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Abstract 

 
       In this study, we examined the Newton-Rapson method from fixed point iterations. With a few examples, 

we proved the validity of the method again. 
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1.Introduction 

Takahashi [6] introduced the concept of convex metric space which is a more general space and each 

linear normed space is a special case of a convex metric space. In 2005, Tian[6] gave some sufficient and 

necessary conditions such that the Ishikawa iteration sequence for an asymptotically quasi-nonexpansive 

mapping to converge to a fixed point in convex metric spaces. In 2009, Wang and Liu [6] gave some sufficient 

and necessary conditions for an Ishikawa iteration sequence with errors to approximate a common fixed point of 

two uniformly quasi-Lipschitzian mappings in convex metric spaces. 

 
      Fixed Point Theory is a beautiful mixture of analysis , topology and geometry. Topological ideas are 

present in almost all the areas of today's mathematics. The subject of topology itself consists of several 

different branches; such as point set topology, algebraic topology and differential topology, which have 

relatively little in common. 

          Fixed point theorems give the conditions under which mappings have solutions. Over the last fifty years or 

so, the theory of fixed points has been revealed as a very powerful and important tool in the study of nonlinear 

phenomena. 

   In particular, fixed point techniques have been applied in such diverse fields as Biology, Chemistry, 

Economics, Engineering, Game theory and Physics.[1] 

       Fixed Point Theorems with Applications to Economics and Game Theory by Kim Border (1985) is a 

complement, not a substitute, explaining various forms of the fixed point principle such as the KKMS theorem 

and some of the many theorems of Ky Fan, along with the concrete details of how they are actually applied in 

economic theory. Fixed Point Theory by Dugundji and Granas (2003) is, even more than this book, a 

comprehensive treatment of the topic. Its fundamental point of view audience  and technical base  are quite 

different, but it is still a work with much to offer to economics. [2] 

 

    In the previous two lectures we have seen some applications of the mean value theorem. We now see another 

application. In this lecture we discuss the problem of finding approximate solutions of the equation 

 

                                                                     g(x) = 0                                                                                   (1) 

 

In some cases it is possible to find the exact roots of the equation (1), for example, when  g(x) is a quadratic or 

cubic polynomial. Otherwise, in general, one is interested in finding approximate solutions using some  methods. 

Here, we will discuss a method called fixed point iteration method and a particular case of this method called 

Newton's method. [3] 
 

2. Fixed Point Iteration Method  

 
 In this method, we first rewrite the equation (1) in the form  
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                                                                    x = f(x)                                                                          (2) 

 

in such a way that any solution of the equation (2), which is a fixed point of  f , is a solution of 

equation (1). Then consider the following algorithm. 

 

2.1. Algorithm: 

 

Start from any point x0 and consider the recursive process 

  

                                                               xn+1 = f(xn);      n = 0; 1; 2; …                                                        (3)  

 

If  f  is continuous and (xn) converges to some   p0   then it is clear that   p0 is a fixed point of f and hence it is a 

solution of the equation (1). Moreover,   xn can be considered as an approximate solution of the equation (1).  

 

First let us illustrate whatever we said above with an example. 

 

Example 2.1: We know that there is a solution for the equation   x3 − 3x + 1 = 0   in [0; 1]. We rewrite 

the equation in the form  

 

x =  
1

3
(x3 + 1) 

and define the process  

xn+1 =  
1

3
(x3 + 1) 

 

 We have already seen in a tutorial class that if    0 ≤ x0 ≤ 1  then (x0) satisfies the Cauchy criterion and hence it 

converges to a root of the above equation. We also note that if we start with  x0 = 2 then the recursive process 

does not converge.  

 

    It is clear from the above example that the convergence of the process (3) depends on  f  and the starting point  

x0. Moreover, in general, showing the convergence of the sequence (xn) obtained from the iterative process is 

not easy.  For this reason, we can ask the following problems. 

 

Problems: 
 Under what assumptions on f  and x0 , does Algorithm one converge ? When does the sequence (xn) obtained 

from the iterative process (3) converge ? The following result is a consequence of the mean value theorem. 

