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EXISTENCE AND MULTIPLICITY OF WEAK SOLUTIONS FOR
PERTURBED KIRCHHOFF TYPE ELLIPTIC PROBLEMS WITH
HARDY POTENTIAL

S. P. ROUDBARI', G. A. AFROUZI'*, §

ABSTRACT. In this paper, we prove the existence of at least three weak solutions for
a doubly eigenvalue elliptic systems involving the p-biharmonic equation with Hardy
potential of Kirchhoff type with Navier boundary condition. More precisely, by using
variational methods and three critical points theorem due to B. Ricceri, we establish
multiplicity results on the existence of weak solutions for such problems where the re-
action term is a nonlinearity function f which satisfies in the some convenient growth
conditions. Indeed, using a consequence of the critical point theorem due to Ricceri,
which in it the coercivity of the energy Euler functional was required and is important,
we attempt the existence of multiplicity solutions for our problem under algebraic condi-
tions on the nonlinear parts. We also give an explicit example to illustrate the obtained
result.

Keywords: Multiplicity of weak solutions, perturbed Kirchhoff type elliptic problems,

Hardy potential, Critical points.
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1. INTRODUCTION

In this article, we study the existence of three weak solutions for the fourth-order
Kirchhoff type elliptic problems with Hardy potential and Navier boundary condition

M AulP da ) A2u — —Jul[P~2u = \ in 0
([ 1aurac) agu- Sl 2= Ao +agle, mon

u=0, Au=0, on 012,

where € is a bounded domain in RY (N > 3) containing the origin and with smooth
boundary 99, 1 < p < %,A%u = A(|Au[P~2Au) is an operator of fourth order, the
so-called p-biharmonic operator, A, u are two positive parameters, M : [0,+oo[— R is a
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continuous function, and f,g : @ x R — R are two continuous functions. The problem (1)
is related to the stationary problem
2 2
0°u
d:n) =0, (2)
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for 0 <z < L, t > 0, where u = u(z,t) is the lateral displacement at the space coordinate
x and the time ¢, E is the Young modulus, p is the mass density, h is the cross-section
area, L is the length and pg the initial axial tension. Kirchhoff [42] first introduced the
model given by the equation (2), which extends the classical D’Alembert’s wave equation
by considering the effects of the changes in the length of the strings during the vibrations.
Equation (2) was developed to form

() — M (/Q Vu(z)? d:c> Au(z) = f(z, u(@)).

After that, many authors studied the following nonlocal elliptic boundary value problem

_140</Q IVu\de) Au(z) = f(z,u) in f;vg (3)

Problems like (3) are called the Kirchhoff type problems that can be used for modeling
several physical and biological systems where u describes a process which depends on
the average of it self, such as the population density, see [1]. Such nonlinear Kirchhoff
model can also be used for describing the dynamics of an axially moving string. In recent
years, axially moving string-like continua such as wires, belts, chains, band-saws have
been subjects of the study of researchers (see [59]) and also many interesting results for
problem of Kirchhoff type were obtained [1, 23, 29, 31, 34, 45, 47, 62]. Similar nonlocal
problems also model several physical and biological systems where u describes a process
that depends on the average of itself, for example, the population density. We also refer
the reader to [3, 4, 16, 27, 46, 52, 58] which discuss the historical development of the
problems as well as describe situations that can be realistically modeled by Kirchhoff-type
problems. Recently, using the variational methods, Graef, Heidarkhani and Kong [27]
studied the existence of at least three weak solutions to the Kirchhoff-type problem

-K (/Q |Vu|2dm> Au(z) = Af(z,u) + pg(r,u) in £, (@)
u=Au=0 on 0€).

Precisely, they in the cited paper by using three critical points theorem due to Ricceri
that follows from [57, Theorem 1] and is fundamental in your discussion established some
new results for the existence of three weak solutions of (4). Also, in [63], the authors by
using the mountain-pass techniques and the truncation method, studied the existence of
nontrivial solutions for a class of fourth-order elliptic equations of Kirchhoff type. In [12],
writers studied the problem

-M </ |Vul|P dm) Apu= f(z,u) inQ,
Q (5)
u=20 on 012,

in the semi-position case; i.e., f(0) < 0. In this paper ([12]) using Browder Theorem au-
thors obtained the existence and uniqueness of solutions for (5). Fourth-order boundary
value problems which describe the deformations of an elastic beam in an equilibrium state
whose both ends are simply supported have been extensively studied in the literature. In
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Lazer and Mckenna [43], have pointed out that this type of nonlinearity furnishes a model
to study traveling waves in suspension bridges. Due to this, many authors have studied
the existence of at least one solution, or multiple solutions, or even infinitely many solu-
tions for fourth-order boundary value problems using lower and upper solution methods,
Morse theory, the mountain-pass theorem, constrained minimization and concentration-
compactness principle, fixed-point theorems and degree theory, and critical point theory
and variational methods, and we refer the reader to the papers [10, 11, 14] and refer-
ences therein. In recent years, the existence and multiplicity of stationary higher order
problems of Kirchhoff type (in n-dimensional domains, n > 1) has been studied, via vari-
ational methods like the symmetric mountain pass theorem in [18] and via a three critical
point theorem in [5]. Wang and An in [62], using the mountain-pass theorem established
the existence and multiplicity of solutions for the following fourth-order nonlocal elliptic
problem

