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Abstract 
 

Purpose of this paper is to  determine some regular non-extendible D(n) triples for some 

fixed integer n. Besides, paper includes a number of algebraic properties for such diophantine 

sets with size three.  
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1.Introduction and Preliminaries 

 

There are a lot of  significant and attracted  results in the literature related with 

Diophantine sets and equations. One of them was started by a Greek mathematician Diophantus 

of Alexandria in the 3rd century. Mathematicians have been interested in Diophantine sets for 

a long time before due to  unsolved problems in the literature.  
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For this paper, we use some basic notions such as quadratic reciprocity and residues ( 

[3, 7, 13-16,22]), legendre symbol ([5, 12]) and Diophantine sets with their regularity ([6,8-10, 

17-21])  as well as significant books ([1, 2, 4, 6, 10, 16]) from  algebraic and elemantary number 

theories. We obtain regular non-extendibility of some D(n) Diophantine triples where n is 31 

or -31.Additionally, we demontrate that some types of elements can not be in  D(∓31). 

 

Definition 1.1. ([𝟔, 𝟖, 𝟗])	 A Diophantine m-tuple with the property D(n) (it sometimes 

representatives as 𝑷𝒏	 with m-tuples) for n an integer is an m-tuple of different positive integers 

{𝜷𝟏, … , 𝜷𝒏}  such that  𝜷𝒊𝜷𝒋 + 𝒏 is always a square of an  integer for every distinct  i, j. 

As a special case, If n =3 then it is called by D(n) - Diophantine triple. 

 

Definition 1.2. ([𝟖]) If 𝑫(𝒏)- triple {𝒖, 𝒗, 𝒘}  satisfies the following condition 

		(𝒘 − 𝒗 − 𝒖)𝟐 = 𝟒(𝒖. 𝒗 + 𝒏)                                               (𝟏. 𝟏) 

then {𝑢, 𝑣, 𝑤}  is called Regular Diophantine Triple. 

 

Definition 1.3.  ([13, 15])Let 𝑞 be an odd prime and  𝑢 be an integer such that  𝑔𝑐𝑑(𝑢, 𝑞) = 1. 

The quadratic residue symbol H𝒖
𝒒
J is defined to be 1 or -1 according as the 

congruence  𝑥L ≡ 𝑢	(mod	𝑞) is solvable or not. 

 

Also, Quadratic Reciprocity law was formulated by Euler although Legendre discovered 

it independently of Euler in 1785. We can see some results on this  law as follows: 

 

Theorem 1.1. ([12]) (Quadratic Reciprocity Law) Let 𝑝, 𝑞 be different odd primes. Then, 

 

(i) If 𝑝 ≡ 1(𝑚𝑜𝑑	4) or 𝑞 ≡ 1(𝑚𝑜𝑑	4), then 𝑝 is a square (mod 𝑞) if and only if  𝑞 is a square 

(mod 𝑝). 

(ii) If 𝑝 ≡ 3(𝑚𝑜𝑑	4) and 𝑞 ≡ 1(𝑚𝑜𝑑	4), then 𝑝 is a square (mod 𝑞) if and only if 𝑞 is not a 

square (mod 𝑝). 

 

Theorem 1.2. ([2, 12, 14, 22]) (First Supplement to the Quadratic Reciprocity Law) Let 𝑞 be 

an odd prime.  Then,  -1 is a square (mod 𝑞) necessary and sufficient condition  𝑞 ≡ 1(𝑚𝑜𝑑	4) 

holds.  
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Theorem 1.3.	([12,14]) (Second Supplement to the Quadratic Reciprocity Law) Let p be an 

odd prime. Then 2 is a square mod 𝑞 if and only if  𝑞 ≡ 1, 7	(𝑚𝑜𝑑	4). 

 

Definition 1.4. ([5, 7]) The symbol H𝜶
𝒒
J  is called Legendre Symbol, if H𝜶

𝒒
J   equals to 1. It 

means that  𝛼 is a quadratic residue.  

      HY
Z
J = [						1 if	𝛼	is	a	quadratic	residue	modulo	𝑞

−1 													if	𝛼	is	a	non − quadratic	residue	modulo	𝑞                           (1.2) 

 

Proposition 1.1. ([5, 7]) Let 𝑞 be an odd prime. Then following properties are satisfied. 

