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Abstract
In this study, we have conducted comparative analysis between false alarm rate (FAR)
and average run length (ARL) based control charts with runs rules. In this regard, we
have considered various univariate and multivariate control charts which include mean,
standard deviation, variance, Hotelling, and generalized variance. For evaluation purpose,
we have used actual false alarm rate, power, in-control actual average run length, and out-
of-control average run length as performance indicators. Furthermore, the performance
indicators are calculated through Monte Carlo simulation procedures. Results revealed
that performance order of runs rules with FAR based control charts are persistent whereas,
performance order of runs rules with ARL based control charts are dependent on the
circumstances, that is, sample size, size of shift, type of control chart, and side of control
limit (upper-sided and lower-sided). Besides, we have provided a real life example using
the data on electrical resistance of insulation. In this approach, we have determined that
behavior of FAR and ARL based control charts using the real data is recorded similar to
the behavior using the statistical performance indicators.
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Keywords. Average run length, control chart, false alarm rate, performance indicators,
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1. Introduction
The theory of control charts was first proposed by Walter A. Shewhart in 1931 [17] for

the detection of assignable causes of variations in a parameter (location and dispersion) of a
process characteristics. The assignable causes of variations are unnaturally appeared in an
ongoing process, and they are usually occurred due to improper adjustment of controller,
operators error, and low quality of batch material. A control chart based on the concept of
Shewhart [17] is often known as Shewhart-type control chart. The Shewhart-type control
chart based on classical runs rule (any single point out-of-control) is generally considered
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less efficient for detection of small variations in a parameter [13]. However, to increase
the ability of Shewhart control charts towards detection of small variations, Western [21]
recommended sensitizing rules or runs rules (also known as decision rules). With passage
of time, various authors introduced new forms of sensitizing rules as well as explored
their behavior in forms of actual in-control average run length (abbr. as AIARL and
denoted as ARLact) and out-of-control average run length (abbr. as OARL and denoted as
ARL1) such as [3–6,10,15,18–20]. The AIARL is an actual value of the average number of
sample points that stayed in-control before declaring a process out-of-control on the basis
of decision points when in-fact process is in-control. Furthermore, OARL is the average
number of sample points that stayed in-control before declaring a process out-of-control
on the basis of decision points when actually process is out-of-control.

Champ and Woodall [3] investigated the AIARL as well as OARL of different sensitizing
rules. In addition, they used Markov Chain approach as computational technique. Their
results showed that although simultaneously implementation of sensitizing rules enhanced
the detection ability of Shewhart type control chart but at the same time generated another
issue. The issue stated as AIARL deviated from intended level, that is, substantially
degraded. To overcome the issue of sensitizing or runs rules, many authors recommended
to incorporate the correct value of in-control probability of single point (abbr. as IPSP and
denoted as p0) into the design structure of Shewhart type control chart [4, 5, 8, 10, 15, 22].
The IPSP is defined as the probability of an out-of-control signal when in-fact a process
is in-control. Furthermore, IPSP is generally computed through involving an appropriate
method by taking into account an independent choice of runs rules and prefix value of
FAR (denoted as α) or in-control ARL (denoted as ARL0). The prefix value of α can
be defined as the prefix value of probability of decision points for a given choice of runs
rule when in-fact a process is in-control. On the other hand, ARL0 is the prefix value of
the average number of sample points that should be stayed in-control before declaring a
process out-of-control on the basis of decision points when in-fact process is in-control.

The appropriate method for computing the IPSP is considered important in designing
of Shewhart-type control charts. For instance, Klein [5] computed IPSP based on Markov
chain approach for designing and evaluating the mean (X̄) control chart. Khoo [4] es-
tablished graphical plots based on Markov chain approach to obtain the IPSP of existing
and proposed runs rules. In addition, he applied the probabilities of single point in the
construction of X̄ control chart. Shepherd et al. [16] computed the IPSP based on Markov
chain approach for designing and evaluation of attribute control chart under runs rules. In
continuation, Riaz et al. [15] utilized the proposed equation for designing the FAR based
upper-sided mean (symbolized as X̄U), variance (S2

U), standard deviation (SU) and range
(RU) control charts. In addition, they showed that proposed equations play its role to
maintain the AFAR of FAR based X̄U , S2

U , SU and RU control charts under runs rules at
α. The applications of polynomial equation by [15] can be seen in various studies such
as [9, 11, 12, 22]. In this particular research direction, Mehmood et al. [8] offered new
polynomial equation alternative to the study by [15] for increasing the detection ability of
two sided Shewhart-type control chart under runs rules.

The aforementioned literature review is representing the FAR and ARL based control
charts. A control chart depends on the α is termed as FAR based control chart such
as [15, 22]. Likewise, ARL based control chart depends on the ARL0 such as [4, 5]. It is
valuable to mention that numbers of studies have been seen on the topic of FAR and ARL
based control charts separately. In this research direction, it is very rare to find study on
the comparative analysis between FAR and ARL based control charts. This has taken as
the motivation of current study.