 

Theorem 2.1    Let  f : [a; b] → [a; b]  be a differentiable function such that 

 

                                                       |f ′(x)| ≤  α < 1    for all x ϵ [a; b]                                                              (4) 

 

Then  f  has exactly one fixed poin t p0 ϵ [a; b] and the sequence (xn) defined by the process (3), with 

a starting point  x0ϵ [a; b], converges to p0. 

 

Proof :  By the intermediate value property  f   has a fixed point, say p0 .  

 

The convergence of  (xn) to  p0  follows from the following inequalitie 

 

                           |xn − p0| = |f(xn−1) − f(p0)| ≤   α|xn−1 − p0| 
 

≤    α2|xn−2 − p0| 
 

………………. 

 

                                                                            ≤   αn|x0 − p0|→0 

If   p1 is a fixed point then  

 

                               |p1 − p0| = |f(p1) − f(p0)| ≤   α|p1 − p0|  <  |p1 − p0| . This implies that   p1 = p0 . 
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Example 2.2  

       2.2.1: Let us take the problem given in Example 2.1 where  f(x) =  
1

3
(x3 + 1). Then 

     

f : [0; 1] → [0; 1]   and  |f(x)′| < 1/3    for all  x ϵ [0; 1] 

 

 

2.2. Consider  h(x) :[0; 2] → R defined by  h(x) = (1 + x)1/3. Observe that  h  maps [0, 2] onto itself. 

 

Moreover   |h′(x)| ≤  1/3 < 1   for  x ϵ [0; 2]. By the previous theorem the sequence (xn) defined by 

 

xn+1 =  (1 + xn)1/3 converges to a root of   x3 − x − 1 = 0 in the interval [0; 2].  

 

      In practice, it is often dificult to check the condition  h([a; b]) ⊆ [a; b] given in the previous theorem. We 

now present a variant of Theorem 2.1.  

 

Theorem 2.2 Let  p0 be a fixed point of  f(x). Suppose f(x) is differentiable on [p0 − ε, p0 + ɛ]  for 

some  ɛ > 0 and f satisfies the condition   |f ′(x)| ≤  α < 1  for all x ϵ [p0 − ε, p0 + ɛ] . Then the sequence (xn) 

defined , with a starting point   x ϵ [p0 − ε, p0 + ɛ] , converges to p0. 

  

Proof : By the mean value theorem  f ([p0 − ε, p0 + ɛ])  ⊑ [p0 − ε, p0 + ɛ] . 

     Therefore, the proof follows from the previous theorem. The previous theorem essentially says that if the 

starting point is sufficiently close to the fixed point then the chance of convergence of the iterative process is 

high.  

Remark : If  f is invertible then  p0 is a fixed point of f if and only if  p0 is a fixed point of f −1(x). 

In view of this fact, sometimes we can apply the fixed point iteration method for f −1(x) instead of f. 

For understanding, consider  f(x) = 2x+1  then  |f ′(x)|   = 2 for all x. So the fixed point iteration 

     

3.Newton's Method or Newton-Raphson Method : 

The following iterative method used for solving the equation f(x) = 0 is called Newton's method. 

3.1 Algorithm :    xn+1 = 
f(xn) 

f′(xn)
      n = 0; 1; 2; :::: 

It is understood that here we assume all the necessary conditions so that xn is well defined. If we 

Take        

                                                    g(x) = x - 
f(x) 

f′(x)
            

 then Algorithm 3.1 is a particular case of Algorithm 2.1. So we will not get in to the convergence analysis of 

Algorithm 3.1. Instead, we will illustrate Algorithm 3.1 with an example. 

Example 3.1: Suppose  f(x) = x3 + 3 and we look for the positive root of   f(x) = 0. Since f ′(x)= 3x2, 

the iterative process of Newton's method is 

xn+1=  
1 

3
(xn +

3 

xn
 )   n = 0; 1; 2; …  

We have already discussed this sequence in a tutorial class. Geometric interpretation of the iterative 

process of  Newton's method : Suppose we have found (xn; f(xn)). To find  xn+1 , we approximate the graph y = 

f(x) near the point (xn; f(xn)).  
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 the tangent :  

f(x) - f(xn ) = f ′(xn) (x - xn)   

 

Note that xn+1 is the point of intersection of the x-axis and the tangent at xn . 
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