(a) 𝑚 ≡ 𝑛	(𝑚𝑜𝑑	𝑞) implies Hi
Z
J = Hj

Z
J 

(b) The Legendre Symbol is multiplicative: Hi
Z
J . Hj

Z
J = Hi.j

Z
J where  𝑚, 𝑛 are integers and 

coprime to 𝑞 prime. 

 

 

2. Theorems And Results 

 

Theorem 2.1.  𝑃lmn = {2, 9, 25}	 is regular but non-extendible Diophantine triple. 

 

Proof.  For regularity, we consider the  condition (1.1) of Definition 1.2. So, it is seen   that 

𝑃lmn = {2, 9, 25} is a regular triple. We suppose  that {2, 9, 25}			can extendible to Diophantine 

quadruple for any positive integer 𝜗 and {2,9,25	𝜗}  is a 𝑃lmnquadruple. Then, there are 

𝑎n, 𝑎L, 𝑎m integers such that, 

2𝜗 + 31 = 𝑎nL                                                                        (2.1) 

9𝜗 + 31 = 𝑎LL                                                                        (2.2) 

25𝜗 + 31 = 𝑎mL                                                                        (2.3) 

Eliminating 𝜗 between (2.2) and (2.3), we obtain following equation: 

25𝑎LL − 9𝑎mL = 496                                                                      (2.4) 

Applying factorization method on the (2.4), we get a table as follows:  

 

Table 2.1. Solutions of 	25𝑎LL − 9𝑎mL = 496   

 

 

Solutions 1.Class of Solutions 2.Class of Solutions 

(𝑎L, 𝑎m) (∓25,∓41) (∓7,∓9) 
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Considering  (2.1) and (2.2),  we obtain 

9𝑎nL − 2𝑎LL = 217                                                                   (2.5) 

Considering above solutions, we have 𝑎LL = 625 , 𝑎LL = 49. If we put these values into the  

(2.5) we have 𝑎nL = 163, 𝑎nL = 35. This is a contradiction since 𝑎n isn’t an integer. 

So, there is no such 𝜗	positive integer and  𝑃lmn = {2, 9, 25}	 can be non-extended to 

𝑃lmn Diophantine quadruple. 

 

Theorem 2.2.  A set 𝑃lmn = {3,46,75} is both regular and non-extendible to the  𝑃lmn 

Diophantine quadruple. 

 

Proof. 𝑃lmn = {3,46,75} satisfies (1.1) regularity condition of Definition 1.2. So, it is regular. 

Supposing   that 𝑃lmn = {3,46,75,ω} be a 𝑃lmn  Diophantine quadruple for positive integer ω. 

There are 𝑏n, 𝑏L, 𝑏m integers such that  

3ω+ 31 = 𝑏n
L                                                                (2.6) 

46ω+ 31 = 𝑏L
L                                                                (2.7) 

75ω+ 31 = 𝑏m
L                                                                (2.8) 

hold. Dropping ω from (2.6) and (2.8), we have 

25𝑏n
L − 𝑏m

L = 744                                                               (2.9) 

If we use factorization method into the (2.9), we obtain solutions in a following table: 

 

Table 2.2. Solutions of 25𝑏n
L − 𝑏m

L = 744  

Solutions 1.Class of Solutions 2.Class of Solutions 

(𝑏n, 𝑏m) (∓19,∓91) (∓13, ∓59) 

 

Dropping  ω from (2.6) and (2.7), then we have 

−3𝑏L
L + 46𝑏n

L = 1333                                                             (2.10) 

From  Table 2.2, we have 𝑏n
L = 361 or  𝑏n

L = 169. If we substitute them  into the (2.10), we 

obtain 𝑏L
L = 5091 or  𝑏L

L = 2147 respectively. It is a contradiction and 𝑏L isn’t  integer 

solution for (2.10). 

Thus, there is not positive integer ω and  𝑃lmn = {3,46,75}  can not be extended to 𝑃lmn 

Diophantine quadruple. 
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Theorem 2.3. 𝑃lmn = {3,75, 110} is a regular triple but can not nonextendible to 

𝑃lmn	Diophantine triple. 

 

Proof. First of all, let’s show that  𝑃lmn = {3,75, 110} is a regular triple. If we use regularity 

condition for 𝑃lmn = {3,75, 110}, it is easily seen that the set holds condition (1.1). That is why, 

set is regular.    