This study aims to conduct comparative analysis between FAR and ARL based con-
trol charts with runs rules. To achieve the goal, we will construct design structures of
upper-sided and lower-sided univariate and multivariate control charts with runs rules.
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The upper-sided and lower-sided univariate control charts include mean (X̄U and X̄L),
variance (S2

U and S2
L), and standard deviation (SU and SL). Furthermore, upper-sided and

lower-sided multivariate control charts contain generalized variance (|S|U , and |S|L) and
Hotelling’s (T 2

U). Besides, we will evaluate the performance of FAR and ARL based control
charts by considering the AFAR, power (denoted as P1), AIARL, and OARL as performance
measures. The P1 is defined as the probability of the decision points for a given choice
of runs rule that are declared out-of-control when in-fact the process is out-of-control. In
addition, for computation of the performance measures, we will illustrate and also employ
the Monte Carlo simulation procedures without loss of generality. Furthermore, we will
conduct comparative analysis on the behavior of FAR and ARL based control charts under
classical and additional runs rules. All of the prescribed methods for comparative analysis
cover the statistical aspects of current study. To highlight the practical significance of
the study, a real life example will be presented using the data on electrical resistance of
insulation.

Rest of the article is organized as follows: In Section 2, we will construct different
design structures of FAR and ARL based control charts with classical and additional runs
rules. In Section 3, we will discuss Monte Carlo simulation procedure for computing
different performance measures of each control chart under consideration, and also conduct
comparative analysis. In Section 4, we will give a real life example using the data on
electrical resistance of insulation to compare the behavior of FAR and ARL based control
charts with runs rules. Lastly, we will summarize and conclude the whole study in Section
5.

2. Design structures of FAR and ARL based Shewhart-type control charts
under runs rules

In this section, we construct FAR and ARL based design structures of the Shewhart-
type control charts under runs rules. Now assume that a process characteristic X follows
a normal distribution and characteristics (Y1, Y2) follow bivariate normal distribution.

2.1. X̄U control chart
Let X̄j, j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a process

is said be out-of-control if k/k or k/k + r consecutive statistic X̄j falling above the control
limit UX̄ . The X̄j and UX̄ are formulated as follows:

X̄j = 1
n

n∑
i=1

Xij , UX̄ = µ0 + Z(1−p0)
σ0√

n
,

where µ0 and σ0 are known in-control mean and standard deviation of X, Z(1−p0) is (1 − p0)th
percentile of standard normal distribution [13]. Furthermore, choice of p0 depends on the
prefix value of k/k or k/k + r runs rules and α or ARL0. The correct value of p0 is desired
to sustain the αact or ARLact of a control chart at α or ARL0, respectively. To compute the
required p0 value, one of the best solutions provided by [15] in the form of a polynomial
equation for handling the FAR based control charts. Riaz et al. [15] introduced exact
polynomial equation for computing the required p0 value as per the given choice of k/k or
k/k + r and α. Thus, polynomial equation for computing the p0 as per the given choice of
k/k and α or ARL0 are given as:

p0 = k
√

α, if α is given,

ARL0(1 − p0)pk
0 + pk

0 − 1 = 0, if ARL0 is given.
(2.1)
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To cover the case of k out of k + r (denoted as k/k + r, r ≥ 1) runs rules, expressions to
obtain p0 for the given value of α or ARL0 are as follows:

α =
(k+r

k

)
pk

0(1 − p0)r, if α is given,

p0 = R(k|k + r, ARL0), if ARL0 is given,
(2.2)

where R(k|k + r, ARL0) denote a constant, lies between zero and one, and it depends on
the given value of k/k +r and ARL0. Besides, a control chart dependent on α is termed as
FAR based control chart. Similarly, a control chart contingent on ARL0 is called ARL based
control chart. The theoretical justification of Eqs.(2.1)–(2.2) when α given can be seen in
[8]. In addition, theoretical illustration of Eq.(2.1) when ARL0 given is as follows: The
probability distribution (also called run length distribution) of k/k consecutive statistics
breached the control limit is generalized geometric distribution of order k with parameter
p0 [2]. As our interest is to find out correct value of p0 so that ARLact of a Shewhart-type
control remains equal to ARL0. Therefore, we equate the mean of generalized geometric
distribution of order k with parameter p0 to ARL0. Note that value of p0 in Eq. (2.2)
when ARL0 given is hard to obtain by analytical approach. However, one may calculate
using a computational technique (e.g. Monte Carlo simulation) with a condition that
ARLact remains equal to ARL0.

2.2. X̄L control chart
Let X̄j, j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a process

is said be out-of-control if k/k or k/k + r consecutive X̄j falling below the LX̄ . The X̄j and
LX̄ are formulated as follows:

X̄j = 1
n

n∑
i=1

Xij , LX̄ = µ0 + Zp0
σ0√

n
,

where Zp0 is p0th percentiles of standard normal distribution [13]. Rest of the discussion
remained similar to Section 2.1.

2.3. S2
U and S2

L control charts
Let S2

j , j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a process
is said be out-of-control if k/k or k/k + r consecutive S2

j crossed the control limit (US2 for
S2

U or LS2 for S2
L control chart). The S2

j , US2 , and LS2 are formulated as follows:

S2
j = 1

n − 1

n∑
i=1

(Xij − X̄j), US2 = wU σ2
0

n − 1
, LS2 = wLσ2

0
n − 1

,

where wU and wL are (1 − p0)th and p0th percentiles of chi-squared distribution with n − 1
degree of freedom, and σ2

0 is known in-control variance of X.

2.4. SU and SL control charts
Let Sj, j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a process

is said be out-of-control if k/k or k/k + r consecutive Sj falls outside the control limit (US

for SU or LS for SL control chart). The Sj, US , and LS are formulated as follows:

Sj =

√∑n
i=1(Xij − X̄j)

n − 1
, US = mU σ0√

n − 1
, LS = mLσ0√

n − 1
,

where mU and mL are (1 − p0)th and p0th percentiles of chi distribution with n − 1 degree
of freedom, and σ0 is known in-control standard deviation of X.



