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Abstract: In this study, at first we provide a general overview of 
   p x

L  spaces, also known as 

variable exponent Lebesgue spaces. They are a generalization of classical Lebesgue spaces
pL  in the 

sense that constant exponent replaced by a measurable function.  Then, based on classical Lebesgue 

space approach we prove a reverse of Hölder inequality in
   p x

L  . Therefore, our proof in variable 

exponent Lebesgue space is very similar to that in classical Lebesgue space. 
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1. Introduction  

Variable exponent Lebesgue spaces 
   p x

L   are certain cases of  Orlicz–Musielak spaces, and 

at this point of view investigation of 
   p x

L   date back to Hudzik [1] and Musielak [2].  But 

historically a paper by W. Orlicz can be considered as the originating paper in this field [3].  These 

important spaces are also known as generalized Lebesgue spaces. Since 
   p x

L   space is a natural 

generalization of the classical  pL   space , therefore, the first question which comes to mind is: 

what types of properties  pL  space can be transferred to
   p x

L   space?  Variable exponent 

Lebesgue spaces have found applications in many areas of mathematics, physics and differential 

equations.  To name few of those applications areas: modeling electrorheological fluids, image 

restoration, the calculus of variations, the analysis of quasi-Newtonian fluids, partial differential 

equations, fluid flow in porous media,  For various and concrete applications of these spaces we refer 

to [4-9].  For further, and more detailed properties of 
 p x

L  spaces  we refer to  [10-12].  Next we 

introduce some notations, present some fundamental definitions and recall some basic results of 
 xpL  

spaces.  In this paper, a variable exponent function means a measurable bounded function such that 

   . : 1,p   .  p
 and p

 notations stands for  

  sup :p ess p x x   ,     inf :p ess p x x   . 

We give modular functional          :
xp

p x
L     

 
such that  
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   
 

.
p x

x dx  


   

The space 
   p x

L   is defined in the following way: 

     
 

 :  measurable : <  holds  .
p xxpL x dx 



 
    

 
  

Then 
   xpL   is a Banach space under the Luxemburg norm 

 

             (1) 

If <p  , then in 
   xpL   space, the following inequality estimates  a strong relationship between 

the modular functional and the norm 

       
     

1 1 1 1

min ,  max ,p p p p
p x

           
   

    
   

. 

If  p x p (constant) for all x , then space 
   xpL   agree with the classical Lebesgue 

space  pL   and these two norm values are equal.  The topology of the function space 
   xpL   

supplied with the norm (1) is equivalent to the topology of modular    convergence if and only if

<p  .  Notion of conjugate exponent from the classical case can be generalized to variable case by 

the similar formula  

   
1 1

1
p x q x

   

 

For any measurable function 
   .pL   and

   .qL  the Hölder like inequality 

     
 

 
 p x q x

x x dx x x    


  

holds.  

We use the sign   to indicate the Lebesgue measure of a  set 
n . Following shows us 

that when the exponent  p x   is bounded then almost every 
nx  is a Lebesgue point. This is 

shown in [13].  For 
nx  and >0t ,   ,B x t  stand for the open ball having center x  and radius t .  

Let <p  .  
   p x nL  then   

     

 
 

inf > 1 . 0 :xp

p x

L p x

x
dx


  

 

 
 

   
  


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 
   

 

 

0

, 

1
lim 0

,  

p y

t

B x t

y x dy
B x t

     

for almost every 
nx . 

For two functions  and    defined in
n

, the convolution of  and , denoted by    , 

given by the formula: 

     
n

x x y y dy       

A useful inequality for convolution is Young's inequality.  The Young's inequality is not true 

with full generality in 
 .pL : 

    1p x p x
       

the inequality is valid if and only if  p x  is constant. 

2. Methods 

Since the result that we wanted to prove  was proved in general measure space rather than 

Lebesgue measure in classical Lebesgue spaces ,  we also state and prove our result in general measure 

space.  Thus, by means of classical the  pL  approach we prove the following theorem.  

 

Lemma 2.1. Let   , ,X M   be a  - finite measure space such that  X   .  Then there 

exists a measurable function  1 , ,L X M   and 
   , ,

q x
L X M   for all measurable variable 

exponent  q x  satisfies  >1q
 and < q   conditions. 

 

Proof.  There exists disjoint sets  1A ,  2A ,  3A , … in M  such that  1 <kA  for each k  

and
1

k
k

X A




 .  Define  
 
1

. k

x
k A




  on each  kA . 

 Now we have  

1 1

1

k
k kX A

d d
k

   
 

 

       

This means that  1 , ,L X M  . 

For   1 q q x q     , also we have 
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   

   
 

 

. .

1

..
1

1

1

1

.

1

.

1

k

k

k

q q

kX A

qq
k A k

q
k A k

q
k

d d

d
k A

d
k A

k

   






























  



  

 

 

 



 

This means that 
   .

, ,
q

L X M  . 

3. Results 

Theorem 3.1.  Let   , ,X M   be a  - finite measure space such that  X   .  Assume a 

measurable variable exponent  p x  satisfies  >1p
,  < p   conditions and   is finite - a.e. on 

X .  If  1 , ,L X M   for each
   , ,

q x
L X M   then 

   , ,
p x

L X M  . 

 

Proof.   By the method of contradiction, let us assume the opposite, namely that 
   .

, ,
p

L X M  . Let us, now, obtain a new measure on  ,X M  as follows 

 
 .p

A

A d      for A M . 

Then    is also a  - finite measure due to  , ,X M  ,  - finite and 
 .p

  finite a.e.,  -on X . 

Also, by Radon–Nikodym derivative we have  
 .p

dv f d .  It is important to be aware  

 
 .p

X

X d     , since we assume
   .

, ,
p

L X M  .  By Lemma 2.1. there is a measurable 

function  satisfying  1 , ,L X M   and 
   .

, ,
q

L X M  .  Let us consider  a function   on 

X  as follows, 
 . 1p

  


 . 

       . . . .q q p q

X X X

d d dv            

This gives us  , ,qL X M  .  We have also  

 .p

X X X

d d d             

This gives us  1 , ,L X M  .  Hence our assumption led to a contradiction, since we have 

assumed  1 , ,L X M  , and thus   must be an element of 
   .

, ,
p

L X M  space. 
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4. Discussion 

 

By applying the classical methods of constant case, we obtained  a reverse of Hölder inequality  

in
   p x

L   space. However, the case 1p   still remain open in this context. 

 

The compliance to Research and Publication Ethics: This work was carried out by obeying research 

and ethics rules. 
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