Similarly, let us assume that 𝑃lmn = {3,75, 110, α} be a Diophantine quadruple for 

positive integer α. So, we get 𝑐n, 𝑐L, 𝑐m 	 ∈ 	ℤ such that following equations are satisfied. 

  3𝛼 + 31 = 𝑐nL                                                                      (2.11) 

75𝛼 + 31 = 𝑐LL                                                                      (2.12) 

110𝛼 + 31 = 𝑐mL                                                                      (2.13) 

If we reduce  𝛼 from (2.11) and (2.12), we obtain  an equation as same as  (2.9) for (𝑐n, 𝑐L). So, 

we have the solutions as same as  Table 2.2 for  (𝑐n, 𝑐L). Dropping 𝛼 from (2.11) and (2.13), 

then we obtain 

110𝑐nL − 3𝑐mL = 3317                                                             (2.14) 

Substituting 𝑐nL = 361 or  𝑐nL = 169 into the (2.14), 𝑐mL = 12131, or 𝑐mL = 5091 are got. It 

is seen  that 𝑐m is not integer solution for (2.14). Thus, it is a contradiction. 

Therefore, there is no positive integer 𝛼 and also 𝑃lmn = {3,75, 110} can not be 

extended to 𝑃lmn Diophantine quadruple.  

 

Theorem 2.4. A set  𝑃lmn = {9,25, 66} regular diophantine triple and nonextendible to 𝑃lmn 

quadruple.  

 

Proof. 𝑃lmn = {9,25, 66}  holds  (1.1) condition in the Definition 1.2 . That is why it is regular.  

Assume that 𝑃lmn = {9,25, 66, ℊ} is Diophantine quadruple for 	ℊ ∈ 	ℤl. Definition 1.1 implies 

that  

9	ℊ + 31 = 𝑑n
L                                                              (2.15) 

25	ℊ + 31 = 𝑑L
L                                                              (2.16) 

66	ℊ + 31 = 𝑑m
L                                                              (2.17) 

for 𝑑n, 𝑑L, 𝑑m	𝜖	ℤ. Simplification of (2.15) and (2.16), we have; 

25𝑑n
L −	9𝑑L

L = 496                                                              (2.18) 

This equation is similar to (2.4)  for (𝑑n, 𝑑L). From Table 2.1, we obtain 𝑑n
L = 625 , 𝑑n

L =

49. From (2.15) and ( 2.17), we obtain  
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22𝑑n
L −	3𝑑m

L = 589                                                              (2.19) 

Substituting  𝑑n
L = 625 , 𝑑n

L = 49 into the (2.19), we have 𝑑m
L = 4387 and 𝑑m

L = 163, 

respectively. This is a contradiction since 𝑑m is not integer solution of (2.19).  

Hence, 𝑃lmn = {9,25, 66} can not extendible to 𝑃lmn Diophantine quadruple.  

 

 

Theorem 2.5. Both 𝑃|mn = {2, 100, 128}	 and 𝑃|mn = 	 {2, 128,160}	 are regular Diophantine 

triple and also  non-extendible. 

 

Proof.  We can see that  both 𝑃|mn = {2, 100,128}	 and  𝑃|mn = 	 {2, 128,160}	  are regular 

Diophantine triples from  (1.1) condition.  

Suggesting that {2, 100, 128, ℏ}	 is  a 𝑃|mn Diophantine quadruple for positive integer 

ℏ. Then,, there are 𝑒n, 𝑒L, 𝑒m	𝜖	ℤ such that 

2	ℏ − 31 = 𝑒nL                                                              (2.20) 

100	ℏ − 31 = 𝑒LL                                                              (2.21) 

128	ℏ − 31 = 𝑒mL                                                              (2.22) 

Simplifying 	ℏ between (2.20) and (2.22), we get 

  −64𝑒nL + 𝑒mL = 1953			                                                        (2.23) 

and similarly from (2.20) and (2.21)  

−50𝑒nL + 𝑒LL = 1519                                                             (2.24) 

By factorizing (2.23), we obtain following table for solutions.  

 

Table 2.3. Solutions of 	−64𝑒nL + 𝑒mL = 1953 

 

By substituting  𝑒nL = 14884,  𝑒nL = 289, 𝑒nL = 169, 𝑒nL = 4 into the (2.24), we get  𝑒LL =

745719 𝑒LL = 15969, 𝑒LL = 8450, 𝑒LL = 1719 respectively. It is seen that it is a 

contradiction since 𝑒L 	∉ 	ℤ.  