Comparative analysis of control charts 279

2.5. Bivariate T 2
U control chart

Let T 2
j , j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a process

is said be out-of-control if k/k or k/k + r consecutive T 2
j lies beyond the UT 2 . The T 2

j and
UT 2 are formulated as follows:

T 2
j = n(Mj − µ0)tΣ−1

0 (Mj − µ0), UT 2 = t2
U ,

where Mj = (Ȳ1j , Ȳ2j)t is the jth sample mean vector, µ0 = (µ10, µ20)t is known in-control
mean vector of Y1 and Y2, Σ0 is variance-covariance matrix of Mj, and t2

U is (1 − p0)th
percentile of chi-squared distribution with two degree of freedom.

2.6. Bivariate |S|U and |S|L control charts
Let |S|j, j = 1,2,3,... denote the jth plotting statistic of sample of size n. Thus, a

process is said be out-of-control if k/k or k/k + r consecutive |S|j falls outside the control
limit (U|S| for |S|U or L|S| for |S|L control chart). The Sj, US , and LS are formulated as
follows:

|S|j = S2
1jS2

2j − S2
12j , U|S| = |Σ0| b2

U

4(n − 1)2 , L|S| = |Σ0| b2
L

4(n − 1)2 ,

where S2
1j and S2

2j are jth sample variance of size n, S2
12j is sample covariance between

process characteristics (Y1 and Y2), bU and bL are (1 − p0)th and p0th percentiles of chi-
squared distribution with 2n − 4 degree of freedom, and |Σ0| is the determinants of Σ0.

3. Computation of performance measures and comparative analysis
In this section we are intended to provide Monte Carlo simulation procedure [7, 15] for

computing the performance measures of upper-sided and lower-sided control charts under
runs rules (see Sec. 2), and also conduct comparative analysis. The performance measures
are αact, P1, ARLact, and ARL1, and their further details are given in Sec. 1. A control
chart for different choices of runs rules is said to be best if αact or ARLact is equal to α or
ARLo, respectively. Likewise, a control chart under different choices of runs rules can be
announced best for a certain choice of runs rule if it attains minimum ARL1 or maximum
P1 given that the control chart has same ARL0 or α respectively.

3.1. X̄U and X̄L control charts
To compute the P1 of X̄U control chart, generate 105 random samples of size n from nor-

mal distribution with out-of-control mean µ∗ = µ0 + δ1σ0 (where δ1 ≥ 0 represents amount
of upward shift) and in-control standard deviation σ0 followed by calculating the plotting
statistics (X̄j) and comparing them with UX̄ to count the number of statistics falling above
the UX̄ . Finally, proportion of plotting statistics falling above the UX̄ is reported as P1.
Similarly, one may proceed for X̄L control chart by considering LX̄ with µ∗ = µ0 + δ2σ0
(where δ2 ≤ 0 represents amount of downward shift). Furthermore, for computing the
ARL1, generate a random sample of size n from normal distribution followed by calculat-
ing the statistics to compare with the UX̄ or LX̄ for deciding either process is in-control or
out-of-control. Afterwards, repeat the prescribed procedure until the process is declared
out-of-control and then record the sample number (run length). Likewise, repeat the afore-
mentioned procedure 105 times to attain the vector of run length. Ultimately, average of
the vector of run length is required ARL1. Note that αact and ARLact is the special case
of P1 and ARL1, respectively when δ1 = δ2 = 0. Based on the aforesaid procedures, we have
attained αact, ARLact, P1 and ARL1 of X̄U and X̄Lcontrol charts for some selective choices
of δ1, δ2, n, α = 0.0027, ARL0 = 370, k/k and k/k + r (see Tables 1–3). Thus, the results
are discussed as follows:
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• The αact and ARL0 of mean control charts (X̄U and X̄L) are obtained equal to
α and ARL0 (i.e. αact = α = 0.0027 and ARLact = ARL0 = 370) for classical
and additional runs rules (see Table 1). This means that Eqs.(2.1)–(2.2) plays its
role for resolving the issue of Shewhart-type control charts under runs rules. The
details about the issue of Shewhart-type control charts are given in Sec. 1.

• Behavior of FAR based mean control charts with runs rules are sustained in terms
of P1 (see Tables 2–3). Similarly, we have observed for the case of ARL based mean
control charts in terms of ARL1. These outcomes can be interpreted as detection
ability of X̄U control chart is similar to the X̄L control chart when in-control process
mean is shifted to new level with same magnitude of distance.

• The detection ability of FAR based mean control charts are observed uniformly
higher for all choices of shifts (δ1 > 0 and δ2 < 0) in terms of P1 when additional
runs rules are employed as compared to 1/1 runs rule (see Tables 2–3). In con-
tinuation, detection ability of ARL based mean control charts are found higher for
only small-to-moderate shifts (e.g. 0 < δ1 < 1) in terms of ARL1 when additional
runs rules are implemented relative to classical runs rule. This implies that ARL
based mean control charts are efficient towards detection of small-to-moderate
shifts when additional runs rules are considered, and also efficient for large shifts
when classical runs rule is incorporated.

• There are relationships between detection ability and choices of k/k, k/k + r, n,
δ1 and δ2 (see Tables 2–3). For instance, detection ability of FAR based mean
control charts uniformly increase as value of k/k increases. This remains valid for
all choices of n, δ1 and δ2. Also, detection ability of ARL based mean control charts
increase as value of k/k increases.