A%y — M (/ ]Vu|2dx> Au(z) = Af(x,u) in Q, (6)
Q
u=Au=0 on 0f2.

We also refer the reader to the papers [22, 39, 48] for such other fourth-order problems. On
the other hand, singular elliptic problems have been intensively studied in recent years, see
for example, [25, 26, 44, 55] and the references. Recently, motivated by this large interest,

the problem
o |ulP?u
Apu = e
u=Au=0 on Of).

where g :]0,4+00[xR — R is a suitable function, has been extensively investigated. For
instance, when p = 2, Wang and Shen [64] considered the problem (7), assuming that
the nonlinearity has the form g(\,z,u) = f(z,u). In this setting, the existence of non-
trivial solutions by using variational methods is established. Successively, Berchio et
al. [7] considered the case g(\,xz,u) = (1 + u)?, are studied the behavior of extremal
solutions to biharmonic Gelfand-type equations under Steklov boundary conditions. Also
in [17, 51, 53], the authors are interested in the existence and multiplicity solutions for this
kind of singular elliptic problems. Precisely, the existence of multiple solutions is proved
by Chung [17] through a variant of the three critical point theorem by Bonanno [8]. Pérez-
Llanos and Primo [53] studied the optimal exponent ¢ to have solvability of problem with
g\, x,u) = ul+cf. Sign-changing solutions is investigated by Pei and Zhang [51]. Huang
and Liu [41] studied the sign-changing solutions for the following p-biharmonic equations
with Hardy potential

+g(\, z,u)  in Q, (1)

|2

2 a -2 _ .
Aju — |ulP™*u = f(x,u) in Q,
u = Au = 0 on 89,

by using the method of invariant sets of descending flow. Also, in [65], by using critical
point theory, was looked for the existence of infinitely many solutions of the problem (1).
Precisely, authors, under appropriate hypotheses on the nonlinear term f, g, the existence
of two intervals A and J such that, for each A € A and p € J, the boundary value problem
(1) admits a sequence of pairwise distinct solutions proved.

Our goal of this work is to establish some new criteria for the fourth-order Kirchhoff
type elliptic problem with Hardy potential (1) to have at least three weak solutions in
W2P(Q)N W(} P(€)), by means of a very recent abstract critical points result of Ricceri [57]
(see Lemma 2.1). More precisely, for differentiable functionals and assignable constants A
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and g sufficiently small, the existence of three solutions for problem (1) will be obtained
(see Theorem 3.1) requiring that the nonlinearity f has a growth condition and some
other sufficient conditions in addition to a suitable oscillating behavior of the associated
potential g (see condition (g1)). So, under appropriate hypotheses on the nonlinear terms
f, g, the existence of two open intervals involving parameters A and p such that, for each
A and p belonging to those, the boundary value problem (1) admits at least three weak
solutions is proved.

The plan of the paper is as follows: Section 2 is devoted to our abstract framework,
while Section 3 is dedicated to the main result and its proof. A concrete example of an
application is then presented (see Example 3.1).

Finally, we cite the manuscripts [15, 19, 20, 22, 30, 36, 39, 48], where the existence of
multiple solutions for this type of nonlinear differential equations was studied.

2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

1
Let X be the space W2?(9) N W, ”(Q2) endowed with the norm ||u|| = ([, |Aul?dz)? .
We recall Rellich inequality [21], which says that

p 1
/ Gl / AulP dz, (8)
o |z|*P H Jq
where the best constant is
(p —1)N(N —2p)\”
H— ( , . (9)

In this article, we assume that the following condition holds,
(H1) M :[0,400[— R is a continuous function. And there are two positive constants
mg, m1 such that

mgﬁM(t)Sml, VtZO. (10)

Set p* = %' By the Sobolev embedding theorem there exist a positive constant ¢ such

that [|ul| o (o) < cflufl, V u € X, where

1

i1 Sora+Yray Y
ci=m2N <N_p> [F(g)P(Nerl—g)] : (11)

see, for instance, [61]. Fixing ¢ € [1,p*), again from the Sobolev embedding theorem,
there exists a positive constant ¢, such that

[ullza) < cqllull, VueX. (12)

Thus, the embedding X < L9(f) is compact. By (11), as a simple consequence of Holder’s
inequality, one has the upper bound

p—1\"7[ TO+rw)
N - p) PED(N +1 -5

1

p*—q

N
|9 77, (13)

i1
cqg<m 2N »

where || denotes the Lebesgue measure of the open set .

