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Abstract
In this work, a family of iterative algorithms for approximating the inverse of a square matrix and the Moore-
Penrose inverse of a non-square one is proposed. These methods are based on arbitrary high-order iterative
techniques which are used for computing roots of a nonlinear function. Therefore the presented techniques
occupy any high-order convergence. The proposed methods are convenient and self-explanatory, achieve satis-
factory results, and also require less and easy computations compared to some current schemes. Experimental
results are provided to illustrate the reliability and robustness of the techniques.
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1. Introduction
For every matrix A ∈ Cm×n, an m×n-matrix of mn complex variables, the Moore-Penrose inverse of A denoted by A† exists
and is a unique matrix for which all the following conditions hold:

1.AA†A = A, 2.A†AA† = A†, 3.
(
AA†)∗ = AA†, 4.

(
A†A

)∗
= A†A,

in which A∗ denotes complex conjugate transpose of the matrix A. The Moore-Penrose pseudo-inverse has a significant role in
matrix computation as well as in other fields of computational and applied mathematics. As a result of this, continuous efforts
are carried out in order to improve algorithms approximating generalized inverse of a non-square matrix. In particular, some
remarkable fields of applications of the concept broadly lie in digital image processing, optimization problems, solution of the
system Ax = b and other industrial applications.

Accordingly, finding methods for computing the Moore-Penrose inverse received a meaningful attention of many researchers
[1, 2, 3, 4]. For A ∈ Cn×n, one of the primary and enough efficient and stable computational methods for approximating A−1

was introduced by Schulz[5]:

Xk+1 = Xk (2In−XkA) , k = 0,1,2, . . . . (1.1)

where In is the identity matrix, and X0 is an initial value for approximating A−1. This iterative method will quadratically
converge to A−1, after enough iterations provided that all eigenvalues of In−X0A are less than 1, i.e., for a matrix norm it holds
that ‖In−X0A‖< 1[6].
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Anyway, a family of iterative schemes for approximating the inverse of a square nonsingular matrix proposed by Li et al.[7]
as follows:

Xk+1 = Xk

(
pI− p(p−1)

2
AXk + . . .+(AXk)

p−1
)

; p = 2,3, . . . .

Each member of the family under the condition ‖In−X0A‖< 1 is a convergent iterative method whose order is related to p.
It is easy to verify that for p = 2 the above relation yields the iterative method (1.1). Furthermore, for p = 3 it turns into the
following

Xk+1 = Xk

(
3I−3AXk +(AXk)

2
)
, k = 0,1,2, . . . , (1.2)

that is third-order convergence iterative method[7]. Then, Chen and Wang [8] extended the results in [7] for the case of
non-square matrices straightforwardly and approximated the Moore-Penrose inverse of them.

In this paper, we are dealing with iterative algorithms that every one of them can find roots of a linear or nonlinear function.
Then, it is shown that based on each of which we can establish an iterative technique that is able to approximate inverse of a
square matrix and the Moore-Penrose inverse of a non-square one. The presented schemes have different orders of convergence
that can arbitrarily increase. Consequently, it yields a matrix inversion method having arbitrary high order convergence.

2. A family of iterative algorithms for solving nonlinear equations
In this section, three well-known iterative algorithms for solving nonlinear equations are reviewed, and a self-explanatory way
to extend them is given. Getting along the next member of the family of algorithms, one can achieve a higher order convergence
iterative method which of course requires much computational cost. However, for all introduced algorithms, it is needed to
compute the first derivate of the given function only. Therefore, it depends on user and the task which iterative technique is
more suitable.

Algorithm 2.1. For a given function f (x) and an initial guess x0 sufficiently close to a simple root of f (x), the following
iterative scheme is known as Newton method and has a quadratic convergence

xn+1 = xn−
f (xn)

f ′(xn)
, n = 0,1,2, . . . .

For a proof of its convergence and more details see, for instance, [9].

Algorithm 2.2. For every function f (x) and an initial guess x0 sufficiently close to a simple root of it, the two step Newton
method is of the form

x2
n = x1

n−
f (x1

n)

f ′(x1
n)
,

x1
n+1 = x2

n−
f (x2

n)

f ′(x2
n)
, n = 0,1,2, . . . ,

which is of fourth order and proposed by Traub [10].