• Among variant choices of runs rules, the 3/4 with mean control charts is proved
efficient towards detection of small-to-moderate shifts relative to the other choices.
Also, based on the detection ability in terms of ARL1 and P1, performance order
of runs rules with mean control charts is 3/4, 3/3, 2/4, 2/2, 2/3, and 1/1.

Table 1. αact and ARLact at α = 0.0027, ARL0 = 370, δ1 = 0, δ2 = 0, δ3 = 1,
δ4 = 1, d∗ = 1, d = 0, k/k and k/k + r

1/1 2/2 3/3 2/3 2/4 3/4
αact ARLact αact ARLact αact ARLact αact ARLact αact ARLact αact ARLact

X̄U 0.0027 370.37 0.0027 370.17 0.0027 370.14 0.0027 370.18 0.0027 370.10 0.0027 370.15
X̄L 0.0027 370.37 0.0027 370.17 0.0027 370.13 0.0027 370.43 0.0027 370.53 0.0027 370.10
S2

U 0.0027 370.17 0.0027 370.60 0.0027 370.40 0.0027 370.63 0.0027 370.13 0.0027 370.72
S2

L 0.0027 370.17 0.0027 370.17 0.0027 370.14 0.0027 370.18 0.0027 370.10 0.0027 370.43
SU 0.0027 370.23 0.0027 370.31 0.0027 370.13 0.0027 370.43 0.0027 370.53 0.0027 371.20
SL 0.0027 370.21 0.0027 370.28 0.0027 370.40 0.0027 370.63 0.0027 370.13 369.71 372.42
|S|U 0.0027 370.25 0.0027 370.17 0.0027 370.14 0.0027 370.18 0.0027 370.10 0.0027 371.31
|S|L 0.0027 370.37 0.0027 370.17 0.0027 370.13 0.0027 370.43 0.0027 370.41 0.0027 372.31
T 2

U 0.0027 370.37 0.0027 370.11 0.0027 370.40 0.0027 370.63 0.0027 370.20 0.0028 371.25

3.2. S2
U , S2

L, SU , SL, |S|L and |S|U control charts
The mechanism for computing P1 and ARL1 of S2

L and S2
U control charts is similar to

X̄L and X̄U control charts except in-control mean is stable µ0, whereas in-control variance
σ2

0 is out-of-control, that is, σ2
1 = (δ3σ0)2 and σ2

1 = (δ4σ0)2, where δ3 ≥ 1 and δ4 ≤ 1 are
upward and downward shift. Likewise, for SU and SL control charts, assume that the
in-control mean is stable, whereas standard deviation is out-of-control σ1 = δ3σ0 and σ1 =
δ4σ0. Besides, procedures for computing the power and out-of-control average run length
of |S|L and |S|U control charts is to assume the µ0 is stable, whereas Σ0 is out-of-control
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Table 2. P1 and ARL1 of X̄U control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and δ1

X̄U

δ1

1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 372.02 0.0028 371.70 0.0027 369.47
0.05 0.0038 263.16 0.0042 240.47 0.0045 228.97 0.0043 243.52 0.0047 233.21 0.0048 225.25
0.1 0.0053 188.68 0.0065 159.79 0.0074 146.52 0.0069 155.64 0.0077 151.97 0.0082 136.01
0.15 0.0072 138.89 0.0097 108.75 0.0117 96.92 0.0107 106.06 0.0122 102.20 0.0136 89.33
0.2 0.0098 102.04 0.0142 75.73 0.018 66.16 0.0164 71.05 0.019 69.54 0.0219 59.05
0.25 0.0131 76.34 0.0204 53.9 0.027 46.6 0.0244 50.62 0.0288 48.99 0.034 41.87
0.3 0.0174 57.47 0.0288 39.23 0.0392 33.84 0.0355 36.90 0.0426 34.92 0.0513 29.75
0.35 0.0228 43.86 0.0398 29.19 0.0556 25.28 0.0505 27.64 0.0615 26.00 0.0747 21.88
0.4 0.0295 33.9 0.0539 22.19 0.0767 19.41 0.0702 20.55 0.0863 19.74 0.1056 17.12
1 0.2925 3.42 0.5316 3.22 0.6708 3.88 0.7029 3.11 0.8065 3.14 0.8406 3.611

Table 3. P1 and ARL1 of X̄L control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and δ2

X̄L

δ2

1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 370.15 0.0028 369.27 0.0027 367.20
-0.05 0.0038 263.16 0.0042 240.47 0.0045 228.97 0.0043 239.73 0.0047 232.81 0.0048 219.60
-0.1 0.0053 188.68 0.0065 159.79 0.0074 146.52 0.0069 158.33 0.0077 148.88 0.0082 138.42
-0.15 0.0072 138.89 0.0097 108.75 0.0117 96.92 0.0107 106.96 0.0122 101.41 0.0136 89.84
-0.2 0.0098 102.04 0.0142 75.73 0.018 66.16 0.0164 71.94 0.019 68.35 0.0219 59.87
-0.25 0.0131 76.34 0.0204 53.9 0.027 46.6 0.0244 51.56 0.0288 48.12 0.034 42.35
-0.3 0.0174 57.47 0.0288 39.23 0.0392 33.84 0.0355 37.01 0.0426 34.98 0.0513 30.04
-0.35 0.0228 43.86 0.0398 29.19 0.0556 25.28 0.0505 27.25 0.0615 26.00 0.0747 22.00
-0.4 0.0295 33.9 0.0539 22.19 0.0767 19.41 0.0702 20.38 0.0863 20.11 0.1056 16.98
-1 0.2925 3.42 0.5316 3.22 0.6708 3.88 0.7029 3.1292 0.8065 3.12 0.8406 3.60