In order to prove our main result, stated in Theorem 3.1, in the following we will perform
the variational principle of Ricceri established in [57, Theorem 1]. For the sake of clarity,
we recall it here below.
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Lemma 2.1. Let X be a reflexive real Banach space, ® : X — R be a continuously Gateaux
differentiable and sequentially weakly lower semi-continuous functional whose Gateaux de-
rivative admits a continuous inverse on X*, bounded on bounded subsets of X, ¥ : X — R
a continuously Gateaux differentiable functional whose Gateaux derivative is compact such
that ®(0) = ¥(0) = 0. Assume that there exists r > 0 and T € X, with r < ®(T), such that

(7/) SUP®(z)<r V() < ggfg,
(13) for each A € A, := } igg Sy )7"< 5@ | » the functional ® — AW is coercive.

Then, for each compact interval [a,b] C A,, there exists pg > 0 with the following property:
for every X\ € [a,b] and every C' functional J : X — R with compact derivative, there
exists & > 0 such that, for each p € [0,4], the equation ®'(x) — AV (x) — pJ'(z) = 0, has
at least three solutions in X whose norms are less than pg.

Also, for a through on the subject we refer to the papers [9, 13, 24, 28, 32, 40, 49, 50, 56],
and we refer to the recent papers [2, 6, 33, 35, 37, 38, 54| for related problems concerning

the variational analysis of solutions of some classes of nonlocal problems.

Definition 2.1. We mean by a (weak) solution of the problem (1), any function u € X
such that

M( /Q \Au(a:)\pdx> /Q Au(z)]P-2Au(z) Av(z) dz
a /Q [P o) da

|2

A Sl da—p [ g u@)ola) da
-0

for every v € X.

We need the following Proposition in the proof of Theorem 3.1. Throughout in paper
suppose that 0 < a < moH.

Proposition 2.1. Let T : X — X* be the operator defined by

Y(u)(v) =M </Q |Au(:c)|palav>/Q |Au(z) P2 Au(z) Av(z) da
—a/Q Mu(x)v(x) dx

|| *
for every u,v € X. Then Y admits a continuous inverse on X*.

Proof. Since Y(u)u > (mo — &) ||u|[P, the operator T is coercive. Taking into account
(2.2) of [60] for p > 1 there exists a positive constant C}, such that

Cp |‘T - y|p, lf p Z 27
(JolP~2z — |y|P 2y, — y) > |z — y|?

A i 1< p<2,
P (|| + Jyl)2
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where < .,. > denotes the usual inner product in RY, for every z,y € RY. Thus, for
1 < p<2,itis easy to see that
A - A 2

(T =T -0 = G [ | S = swlal

o L(|Au(z)[+[Av(@))""

_ 2

RICETCT.
|z[? (Ju(z)] + [v(z)])

for every u,v € X, u # v, where M~ := min{a,mo}, which means that T is strictly

monotone. For p > 2, we also observe that (Y (u) — Y(v)) (u —v) > Cp,M~ [, [|Au(az) =

Av(x)|P + % dxr > 0, which means that Y, in this case, is strictly monotone

too. Moreover, we observe that Y is the dual mapping on X := W?2P(Q) N Wol’p(Q)
corresponding to the gauge function ¢,(t) = tP~1. Hence, in the same way as in the proof
[39, Proposition 2.3], we observe that the inverse operator Y~! of T exists and T! is
continuous. ]

3. MAIN RESULTS

In this section we establish the main abstract result of this paper, that is., here we
deal with the existence of three weak solutions for the problem (1) when the nonlinear
term satisfies a growth condition. Before introducing our result we observe that, putting
Y(z) = sup{¥ > 0: B(x,9) CQ} for all x € Q, one can prove that there exists xg €
such that B(zg, D) C Q, where D = sup,cq ¥(z).

Theorem 3.1. Suppose that (Hy) and 0 < a < moH hold (with H is as in (9)). Also let
f: QxR =R be a continuous function satisfying the following condition
(f1) there exist ai,as € [0,400[ and q € (1,p*) such that
[z, 0)] < a1+ ag|t]T
for each (x,t) € Q x R, where p* := NN—_”p;

(f2) F(x,&) > 0 for each (x,&) € Q x RT, where F(z,§) = foé f(z,t)dt for each

(z,§) € QxR
(f3) there exist ¢ >0 and s € (1,p) such that

F(z,t) <ec(1+[t]°)

for each (z,t) € Q x R;

(fa) there exist two positive constants r,d with r < (mOH_“> Lo such that

pH Dp
1 q
_ 1 pHr P az , pHr P .
P el = — ko inf F(xz,d
ey {alcl (moH—a> + q “ moH — a < Mo, (z,d),
7% (2)Nmy2vL w%[DNf(Q)N] 2d(N-1)\P :

where kg 1= W, = %F(%; ( D ) and I" is the Gamma
function.

