℎ(𝛿)∇𝛿

𝑡

𝑠

= 𝐻(𝑡) − 𝐻(𝑠), 

for 𝑠, 𝑡 ∈ 𝕋. [14] 

 

Let 𝑓(𝑡) be differentiable on 𝕋 for 𝛼, 𝑡 ∈ 𝕋. Then, we define 𝑓⋄𝛼(𝑡) by 

 

𝑓⋄𝛼(𝑡) = 𝛼𝑓∆(𝑡) + (1 − 𝛼)𝑓∇(𝑡) 

for 0 ≤ 𝛼 ≤ 1. [14] 

 

Proposition 2.4. If we get 𝑓, ℎ: 𝕋 → ℝ,  ⋄𝛼-differentiable for 𝛼, 𝑡 ∈ 𝕋, [15] then  

 

(i) 𝑓 + ℎ: 𝕋 → ℝ is ⋄𝛼-differentiable for 𝑡 ∈ 𝕋 with 

 

(𝑓 + ℎ)⋄𝛼(𝑡) = 𝑓⋄𝛼(𝑡) + ℎ⋄𝛼(𝑡). 
 

(ii) Let 𝑘 ∈ ℝ, 𝑘𝑓: 𝕋 → ℝ is ⋄𝛼-differentiable for 𝛼, 𝑡 ∈ 𝕋 with 

 

(𝑘𝑓)⋄𝛼(𝑡) = 𝑘𝑓⋄𝛼(𝑡). 
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(iii) 𝑓ℎ: 𝕋 → ℝ is ⋄𝛼-differentiable for 𝛼, 𝑡 ∈ 𝕋 with 

 

(𝑓ℎ)⋄𝛼(𝑡) = 𝑓⋄𝛼(𝑡). ℎ(𝑡) + 𝛼𝑓𝜎(𝑡)ℎ∆(𝑡) + (1 − 𝛼)𝑓𝜌(𝑡)ℎ∇(𝑡). 
 

Definition 2.5. If we get 𝛼, 𝑏, 𝑡 ∈ 𝕋 and 𝑓: 𝕋 → ℝ, [15] then 
 

∫ 𝑓(𝜏) ⋄𝛼 𝛾

𝑡

𝑏

= 𝛼 ∫ 𝑓(𝛾)∆𝛾

𝑡

𝑏

+ (1 − 𝛼) ∫ 𝑓(𝛾)∇𝛾

𝑡

𝑏

 

for  0 ≤ 𝛼 ≤ 1. 

 

Proposition 2.6. Let 𝑢, 𝑣, 𝛼, 𝑡 ∈ 𝕋, 𝑐 ∈ ℝ and if 𝑓(𝛾), 𝑔(𝛾) are ⋄𝛼-integrable on [𝑢, 𝑣]𝕋,  then the 

following statements are valid. [15] 
 

(i) ∫ [𝑓(𝛾) + 𝑔(𝛾)] ⋄𝛼 𝛾
𝑡

𝑢
= ∫ 𝑓(𝛾) ⋄𝛼 𝛾

𝑡

𝑢
+ ∫ 𝑔(𝛾) ⋄𝛼 𝛾

𝑡

𝑢
, 

(ii) ∫ 𝑐𝑓(𝛾) ⋄𝛼 𝛾
𝑡

𝑢
= 𝑐 ∫ 𝑓(𝛾) ⋄𝛼 𝛾

𝑡

𝑢
, 

(iii) ∫ 𝑓(𝛾) ⋄𝛼 𝛾
𝑡

𝑢
= − ∫ 𝑓(𝛾) ⋄𝛼 𝛾

𝑢

𝑡
, 

(iv) ∫ 𝑓(𝛾) ⋄𝛼 𝛾
𝑡

𝑢
= ∫ 𝑓(𝛾) ⋄𝛼 𝛾

𝑣

𝑢
+ ∫ 𝑓(𝛾) ⋄𝛼 𝛾

𝑡

𝑣
, 

(v) ∫ 𝑓(𝛾) ⋄𝛼 𝛾
𝑢

𝑢
= 0. 

 

Lemma 2.7. Let 𝑢, 𝑣, 𝛼, 𝑡 ∈ 𝕋 with 𝑢 < 𝑣. Suppose that ℎ(𝛾) and 𝑔(𝛾) are ⋄𝛼-integrable on [𝑢, 𝑣]𝕋, 

then we have [15] 

 

(i)  If ℎ(𝛾) ≥ 0 for ∀𝛾 ∈ [𝑢, 𝑣]𝕋, then ∫ ℎ(𝛾) ⋄𝛼 𝛾
𝑣

𝑢
≥ 0. 