(say Σ1), that is,

µ0 =
[

µ10
µ20

]
and Σ1 =

[
δ2

5σ2
10 δ5δ6ρσ10σ20

δ5δ6ρσ10σ20 δ2
6σ2

20

]
,

where δ2
5 ≥ 1 and δ2

6 ≥ 1 are amount of shifts in the in-control variances (σ2
10 and σ2

20),
ρ is the amount of correlation between Y1 and Y2. After that, generate random sample
from bivariate normal distribution with µ0 and Σ1 followed by calculating the |S|U and
comparing with the control limit (U|S| or L|S|) to decide whether the process is in-control
or out-of-control. Rest of the steps for computing P1 and ARL1 of |S|L and |S|U control
charts are identical to X̄L and X̄U control charts. It is worthy to mention that detection
ability of |S|L and |S|U control charts are dependent on the product of shifts d∗2 = δ2

5δ2
6 and

n in respective of the choice of other quantities such as µ0, and Σ1. This property is termed
as invariance property. Therefore, one may consider the product value of shift instead of
assuming each shift separately. For comparative purpose, we have obtained αact, ARLact,
P1 and ARL1 of S2

U , S2
L, SU , SL, |S|L and |S|U control charts at α = 0.0027, ARL0 = 370,

various choices of k/k, k/k + r, δ3, δ4 and d∗ (see Tables 4–9). Note that αact and ARLact

is the special case of P1 and ARL1, respectively when δ3 = δ4 = d∗ = 1. Now discussions
on the behavior of S2

U , S2
L, SU , SL, |S|L and |S|U control charts are given in the following

points:
• The αact and ARL1 of S2

U , S2
L, SU , SL, |S|L and |S|U control charts are obtained

equal to prefix values of α and ARL0 (i.e. αact = α = 0.0027 and ARLact = ARL0
= 370) for classical and additional runs rules (see Table 1).
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• The detection ability of FAR based S2
U and SU control charts uniformly increases

for small n (e.g. n < 5) in terms of P1 as value of k/k increases. In comparison,
detection ability of ARL based S2

U and SU control charts decreases for small n in
terms of ARL1 as value of k/k increases. This may illustrate as the k/k runs rules
are useful for FAR based S2

U and SU control charts at any choice of n relative to
1/1 runs rule, whereas k/k runs rules are not beneficial for ARL based S2

U and SU

control charts when n is small. However, for n ≥ 5, detection ability of ARL based
S2

U and SU control charts with 2/2 and 3/3 runs rules are seen higher at wide range
of shifts relative to 1/1 runs rule (see Tables 4 & 6). Between runs rules, 2/2 results
in higher detection ability of ARL based S2

U and SU control charts as compared to
3/3.

• The diagnosing ability of FAR based |S|U control chart uniformly increases for small
n (e.g. n < 5) in terms of P1 as value of k/k increases. In contrast, detection ability
of ARL based |S|U control chart reduces for small n (e.g. n < 5) in terms of ARL1
as k/k increases. This may illustrate as k/k runs rules are useful for FAR based
|S|U control chart relative to 1/1 runs rule at any choice of n, whereas k/k runs
rules are not useful for ARL based |S|U control chart when n is small. However, for
n ≥ 5, detection ability of ARL based |S|U control chart under k/k runs rules is seen
higher than 1/1 runs rule (see Table 8) at various choices of shifts (1 < d∗ < 1.50).
Among k/k runs rules, 3/3 results in highest detection ability of ARL based |S|U
control chart for 1 < d∗ ≤ 1.20 relative to 2/2. Similarly, 2/2 results into highest
detection ability of ARL based |S|U control chart for 1.20 < d∗ ≤2.5 relative to 3/3.

• The detection ability of FAR based S2
L, SL, and |S|L control charts are uniformly

higher when additional runs rules are applied relative to classical runs rule (see
Tables 5,7 & 9). Similarly, detection ability of ARL based S2

L, SL, and |S|L control
charts are observed maximum for small-to-moderate shifts when additional runs
rules are employed.

• The n, δ3, δ4 and d∗ have an effect on the detection ability of S2
U , S2

L, SU , SL, |S|L
and |S|U control charts. In simple words, detection ability of FAR and ARL based
control charts increases in terms of P1 and ARL1 as size of n, δ3, δ4 and/or d∗

increases (see Tables 4–9).
• At several choices of small-to-moderate shifts (δ3, δ4 and d∗), either 2/4 or 3/4 runs

rule is proved efficient with dispersion control charts relative to k/k runs rules in
general. In terms of ARL1 and P1, performance order of various runs rules with
dispersion control charts is as follows: 2/4, 3/4, 2/3, 2/2, 3/3, 1/1 when S2

U and SU ;
3/4 3/3, 2/2, 2/3 or 2/4, 1/1 when S2

L and SL. Also, for |S|U and |S|L control charts,
pattern of various runs rules are almost similar to S2

U and S2
L control charts.

