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Abstract: In this study, at first we provide a general overview of L") (Q) spaces, also known as

variable exponent Lebesgue spaces. They are a generalization of classical Lebesgue spaces L in the
sense that constant exponent replaced by a measurable function. Then, based on classical Lebesgue

space approach we prove a reverse of Holder inequality in LP) (Q) . Therefore, our proof in variable

exponent Lebesgue space is very similar to that in classical Lebesgue space.
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1. Introduction

Variable exponent Lebesgue spaces LP0) (Q) are certain cases of Orlicz—Musielak spaces, and
at this point of view investigation of L"(Q) date back to Hudzik [1] and Musielak [2]. But
historically a paper by W. Orlicz can be considered as the originating paper in this field [3]. These
important spaces are also known as generalized Lebesgue spaces. Since LP0) (Q) space is a natural
generalization of the classical L° (Q) space , therefore, the first question which comes to mind is:
what types of properties L” () space can be transferred to Lp(x)(Q) space? Variable exponent
Lebesgue spaces have found applications in many areas of mathematics, physics and differential
equations. To name few of those applications areas: modeling electrorheological fluids, image
restoration, the calculus of variations, the analysis of quasi-Newtonian fluids, partial differential
equations, fluid flow in porous media, For various and concrete applications of these spaces we refer
to [4-9]. For further, and more detailed properties of LP() spaces we refer to [10-12]. Next we
introduce some notations, present some fundamental definitions and recall some basic results of LPX)
spaces. In this paper, a variable exponent function means a measurable bounded function such that
p(.):Q2—>[Loo). p*and p~ notations stands for

p" =esssup{p(x):xeQ}, p =essinf{p(x):xeQ}.

We give modular functional p, (¢)=p(9): L0 (©) > R such that
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The space L") (€2) is defined in the following way:

L") (Q) = {gb ‘) —> R measurable .ﬂqﬁ(x)‘p(x) dx< oo holds }
Q

Then LP™ (€2) is a Banach space under the Luxemburg norm

p(x)

: o |2(x
i Wl =t >0, )z,

1)

If p*<oo, then in LP0) (Q) space, the following inequality estimates a strong relationship between

the modular functional and the norm

rind(0(8)+ (@) | = 16, <max{ (o) (@) |

If p(x)= p(constant) for allx €2, then space L0 () agree with the classical Lebesgue
space L° (Q) and these two norm values are equal. The topology of the function space P (Q)
supplied with the norm (1) is equivalent to the topology of modular p convergence if and only if
p“<co. Notion of conjugate exponent from the classical case can be generalized to variable case by
the similar formula

For any measurable function ¢ e LPV (Q) andpe L0 () the Holder like inequality

j¢(x)¢(x)dxsﬂ”¢(x)‘

Q

()

p(x) a(x)

holds.

We use the sign |Q| to indicate the Lebesgue measure of a set Q < R". Following shows us
that when the exponent p(x) is bounded then almost every x € R" is a Lebesgue point. This is
shown in [13]. For xeR" andt>0, B(X,t) stand for the open ball having center X and radiust.
Let p*<oo. ge P (R”) then
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1

lim,_, —|B(x, t)|

[ 1#(y)-9(0 "y =0

B(x, t)

for almost every x e R".

For two functions ¢ and ¢ defined inR", the convolution of ¢and¢, denoted by @*¢ |,

given by the formula:
po(x)= [ p(x—y)p(y)dy

A useful inequality for convolution is Young's inequality. The Young's inequality is not true
with full generality in LPV:
[0l < @] ) Il

the inequality is valid if and only if p(x) is constant.

2. Methods

Since the result that we wanted to prove was proved in general measure space rather than
Lebesgue measure in classical Lebesgue spaces, we also state and prove our result in general measure
space. Thus, by means of classical the L" (Q) approach we prove the following theorem.

Lemma 2.1. Let (X,M,v) be a o - finite measure space such thatv(X)=oo. Then there
exists a measurable function y ¢ Ll(X, M ,v) and v e 1909 (X ,M,v) for all measurable variable
exponent ¢(X) satisfies g >1 and g*< oo conditions.

Proof. There exists disjoint sets A, A,, A,,...in M such that 1<v(A,)<oofor each k

1
v (A)

and X =[OJA(. Define y (x) = oneach A .
k=1

Now we have

[ =3[l =35 ==

k=1 A k=1

This means that y & L'(X, M, z).

For 1<q™ <q(Xx)<q" <o, also we have
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[y =3 [l Vav
X

k:l/.\k
% 1

= d
;,;[ K0 [V(A()]q() v
- 1

< d
é,;[kqiv(/xk) '

< 3 —<®
ka1 kA

This means that y L90) (X ‘M ,v) .

3. Results

Theorem 3.1. Let (X M ,,u) be a o - finite measure space such that ,u(X ) =00, Assume a
measurable variable exponent p(x) satisfies p~>1, p*<oo conditions and |¢| is finite 4 - a.e. on
X . If gpell'(X,M, ) foreachgp e Lq(x)(X,M,,u) then ¢ Lp(x)(X,M,y).

Proof. By the method of contradiction, let us assume the opposite, namely that
X Lp(‘)(X,M , ). Let us, now, obtain a new measure on (X, M) as follows

v(A) =j|¢|p(')d/,z for AeM.
A

Then v isalso a o - finite measure due to (X,M,,u), o - finite and |¢|p(') finite a.e., £-on X .
Also, by Radon-Nikodym derivative we have dv=|f|p(')d 4. It is important to be aware

v(X)= J|¢| p(')dy = o0, since we assume ¢ ¢ L°V (X,M, z). By Lemma 2.1. there is a measurable
X

function y satisfying y & L' (X,M,v) and y € Lq(')(X,M,v). Let us consider a function ¢ on
X as follows, @ = 1//|¢|p(')_1.

J‘|¢|Q(-)dﬂ _ J.|‘//|q(l) |¢|p(')d,u _ J'|‘//|q(')dv <o

X X X

This gives us @ € L (X, M, ££). We have also
[1o0ld = [lwlle)™ dpe= [lwidv =0
X X X

This gives us @¢@ ¢ Ll(X,M,y). Hence our assumption led to a contradiction, since we have

assumed ¢g € L' (X, M, £), and thus ¢ must be an element of LPC) (X, M, u)space.
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4. Discussion

By applying the classical methods of constant case, we obtained a reverse of Holder inequality

in L") (Q) space. However, the case p~ =1 still remain open in this context.

The compliance to Research and Publication Ethics: This work was carried out by obeying research
and ethics rules.
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