(ii)  If ℎ(𝛾) ≤ 𝑔(𝛾) for ∀𝛾 ∈ [𝑢, 𝑣]𝕋, then ∫ ℎ(𝛾) ⋄𝛼 𝛾
𝑣

𝑢
≤ ∫ 𝑔(𝛾) ⋄𝛼 𝛾

𝑣

𝑢
. 

(iii)  If ℎ(𝛾) ≥ 0 for ∀𝛾 ∈ [𝑢, 𝑣]𝕋, then ℎ(𝛾) = 0  iff  ∫ ℎ(𝛾) ⋄𝛼 𝛾
𝑣

𝑢
= 0. 

 

Lemma 2.8. Let ℎ, 𝑔 be ∇-differentiable two positive functions [31]. For ℎ, 𝑔 satisfying 𝑔𝑞𝑙 ≤ ℎ𝑝 ≤

𝑔𝑞𝐿 on the [𝑎, 𝑏], with 1 𝑝⁄ + 1 𝑞⁄ = 1 and 𝑝, 𝑞 > 1, we have  

 

(𝑙)1 𝑝𝑞⁄ (∫ ℎ(𝑠)𝑝∇𝑠

𝑏

𝑎

)

1 𝑝⁄

(∫ 𝑔(𝑠)𝑞∇𝑠

𝑏

𝑎

)

1 𝑞⁄

≤ (𝐿)1 𝑝𝑞⁄ ∫ ℎ(𝑠)𝑔(𝑠)∇𝑠

𝑏

𝑎

. 

 

 

Theorem 2.9. If ℎ is ⋄𝛼-integrable on an interval 𝐼 = [𝑎, 𝑏], then |ℎ| is ⋄𝛼-integrable on I that is [31] 

 

|∫ ℎ(𝑠) ⋄𝛼 𝑠

𝐼

| ≤ ∫|ℎ(𝑠)| ⋄𝛼 𝑠

𝐼

. 

 

3. Results 

Theorem 3.1. Let two mappings ℎ, 𝑔 ∈ 𝐶𝑟𝑑 and ℎ, 𝑔: [𝑎, 𝑏] × [𝑎, 𝑏] → ℝ. 𝜃(𝛾, 𝜏), 𝜗(𝑣, 𝜏) > 0  weight 

functions and ⋄𝛼-integrable functions for 𝑎, 𝑏 ∈ 𝕋, we have 
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∫ ∫|ℎ(𝛾, 𝜏)𝜃(𝛾, 𝜏)𝑔(𝛾, 𝜏)𝜗(𝛾, 𝜏)| ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

 

 

≤ (∫ ∫|ℎ(𝛾, 𝜏)𝜃(𝛾, 𝜏)|𝑝 ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

)

1
𝑝

(∫ ∫|𝑔(𝛾, 𝜏)𝜗(𝛾, 𝜏)|𝑞 ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

)

1
𝑞

 

 

where 𝑝 > 1, 𝑞 > 1. 

 

Proof. If  𝑢, 𝑣 ≥ 0 (𝑢, 𝑣 ∈ ℝ) with 1 𝑝⁄ + 1 𝑞⁄ = 1 (𝑝, 𝑞 > 1), then  
 

                                                                     𝑞𝑢
1
𝑞 + 𝑝𝑣

1
𝑝 ≥ 𝑝𝑞                                                                                                   (1) 

 

holds. Assume that 
 

(∫ ∫|ℎ(𝛾, 𝜏)𝜃(𝛾, 𝜏)|𝑝 ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

) (∫ ∫|𝑔(𝛾, 𝜏)𝜗(𝛾, 𝜏)|𝑞 ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

) ≠ 0. 

 

and 𝑢(𝛾, 𝜏), 𝑣(𝛾, 𝜏) ∈ 𝐶𝑟𝑑(ℝ) with 
 

𝑢(𝛾, 𝜏) =
|ℎ(𝛾, 𝜏)𝜃(𝛾, 𝜏)|𝑝

∫ ∫ |ℎ(𝛿1, 𝛿2)𝜃(𝛿1, 𝛿2)|𝑝 ⋄𝛼 𝛿1 ⋄𝛼 𝛿2
𝑏

𝑎

𝑏

𝑎

, 

 

 

𝑣(𝛾, 𝜏) =
|𝑔(𝛾, 𝜏)𝜗(𝛾, 𝜏)|𝑞

∫ ∫ |𝑔(𝛿1, 𝛿2)𝜗(𝛿1, 𝛿2)|𝑞 ⋄𝛼 𝛿1 ⋄𝛼 𝛿2
𝑏

𝑎

𝑏

𝑎

. 