Table 4. P1 and ARL1 of S2
U control chart at n = 5, α = 0.0027, ARL0 = 370,

k/k, k/k + r and δ3

S2
U

δ3

1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

1 0.0027 370.37 0.0027 370.76 0.0027 370.02 0.0026 370.30 0.0028 369.33 0.0027 368.29
1.10 0.0096 104.13 0.0104 101.86 0.0109 103.72 0.0125 96.65 0.0149 88.38 0.0137 92.38
1.21 0.0255 39.261 0.029 39.24 0.0313 41.48 0.0398 34.36 0.0509 32.29 0.0452 34.14
1.32 0.0542 18.44 0.0632 19.36 0.0692 21.39 0.0946 17.09 0.1256 15.56 0.1086 17.26
1.44 0.0977 10.23 0.115 11.44 0.1263 13.21 0.1802 10.00 0.2417 9.42 0.2056 10.54
1.56 0.1552 6.44 0.1824 7.71 0.1998 9.28 0.2901 6.77 0.3853 6.50 0.3265 7.50
1.69 0.2235 4.47 0.2609 5.72 0.2841 7.14 0.4116 5.08 0.5335 4.91 0.4555 5.80
1.82 0.2985 3.35 0.3446 4.56 0.3724 5.87 0.5313 4.12 0.6665 3.988 0.5777 4.89
1.96 0.3757 2.66 0.4284 3.83 0.459 5.06 0.6391 3.48 0.7734 3.44 0.6835 4.31
4 0.9074 1.10 0.9302 2.11 0.9401 3.12 0.9941 2.08 0.9995 2.08 0.9958 3.06
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Table 5. P1 and ARL1 of S2
L control chart at n = 5, α = 0.0027, ARL0 = 370,

k/k and δ4

S2
L

δ4

1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0.04 1 7 1 1 1 3 1 2 1 2 1 3
0.36 0.1158 8.63 0.5922 2.94 0.8862 3.21 0.66 3.11 0.7173 3.25 0.9442 3.21
0.42 0.0676 14.79 0.3642 4.31 0.6797 3.80 0.41 4.57 0.4567 4.80 0.7674 3.73
0.49 0.0401 24.96 0.1995 7.06 0.4285 5.17 0.2238 7.43 0.2494 7.79 0.4996 5.08
0.56 0.0242 41.27 0.1015 12.57 0.2269 8.17 0.1115 13.04 0.1239 13.36 0.2646 7.98
0.64 0.015 66.75 0.0496 23.74 0.1053 14.75 0.0531 24.55 0.0586 24.92 0.1202 14.64
0.72 0.0095 105.62 0.0238 46.47 0.0447 29.78 0.0249 47.61 0.0272 46.70 0.0494 29.39
0.81 0.0061 163.65 0.0114 92.65 0.0179 65.52 0.0116 93.81 0.0126 93.50 0.0192 64.05
0.90 0.004 248.51 0.0055 185.72 0.007 152.93 0.0055 186.30 0.0059 187.79 0.0072 152.44
1 0.0027 370.37 0.0027 370.76 0.0027 370.02 0.0026 377.00 0.0028 368.91 0.0027 371.57

Table 6. P1 and ARL1 of SU control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and δ3

SU

δ3

1/1 2/2 3/3 2/3 2/4 3/4
p1 ARL1 p1 ARL1 p1 ARL1 p1 ARL1 p1 ARL1 p1 ARL1

1 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 373.71 0.0028 368.81 0.0027 368.77
1.05 0.0053 189.71 0.0055 186.51 0.0057 187.42 0.006 178.51 0.0068 171.72 0.0064 174.27
1.1 0.0094 106.93 0.0101 104.6 0.0106 106.43 0.0121 97.71 0.0144 90.02 0.0132 93.83
1.15 0.0153 65.22 0.017 64.13 0.0182 66.31 0.0219 58.28 0.027 54.83 0.0245 55.96
1.2 0.0235 42.49 0.0267 42.32 0.0288 44.57 0.0363 37.09 0.0462 34.82 0.0412 36.70
1.25 0.0342 29.25 0.0393 29.68 0.0428 31.87 0.056 25.72 0.0729 24.12 0.064 26.12
1.3 0.0474 21.09 0.055 21.89 0.0602 23.98 0.0814 19.12 0.1075 17.64 0.0933 19.00
1.35 0.0632 15.82 0.0739 16.85 0.0811 18.81 0.1123 14.67 0.1498 13.64 0.1288 15.26
1.4 0.0815 12.27 0.0956 13.43 0.1051 15.28 0.1482 11.62 0.1987 10.93 0.1696 12.32
2 0.3976 2.52 0.4515 3.68 0.4828 4.89 0.6667 3.36 0.7986 3.31 0.7099 4.17

Table 7. P1 and ARL1 of SL control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and δ4

SL

δ4

1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0.2 0.5616 1.78 0.9977 2 1 3 0.9997 2.00 0.9999 2.016 1 3.00
0.6 0.0191 52.43 0.0716 17.09 0.1577 10.76 0.0777 17.48 0.086 17.67 0.1824 10.75
0.65 0.0141 70.76 0.0453 25.78 0.0951 16.01 0.0483 27.41 0.0533 26.43 0.1081 15.43
0.7 0.0107 93.65 0.029 38.76 0.0566 24.46 0.0305 39.11 0.0334 40.06 0.0631 24.44
0.75 0.0082 121.81 0.0188 57.9 0.0335 38.05 0.0195 59.30 0.0212 59.07 0.0366 36.74
0.8 0.0064 156.02 0.0124 85.76 0.0199 59.81 0.0127 87.37 0.0137 86.16 0.0213 58.85
0.85 0.0051 197.07 0.0083 125.74 0.0119 94.52 0.0084 127.79 0.009 127.99 0.0125 93.10
0.9 0.0041 245.86 0.0056 182.36 0.0072 149.48 0.0056 185.15 0.006 184.65 0.0074 148.47
0.95 0.0033 303.3 0.0039 261.5 0.0044 235.78 0.0038 264.10 0.0041 264.93 0.0044 237.43
1 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 373.48 0.0028 372.11 0.0027 367.01