As a consequence, 𝑃|mn = {2, 100, 128}	can not be extended to 𝑃|mn Diophantine 

quadruple.  

Solutions 1.Class of 

Solutions 

2.Class of 

Solutions 

3.Class of 

Solutions 

4.Class of 

Solutions 

(𝑒m, 𝑒n) (∓977,∓122) (∓143,∓17) (∓113,∓13) (∓47,∓2) 

6



  Let  𝑃|mn = 	 {2, 128, 160, ℒ}	  be a Diophantine quadruple for  ℒ ∈ ℤl. From Definition 

1.1, we have 

2ℒ − 31 = 𝑓n
L                                                              (2.25) 

128ℒ − 31 = 𝑓L
L                                                              (2.26) 

160ℒ − 31 = 𝑓m
L                                                              (2.27) 

for 𝑓n, 𝑓L, 𝑓m	𝜖	ℤ. Dropping  ℒ  from (2.25) and ( 2.26), we have an equation like  (2.19). 

Hence, Table2.3 can be used  for (𝑓L, 𝑓n	) instead of 	(𝑒m, 𝑒n). From (2.25) and (2.27), we also 

have    

−80𝑓n
L + 𝑓m

L = 2449                                                         (2.28) 

Putting  𝑓n
L = 14884,  𝑓n

L = 289, 𝑓n
L = 169, 𝑓n

L = 4 into the (2.28), we have  𝑓m
L =

1193169, 𝑓m
L = 25569, 𝑓m

L = 15969, 𝑓m
L = 2749. It is a contradiction because 𝑓m is not an 

integer solution of (2.28).  

Therefore, 𝑃|mn = {2, 128,160}	 is nonextendable to 𝑃|mn Diophantine triple.  

 

Theorem 2.6. A  set  𝑃|mn = {4, 64, 98} is not only regular but also nonextendible Diophantine 

triple. 

 

Proof. Regularity of 𝑃|mn = {4, 64, 98} can be easily seen from (1.1). In the same way, 

supposing that 𝑃|mn = {4, 64, 98,ℳ} be a Diophantine quadruple for positive integer ℳ. We 

get 𝑔n, 𝑔L, 𝑔m 	∈ 	ℤ such that 

  4ℳ − 31 = 𝑔nL                                                                      (2.29) 

64ℳ − 31 = 𝑔LL                                                                      (2.30) 

98ℳ − 31 = 𝑔mL                                                                      (2.31) 

Dropping ℳ from (2.29) and (2.30), we get an equation as follows: 

𝑔LL − 16𝑔nL = 465                                                                (2.32) 

and if we eliminate ℳ from (2.29) and (2.31), then  

2𝑔mL − 49𝑔nL = 1457                                                             (2.33) 

is obtained. Table 2.4 is got from (2.32)  as follows: 
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Table 2.4. Solutions of 	𝑔LL − 16𝑔nL = 465 

 

Substituting 𝑔nL = 3364, 𝑔nL = 361, 𝑔nL = 121, 𝑔nL = 4,  into the (2.33), 𝑔mL =
n��L�m

L
, 

𝑔mL = 9573, 𝑔mL = 3693, 𝑔mL =
n��m
L

 are got. it is a contradiction since 𝑔m is not integer 

solution for (2.33)  

So, 𝑃|mn = {4, 64,98} can not be extended to 𝑃|mn Diophantine quadruple.  

 

Theorem 2.7. Following conditions are satisfied for 𝑃±mn sets. 

 

(a) There isn’t any set 𝑃lmn includes any multiplication of 4,7, 13, or 19. 

(b) There is no set 𝑃|mn involves any multiplication  of 3,11, 13, or 17. 

 

Proof.  (a) (i) Supposing that  𝑎  is an element of set 𝑃lmn. If 	4𝑚 ∈ 𝑃lmn	 for 𝑚 ∈ 𝑍 ,then  

4𝑚𝑎 + 31 = ΧL                                                               (2.34) 

satisfy for some integer Χ.  Applying (mod 4) on the (2.34), we obtain  

ΧL ≡ 3	(𝑚𝑜𝑑	4)                                                              (2.35) 

Since Χ ∈ 𝑍, then Χ is even or odd integer. So, (2.35) can not has a solution. This is a 

contradiction. Hence,  4𝑚 ∉ 𝑃lmn	 for 	𝑚 ∈ 𝑍. 