 

If we apply (1) to functions 𝑢(𝛾, 𝜏) and 𝑣(𝛾, 𝜏) and take integrals from a to b, we get directly Hölder 

inequalities 
 

∫ ∫
|ℎ(𝛾, 𝜏)𝜃(𝛾, 𝜏)|𝑝

∫ ∫ |ℎ(𝛿1, 𝛿2)𝜃(𝛿1, 𝛿2)|𝑝 ⋄𝛼 𝛿1 ⋄𝛼 𝛿2
𝑏

𝑎

𝑏

𝑎

.
|𝑔(𝛾, 𝜏)𝜗(𝛾, 𝜏)|𝑞

∫ ∫ |𝑔(𝛿1, 𝛿2)𝜗(𝛿1, 𝛿2)|𝑞 ⋄𝛼 𝛿1 ⋄𝛼 𝛿2
𝑏

𝑎

𝑏

𝑎

⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

 

 

= ∫ ∫ 𝑢(𝛾, 𝜏)
1
𝑝𝑣(𝛾, 𝜏)

1
𝑞 ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

≤ ∫ ∫ [
𝑢(𝛾, 𝜏)

𝑝
+

𝑣(𝛾, 𝜏)

𝑞
] ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

                           

 

=
1

𝑝
∫ ∫

|ℎ(𝛾, 𝜏)𝜃(𝛾, 𝜏)|𝑝

∫ ∫ |ℎ(𝛿1, 𝛿2)𝜃(𝛿1, 𝛿2)|𝑝 ⋄𝛼 𝛿1 ⋄𝛼 𝛿2
𝑏

𝑎

𝑏

𝑎

⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

                                                      

 

+
1

𝑞
∫ ∫

|𝑔(𝛾, 𝜏)𝜗(𝛾, 𝜏)|𝑞

∫ ∫ |𝑔(𝛿1, 𝛿2)𝜗(𝛿1, 𝛿2)|𝑞 ⋄𝛼 𝛿1 ⋄𝛼 𝛿2
𝑏

𝑎

𝑏

𝑎

⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

                               

 

=
1

𝑝
+

1

𝑞
= 1.                                                                                                                                      

 

 



Middle East Journal of Science (2020) 6(1):15-22 

 

19 

 

Theorem 3.2. Let 𝜃(𝛾, 𝜏), 𝜗(𝛾, 𝜏) > 0 be weight functions via ⋄𝛼-integrable.  If 

𝑀(𝛾, 𝜏), ℎ(𝛾), 𝑔(𝜏), 𝜇(𝛾), 𝜎(𝜏) be non-negative functions with 1 𝑝⁄ + 1 𝑞⁄ = 1 (𝑝, 𝑞 > 1) via ⋄𝛼-

integrable, then the following (2) and (3) inequalities are equivalent 
 

∫ ∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝜃(𝛾, 𝜏)𝑔(𝜏)𝜗(𝛾, 𝜏) ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

  

 

                      ≤ (∫ 𝜇(𝛾)𝑝𝐾(𝛾)(ℎ(𝛾)𝜃(𝛾))𝑝 ⋄𝛼 𝛾

𝑏

𝑎

)

1
𝑝

(∫ 𝜎(𝜏)𝑞𝐷(𝜏)(𝑔(𝜏)𝜗(𝜏))𝑞 ⋄𝛼 𝜏

𝑏

𝑎

)

1
𝑞

                                     (2) 

 

and 
 

∫ 𝜎(𝜏)−𝑝𝐷(𝜏)1−𝑝 (∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝜃(𝛾) ⋄𝛼 𝛾

𝑏

𝑎

)

𝑝

⋄𝛼 𝑦

𝑏

𝑎

≤ ∫ 𝜇(𝛾)𝑝𝐾(𝛾)(ℎ(𝛾)𝜃(𝛾))𝑝 ⋄𝛼 𝛾

𝑏

𝑎

                                    (3) 

 

 

where 𝐾(𝛾) = ∫
𝑀(𝛾,𝜏)

𝜎(𝑦)𝑝 ⋄𝛼 𝜏
𝑏

𝑎
 and 𝐷(𝑦) = ∫

𝑀(𝛾,𝜏)

𝜇(𝛾)𝑞 ⋄𝛼 𝛾
𝑏

𝑎
. 