284 R. Mehmood, M.H. Lee, I. Ali, M. Riaz

Table 8. P1 and ARL1 of |S|U control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and d∗

|S|U

d∗
1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

1 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 370 0.0028 370 0.0027 370
1.05 0.0040 250.79 0.0042 244.81 0.0043 243.16 0.0043 238.69 0.0048 239.53 0.0046 234.54
1.1 0.0057 176.56 0.0061 169.22 0.0064 167.88 0.0067 161.21 0.0076 155.46 0.0073 156.97
1.15 0.0078 128.55 0.0086 121.66 0.0092 120.91 0.01 116.82 0.0116 107.89 0.0111 109.15
1.2 0.0104 96.37 0.0118 90.51 0.0128 90.29 0.0142 84.36 0.017 79.37 0.0161 79.05
1.25 0.0135 74.130 0.0157 69.36 0.0172 69.58 0.0196 62.81 0.0238 58.89 0.0225 60.14
1.3 0.0171 58.31 0.0203 54.55 0.0225 55.1 0.0262 49.84 0.0324 46.04 0.0305 47.18
1.35 0.0214 46.8 0.0256 43.88 0.0287 44.67 0.0341 38.97 0.0429 37.42 0.0401 37.07
1.4 0.0262 38.23 0.0318 36.02 0.0358 36.98 0.0434 32.20 0.0552 30.25 0.0514 30.76
2 0.1234 8.11 0.1572 8.74 0.1805 10.01 0.2447 7.67 0.3238 7.40 0.2889 8.23

Table 9. P1 and ARL1 of |S|L control chart at n = 5, α = 0.0027, ARL0 = 370,
k/k, k/k + r and d∗

|S|L

d∗
1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0.2 0.1553 6.44 0.6141 2.87 0.8693 3.26 0.7119 2.93 0.7767 3.07 0.9426 3.22
0.6 0.0109 91.36 0.0265 42.13 0.0471 28.6 0.0287 43.38 0.0319 41.87 0.0542 27.44
0.65 0.0088 113.24 0.019 57.38 0.0318 39.98 0.0202 57.79 0.0224 57.09 0.0358 38.11
0.7 0.0072 138.38 0.0139 77.26 0.0216 55.79 0.0145 79.31 0.016 77.62 0.0239 53.49
0.75 0.006 167 0.0102 102.89 0.0149 77.58 0.0106 104.58 0.0116 102.30 0.0161 76.19
0.8 0.005 199.34 0.0077 135.57 0.0104 107.36 0.0078 139.23 0.0085 132.88 0.011 104.68
0.85 0.0042 235.62 0.0058 176.81 0.0073 147.72 0.0059 174.74 0.0063 172.15 0.0076 146.35
0.9 0.0036 276.07 0.0045 228.36 0.0052 201.98 0.0044 232.46 0.0048 228.26 0.0053 194.40
0.95 0.0031 320.91 0.0035 292.25 0.0037 274.33 0.0034 294.21 0.0037 286.50 0.0038 278.27
1 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 374.14 0.0028 369.12 0.0027 370.25

3.3. T 2
U control chart

The procedure for computing the P1 and ARL1 of T 2
U control chart is similar to |S|U

and |S|U control charts except difference is at least one elements of µ0 is shifted (say µ1),
whereas Σ0 is stable, that is,

µ1 =
[
δ7

δ8

]
, δ7 = δ8, and Σ0 =

[
σ2

10 ρσ10σ20

ρσ10σ20 σ2
20

]
where δ7 ∈ ℜ and δ8 ∈ ℜ represent amount of shift in the in-control process means, thats
is, µ10 and µ20 respectively. After that, generate random sample from bivariate normal
distribution with µ0 and Σ1 followed by calculating the T 2

j and comparing with UT 2 to
decide whether the process is in-control or out-of-control. Rest of the steps for computing
P1 and ARL1 of T 2

U control chart are similar to X̄U control chart. It is valuable to mention
that detection ability of T 2

U control chart is dependent on the Mahalanobis distance d, that
is,

d =
√

(µ1 − µ0)tΣ−1
0 (µ0 − µ1),

and n in respective of the choice of other quantities (µ1, and Σ0). This property is termed
as directional invariance [14]. Therefore, we have considered shift in form of d as can be
seen in many existing studies such as Mehmood et al. [7] and Pignatillo and Runger [14].
Also, for α = 0.0027, ARL0 = 370, and some choices of n, d, k/k and k/k + r, we have
provided αact, ARLact, P1 and ARL1 in Table 10. Similarly one may proceed for other
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choices of α, ARL0, n, d, k/k and k/k + r. Furthermore, results are described in following
points:

• The αact and ARL1 of T 2
U control chart are determined equal to α and ARL0 (i.e. αact

= α = 0.0027 and ARLact = ARL0 = 370), respectively for classical and additional
runs rules (see Table 1).

• The detection ability of FAR based T 2
U control chart is uniformly outstanding at

various choices of d when additional runs rules are plugged relative to classical runs
rule in general. In comparison, ARL based T 2

U control chart is noted superior for
small-to-moderate d when additional runs rules are integrated relative to classical
rule (see Table 10).