 

(ii)Similarly,  assuming that 𝑏 ∈ 𝑃lmn and	7𝑛 ∈ 𝑃lmn	 for  (𝑛 ∈ 𝑍). So,   

7𝑛𝑏 + 31 = ΨL                                                          (2.36) 

holds for integer Ψ. By (mod 7), we obtain 

                                                                ΨL ≡ 3	(𝑚𝑜𝑑	7)                                                (2.37)       

From Theorem 1.1 and Definition 1.4,  

 Hm
�
J H�

m
J = (−1)

���
� 		.		���� = −1                                                  (2.38)  

is hold.. Using Proposition 1.1, we have  H�
m
J = Hn

m
J = +1 and substituting it  into the (2. 38) 

then Hm
�
J = −1  is obtained . This implies that equivalent  (2.38) isn’t  solvable. So, 7𝑛 

∉ 𝑃lmn	for 𝑛 ∈ 𝑍. 

Solutions 1.Class of 

Solutions 

2.Class of 

Solutions 

3.Class of 

Solutions 

4.Class of 

Solutions 

(𝑔L, 𝑔n) (∓233,∓58) (∓79,∓19) (∓49,∓11) (∓23,∓2) 
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(iii)In the same vein, if  𝑐 ∈ 𝑃lmn and	13𝑘 ∈ 𝑃lmn	 for  (𝑘 ∈ 𝑍), then  

13𝑘𝑐 + 31 = ΩL                                                          (2.39) 

holds  for integer Ω. Applying  (mod 13) on (2.39), we have                                                 

    ΩL ≡ 5	(𝑚𝑜𝑑	13)                                   (2.40) 

Using Theorem 1.1 and Definition 1.4, then  

 H �
nm
J Hnm

�
J = (−1)

���
� 		.		����� = +1                                       (2.41)  

is satisfied. By substituting  Hnm
�
J = Hm

�
J = −1 into the (2.41) then we get  H �

nm
J = −1. This is 

a contradiction since (2.40) can not sovable. Therefore,  13𝑘 ∉ 𝑃lmn	for 𝑘 ∈ 𝑍. 

 

(iv)Assume that if  𝑑 ∈ 𝑃lmn and	19𝑙 ∈ 𝑃lmn	. Then,  

 

19𝑙𝑑 + 31 = ΤL                                                          (2.39) 

holds  for integer Τ. Applying  (mod 19) on (2.39), we get                                                

    ΤL ≡ 12	(𝑚𝑜𝑑	19)                                 (2.40) 

From Legendre symbol’s properties  and Theorem 1.3, we have  

                                    HnL
n�
J = H �

n�
J . H m

n�
J = H L

n�
J H L

n�
J H m

n�
J                                                (2.41) 

Using Definition 1.4, we obtain H m
n�
J = −1. It requires that HnL

n�
J = −1 and it is a contradiction 

So,  19𝑙 ∉ 𝑃lmn	for 𝑙 ∈ 𝑍. 

 

(b) Along the same line, assume that any multiply of  3,11, 13, or 17 are in the 𝑃|mn. 

Briefly and respectively, we get  

    AL ≡ 2	(𝑚𝑜𝑑	3)                                 (2.42) 

   BL ≡ 2	(𝑚𝑜𝑑	11)                                   (2.43) 

   CL ≡ 8	(𝑚𝑜𝑑	13)                              (2.44) 

   DL ≡ 3	(𝑚𝑜𝑑	17)                                  (2.45) 

From Theorem 1.3, we calculate  HL
m
J = −1 , H L

nn
J = −1 and H L

nm
J = −1. This is a 

contradiction since (2.42), (2.43) and (2.44) are unsolvable. Besides, from Theorem 1.1 and 

Definition 1.4, we get  H m
n�
J = −1 which means that (2.45) is not solvable. So, any 

multiplication  of 3,11, 13, or 17 are not in the 𝑃|mn. 
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Remark 2.8. One may find different regular non- extendible triples 𝑃lmn	 or 𝑃|mn	  and also 

extend the Theorem 2.7 using our method. 
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