Algorithm 2.3. Consider the function f (x) and assume that x0 is an initial guess sufficiently close to a simple root of f (x).
Then

x2
n = x1

n−
f (x1

n)

f ′(x1
n)
,

x3
n = x2

n−
f (x2

n)

f ′(x2
n)
,

x1
n+1 = x3

n−
f (x3

n)

f ′(x3
n)
, n = 0,1,2, . . . ,

is eighth order method for computing a simple root of f (x) [11].



A Family of Arbitrary High-Order Iterative Methods for Approximating Inverse and the Moore–Penrose Inverse —
111/114

Continuing the above process, it is fairly straightforward to verify that the kth algorithm is as follows. Moreover, pursuing
the uncomplicated calculations similar to what is performed in the case of each of the above algorithms will show that the
below one has 2k order convergence.

Algorithm 2.4. Consider a function f (x) and an initial guess x0 sufficiently close to a simple root of f (x). Then for every k ∈N,
where N denotes the set of natural numbers that is the set of all positive integers, the following iterative scheme converges to
the simple zero of the given function

x2
n = x1

n−
f (x1

n)

f ′(x1
n)
,

x3
n = x2

n−
f (x2

n)

f ′(x2
n)
,

...

xk
n = xk−1

n − f (xk−1
n )

f ′(xk−1
n )

,

x1
n+1 = xk

n−
f (xk

n)

f ′(xk
n)
, n = 0,1,2, . . . .

It is worth noting that applying kth (k = 1,2, . . .) algorithm when k increases, yields a faster converges but requires much
computations, i.e., the more rate of convergence, the more computation cost. Anyway, on the positive side, for every k = 1,2, . . .
it is needed to compute only first derivative of the given function.

3. A family of iterative methods to approximate the inverse and Moore-Penrose inverse

In the previous section a class of iterative methods for solving f (x) = 0 was introduced. Here, it is shown that each member of
the family can give us an iterative method to approximate the inverse and the Moore-Penrose inverse. Inheriting its essential
properties and corresponding technique, the obtained method for matrix inversion has the same order of convergence. It means
that we have iterative methods of arbitrary high order.

To begin with, consider the function f (x) =
1
x
−a and its first derivative that is f ′(x) =

−1
x2 . Also, in what follows suppose

that A ∈ Cm×n,(m≥ n) and I and X0 are the identity matrix and an initial approximation of desired inverse of the appropriate
size, respectively. Then, it is straightforward to verify that

• Algorithm 2.1 easily concludes xn+1 = xn (2−axn) that in its matrix form becomes the following iterative method for
computing the inverse or Moore-Penrose inverse of A:

Xk+1 = Xk (2In−AXk) , k = 0,1,2, . . . ,

that is a second-order convergent method.

• Algorithm 2.2 yields

xn+1 = xn
(
4−6ax+4a2x2−a3x3) , (3.1)

which leads to the following iterative method for computing the inverse or the Moore-Penrose inverse of matrix A:

Xk+1 = Xk

(
4I−6(AXk)+4(AXk)

2− (AXk)
3
)

; k = 0,1,2, . . . . (3.2)

The above iterative method has fourth order convergence.

• Applying Algorithm 2.3 produces

xn+1 = xn

(
8−28ax+56a2x2−70a3x3 +56a4x4−28a5x5 +8a6x6−a7x7

)
,

from which we have the following eight order iterative method for computing the inverse or Moore-Penrose inverse of A:

Xk+1 = Xk

(
8I−28(AXk)+56(AXk)

2−70(AXk)
3 +56(AXk)

4−28(AXk)
5 +8(AXk)

6− (AXk)
7
)
, (3.3)

where k = 0,1,2, . . . .
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Certainly, one can continue using Algorithm 2.4 and for greater positive integer k obtain higher order iterative schemes
and accordingly higher order iterative methods for matrix inversion. In what follows, in order to avoid unnecessary prolix
computations, we restrict ourselves in proving that (3.2) meets all required conditions to be a fourth order iterative method for
computing the inverse or the Moore-Penrose inverse of a given matrix. The extension to the remaining iterative schemes is
straightforward.

Theorem 3.1. Let A ∈ Cm×n,(m≥ n) and an initial approximation X0 ∈ Cn×m of desired inverse be given. If ‖I−AX0‖< 1,
then (3.2) converges to the inverse of A and has fourth order convergence.