• The n and d are associated with the detection ability of T 2
U control chart. It

is summarized as detection ability of T 2
U control chart in terms of P1 and ARL1

increases as size of n and/or d increases (see Table 10).
• The 2/4 runs rule is performed superb with T 2

U control chart for detection of small-
to-moderate d relative to the other runs rules schemes. Also, performance order
of various runs rules is as follows: 2/4 is ranked at 1st position followed by 3/4 at
2nd, 2/3 at 3rd, 3/3 at 4th, 2/2 at 5th, and 1/1 at last.

Table 10. P1 and ARL1 of T 2
U control chart at n = 5, α = 0.0027, ARL0 = 370,

k/k, k/k + r and d.

T 2
U

d
1/1 2/2 3/3 2/3 2/4 3/4
P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1 P1 ARL1

0 0.0027 370.37 0.0027 370.76 0.0027 370.03 0.0026 374.76 0.0028 367.76 0.0027 367.97
0.4 0.0094 106.89 0.011 97.04 0.0119 96.42 0.0173 72.709 0.0208 67.74 0.0198 69.14
0.5 0.0149 67.11 0.019 57.89 0.0215 57.15 0.0332 41.84 0.0411 37.78 0.0403 38.57
0.6 0.0236 42.34 0.0327 35.04 0.0387 34.54 0.0614 24.60 0.0778 22.67 0.0781 22.74
0.8 0.056 17.85 0.0884 14.35 0.1113 14.52 0.1756 9.74 0.2265 9.26 0.2324 9.31
0.9 0.0829 12.06 0.1362 9.86 0.1739 10.25 0.2682 6.85 0.3434 6.72 0.352 6.76
1 0.1191 8.4 0.1999 7.12 0.2558 7.67 0.3817 5.9 0.4802 4.10 0.4893 5.56
1.1 0.1657 6.03 0.2792 5.4 0.3542 6.05 0.5076 4.99 0.6214 3.15 0.628 4.41
1.2 0.2233 4.48 0.3714 4.29 0.4627 5.01 0.6335 3.78 0.7494 2.1 0.7515 3.72
1.4 0.3681 2.72 0.5728 3.05 0.6767 3.86 0.8383 2.8 0.9206 2 0.9161 2.15

4. Real life example
In this section, we conduct a comparative analysis between FAR and ARL based control

charts with runs rules by using the practical data sets. The purpose of comparative analysis
with aid of practical data sets is to know whether the behavior of FAR and ARL based
control charts remains similar as described in Section 3 using the statistical performance
indicators. To achieve the purpose, we consider a data set from Alwan [1] which refers back
to [17] containing the data on 204 consecutive measurement on the electrical resistance
of insulation in megohms. The data set is normally distributed with mean=4498.076
and the standard deviation=328. Afterwards, we have developed a code in R language to
implement the FAR and ARL based X̄U control charts for k/k = 1/1, 2/2, 3/3, α = 0.0027,
and ARL0 = 370 (see Figures 1–2).

The FAR based X̄U control chart shows 3, 5 and 6 out-of-control signals for the 1/1,
2/2 and 3/3 runs rules, respectively (see Figure 1). It is worthy to mention that numbers
of out-of-control signals given by ARL based X̄U control chart with varying choices of runs
rules are equal to the case of FAR based X̄U control chart (see Figure 2). This indicates
that behavior of FAR and ARL based X̄U control charts are identical. Also, additional runs
rules contributes towards detection of small and moderate variations. This comparative
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discussion is in accordance with the statistical results provided in Section 3.1. On the
similar lines, one may attempt for the other choices of control charts.
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Figure 1. FAR based X̄U control chart for varying choices of runs rules (k =
1, 2, 3) and α = 0.0027
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Figure 2. ARL based X̄U control chart for varying choices of runs rules (k =
1, 2, 3) and ARL0 = 370

5. Summary, conclusions and future recommendations
In this article, we have described comparative behavior of false alarm rate (FAR) and

average run length (ARL) based control charts with runs rules. In the list of univariate
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and multivariate control charts, we have included upper-sided and lower-sided mean, vari-
ance, standard deviation, generalized variance, and Hotelling’s. For comparative analysis
and discussions, we have included actual false alarm rate, power, in-control actual average
run length, and out-of-control average run length as performance measures. Further-
more, performance measures are computed by using Monte Carlo simulation procedures
as computation methodology. Besides, diverse results are presented by taking into ac-
count numbers of factors. The detection ability of FAR based lower-sided and upper-sided
control charts are remained uniformly higher when additional runs rule are incorporated
relative to classical runs rule. Also, detection ability of ARL based lower-sided control
charts are recorded outstanding for small-to-moderate shifts when additional runs rules
are employed relative to classical runs rules. In brief, performance order of decision rules
with FAR based lower-sided and upper-sided control charts are persistent, whereas per-
formance order of decision rules with ARL based control charts are dependent on the
circumstances, that is, sample size, size of shift, class of control chart (location and dis-
persion), and side of control limit (upper-sided and lower-sided). Lastly, we have provided
a real life example using the data on electrical resistance of insulation. In the real life
example, we have recorded that behavior of FAR and ARL based control charts using the
real data sets are similar to the behavior using the statistical measures.

The scope of current study covers the processes in which characteristics follows normal
distribution and parameters are known. It is often that process distribution is non-normal
or unknown, and parameters are unknown. Therefore, it would be excellent to conduct an
efficient study in future for non-normal distribution and parameters are unknown. Like-
wise, one may contribute a study by involving robust techniques (e.g. robust estimators
and non-parametric) with control charts. An interesting study can be added on the topic
of comparative analysis between cumulative sum (CUSUM) and exponentially weighted
moving average (EWMA) control charts with runs rules.
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