 

Proof. Let's consider the equation below 
 

∫ ∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝜃(𝛾, 𝜏)𝑔(𝜏)𝜗(𝛾, 𝜏) ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

 

 

                               = ∫ ∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝜃(𝛾, 𝜏)
𝜇(𝛾)

𝜎(𝜏)
𝑔(𝜏)𝜗(𝛾, 𝜏)

𝜎(𝜏)

𝜇(𝛾)
⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

.                                                       (4) 

 

Now, applying the Hölder inequality to (4), we get 
 

∫ ∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝑔(𝜏) ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

 

 

≤ (∫ 𝜇(𝛾)𝑝𝐾(𝛾)(ℎ(𝛾)𝜃(𝛾))𝑝 ⋄𝛼 𝛾

𝑏

𝑎

)

1
𝑝

(∫ 𝜎(𝜏)𝑞𝐷(𝜏)(𝑔(𝜏)𝜗(𝜏))𝑞 ⋄𝛼 𝜏

𝑏

𝑎

)

1
𝑞

. 

 

Assume that the inequality (2) holds. If  
 

𝑔(𝜏) = 𝜎(𝜏)−𝑝𝐷(𝜏)1−𝑝 (∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝜃(𝛾) ⋄𝛼 𝛾

𝑏

𝑎

)

𝑝−1

 

and using (2), we obtain 
 

∫ 𝜎(𝜏)−𝑝𝐷(𝜏)1−𝑝 (∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝜃(𝛾) ⋄𝛼 𝛾

𝑏

𝑎

)

𝑝

⋄𝛼 𝜏

𝑏

𝑎
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= ∫ ∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝜃(𝛾)𝑔(𝑦) ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

                                                                                                              

 

≤ (∫ 𝜇(𝛾)𝑝𝐾(𝛾)(ℎ(𝛾)𝜃(𝛾))𝑝 ⋄𝛼 𝛾

𝑏

𝑎

)

1
𝑝

(∫ 𝜎(𝜏)𝑞𝐷(𝜏)(𝑔(𝜏)𝜗(𝜏))
𝑞

⋄𝛼 𝜏

𝑏

𝑎

)

1
𝑞

                                           

 

= (∫ 𝜇(𝛾)𝑝𝐾(𝛾)(ℎ(𝛾)𝜃(𝛾))𝑝 ⋄𝛼 𝛾

𝑏

𝑎

)

1
𝑝

(∫ 𝜎(𝜏)−𝑝𝐷(𝜏)1−𝑝 (∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝜃(𝛾) ⋄𝛼 𝛾

𝑏

𝑎

)

𝑝

⋄𝛼 𝜏

𝑏

𝑎

)

1
𝑞

.   

 

Now, applying Hölder’s inequality, we obtain  
 

∫ ∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝜃(𝛾)𝑔(𝜏)𝜗(𝜏) ⋄𝛼 𝛾 ⋄𝛼 𝜏

𝑏

𝑎

𝑏

𝑎

 

 

= ∫ (𝜎(𝜏)−1𝐷𝜏
−1
𝑞 ∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝜃(𝛾) ⋄𝛼 𝛾

𝑏

𝑎

) 𝜎(𝜏)𝐷(𝜏)
1
𝑞𝑔(𝜏)𝜗(𝜏)

𝑏

𝑎

⋄𝛼 𝜏                                          

 

≤ (∫ 𝜎(𝜏)−𝑝𝐷(𝜏)1−𝑝 (∫ 𝑀(𝛾, 𝜏)ℎ(𝛾)𝜃(𝛾) ⋄𝛼 𝛾

𝑏

𝑎

)

𝑝

⋄𝛼 𝜏

𝑏

𝑎

)

1
𝑝

(∫ 𝜎(𝜏)𝑞𝐷(𝜏)(𝑔(𝜏)𝜗(𝜏))𝑞 ⋄𝛼 𝜏

𝑏

𝑎

)

1
𝑞

 

 

≤ (∫ 𝜇(𝛾)𝑝𝐾(𝛾)(ℎ(𝛾)𝜃(𝛾))𝑝 ⋄𝛼 𝛾

𝑏

𝑎

)

1
𝑝

(∫ 𝜎(𝜏)𝑞𝐷(𝜏)(𝑔(𝜏)𝜗(𝜏))𝑞 ⋄𝛼 𝜏

𝑏

𝑎

)

1
𝑞

.                                        

 

 

4. Discussion 

Integration in time scales helps us to achieve many nonlinear integral equations using different 

inequalities and equations. Many authors have obtained many inequalities and integral equations using 

various methods [1-32]. The method we use in this article can be applied to other inequalities and 

equations provided that they meet the requirements. We focused on the concept of weight in 

inequalities and dynamic equations. In addition, we have obtained some results by using Hölder type 

inequality in time scales inspired by these studies. 

 

The compliance to Research and Publication Ethics: This work was carried out by obeying 

research and ethics rules. 
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