Proof. Assume that ‖E0‖= ‖I−AX0‖< 1 and similarly for every k = 1,2, . . . it holds that ‖Ek‖= ‖I−AXk‖. Then,

‖Ek+1‖ = ‖I−AXk+1‖=
∥∥∥I−AXk

(
4I−6(AXk)+4(AXk)

2− (AXk)
3
)∥∥∥

=
∥∥∥(I−AXk)

4
∥∥∥= ∥∥Ek

4∥∥≤ ‖Ek‖4 ≤ ‖Ek−1‖16 ≤ . . .≤ ‖E0‖4k+1
.

Consequently, ‖E0‖ < 1 concludes that ‖I−AX0‖ → 0 as k→ ∞ which implies the convergence of the sequence Xk,k =
0,1,2, . . ..

Besides, to find the order of convergence of (3.2) let Yk be difference between the desired inverse and Xk. In other words, if
the desired inverse is denoted by V , then Yk =V −Xk,(k = 0,1,2, . . .). Therefore,

AYk+1 = I−AXk+1 = Ek+1 = E4
k = (AYk)

4,

which for α = ‖A‖3 concludes

‖Yk+1‖=
∥∥∥Yk(AYk)

3
∥∥∥≤ α‖Yk‖4,

and it means that (3.2) is at least a fourth order convergence.

Remark 3.2. It should be noted that for a given matrix A, several initial values for X0 are introduced. Ben-Israel and Greville
[1] proposed one of the most interesting and useful starting matrix as follows

X0 = βA∗, β ∈

(
0,

2

‖A‖2
2

)
.

In addition, X0 =
AT

‖A‖1‖A‖∞
and X0 = µI,µ ∈ R provided that ‖I−µA‖< 1 are some other conceivable starting values. It is

also worth mentioning that, for some special matrices, employing particular forms of the stating point may leads to more
accurate results. For example,

X0 =


a11

a22
. . .

ann

 ,
is a proper choice when the A is strictly diagonally dominant [12].

Remark 3.3. The following expression that is clearly equivalent to (3.2), can yield a more accurate approximate inverse or
cause rapidly converge to the inverse, especially when are dealing with ill-conditioned matrices

Xk+1 = Xk (4I−AXk (6I−AXk (4I−AXk))) .

Remark 3.4. For A ∈ Cm×n,(m ≤ n) there are discussions and calculations completely similar to what already performed
in case of m≥ n. The only change that must be taken into account is that (3.1) as an algebraic expression can obviously be
written as xn+1 =

(
4−6xa+4x2a2− x3a3

)
xn. Consequently, the iterative scheme (3.2) turns into the following

Xk+1 =
(

4I−6(XkA)+4(XkA)2− (XkA)3
)

Xk; k = 0,1,2, . . . .
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Figure 4.2. Comparison of the number of iterations for 50 matrices

4. Numerical experiments
In this section, the validity and the influence of the proposed methods are examined by a comprehensive example. In the
presented experiment iterative methods given by (3.2) and (3.3) are considered. Also, for k = 4 Algorithm 2.4, by facile
computations analogous to what already discussed in Section 3, will lead to a sixteenth order iterative method for matrix
inversion. Denoting it by Four-step Method, we also test it in our evaluations. The results obtained by these techniques are
compared to the what achieved by the third order method (1.2) and the following seventh-order iterative scheme suggested by
Soleymani[13]
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Figure 4.1. Comparison of CPU time for 50 matrices

Xk+1 =
1
16

Xk [ 120I−3939AXk +735(AXk)
2−861(AXk)

3 +651(AXk)
4−315(AXk)

5

+ 93(AXk)
6−15(AXk)

7 +(AXk)
8], k = 0,1,2, . . . . (4.1)
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We examined these five iterative methods employing 50 matrices of size 500×450 randomly generated by MATLAB. In
our experiments, starting point and the stopping criterion are considered as X0 =

1
2‖A‖22

A∗ and ‖I−XkA‖< 10−7, respectively.

The CPU time and number of iterations for these 50 matrices and the five selected iterative methods are shown in Figures 4.1
and 4.2, in the order already mentioned.

5. Conclusion
A family of iterative algorithms to compute either the inverse of an n×n matrix or the Moore-Penrose inverse of a non-square
one was studied. The main point of the illustrated method was the fact that they are arbitrary high-order iterative techniques
that can also be used to compute the roots of a both linear and nonlinear function. Finding numerical technique to find other
kinds of inverses, particularly those used in real world problems, is the subject of our future research.
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