Then, for every A € A, 4 := ] m , w% [, and for every g € C(w x R) such that
(g1) for every p >0, supyy<, [9(z,t)| € L ();

there exist po > 0 and 6 > 0 such that, for each p € [0, 9], the problem (1) admits at least
three weak solutions in X whose norms are less than py.
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Proof. Our aim is to apply Lemma 2.1 to the space X := W?2P(Q) N Wol’p(Q) and to the
functionals @, ¥ : X — R defined as
1

@(u>:pz\7(uu1p)—;/9 |1|La(j2)p|pdx, and \I/(u):/ﬂ F(au()) da,

for all u € X, where ]/\4\(15) = fot M(s)ds, t > 0. It is easy to show that functionals ®, ¥
are well defined and continuously Gateaux differentiable functionals whose derivatives at
the point u € X are the functionals ®'(u) and ¥’'(u) given by

&' (u)(v) =M </Q |Au(z)|P d:n)/Q |Au(z) P2 Au(z) Av(z) da
—a/ﬂ Mu(m)v(m) dx,

|2

and ¥'(u)(v) = [, f(z,u(z))v(x)dz, for every u,v € X. By (8), it follows that

H —
Sl < @) < Sl we X (14)

which implies that ® is coercive and bounded on each bounded subset of X. Moreover,
from the weakly lower semicontinuity of norm, and the monotonicity and continuity of
M , we known that ® is sequentially weakly lower semicontinuous. Furthermore, while
Proposition 2.1 gives that ® : X — X* admits a continuous inverse on X*. Thanks
to condition (f1) and to the compact embedding X < L%(Q) for each ¢ € [1,p*),
the functional ¥/ : X — X* is in C*(X,R) and compact operator. Moreover, we have
infx ® = ®(0) = ¥(0) = 0. Now, let wg € X be the function defined by

0, x € Q\B(zo, D),
wq(z) = %(D — |z —zo|), = € B(wg, D)\B(xo,2),
d, z € B(xo, 3),
where | - | denotes the Euclidean norm on RY. We have
dwae) [ Vo0 gy ¢ ORI OB
ox; Tﬁ, x € B(xg, D)\B(zo, %),
Lde(x) — ()_,2d |z — z0|? — (% — 20,)? v € (N\B(wo, D)) U B(ao, %)’
Ox? o) [ P a;01|3 |,z € B(wzg,D)\B(z0, %),
ﬁ: Pwgy(z) _ 0_’2d(N _y = (VB D) U Bleo. 3),
P ox? m, T € B(xo,D)\B(xo,%).

(3P -1)P . .
So, one has ||wq||? = [, |Awq(z)[P dz = fB(:co,D)\B(xo,%) e do, and in particular,

one has I
2
= P < (L
2 <l < (B L (15)
Here, we obtain from (14) and (15) that
L (moH —a my, 2
— | — ) <D < —(=)?L. 16
B (M) < Bl < () (16)
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By the assumption r < (moH—a) L

i) D, one has 7 < ®(wg). Thus, the functionals ® and

U satisfy the regularity assumptions requested in Lemma 2.1. So, we will only verify the
conditions () and (i3). Thanks to (f2) and this fact that 0 < wg(x) < d for each z € Q,
one has
U(wg) = / F(x,wg(x))dx > / F(z,d)dx
Q B(:vo,%)

L/ D\N
> (*)

f F(z,d). 17

So, from (16) and (17) we observe that

3 (D)
s ? .
\Il(wd) - %F(%) lnfxeg F($,d)
D(wy) — nﬁ’i’;p
= ko :;IelgF(iU, d). (18)

The compact embedding X — L9(Q) for each ¢ € [1,p*),(f1) and (14) imply that, for
each u € ®~1(] — 0o, 7]), we have

/F:ru dac<a1/ |u(z |d:L'+/ |u(z)|? dz

< arerflul] + = . = cdull?

1 a
pHr P Qg pHr P

< S Lol =
= @A (mOH—a> + q “a <m0H— a) ’

SUP® (u)<r \I’(u)
r
Therefore, from the conditions (f4), (18) and (19), one has
SUP® (u)<r \II(u) \Ij(wd)
< )
T O (wq)

and so condition (i) of Lemma 2.1 is verified. By argument similar to those used before,
we obtain

and so

< wy. (19)

/Q (@) dz < &llull’, (20)

and so, for each v € X with ||u|] > max{1, é}, from (f3) and (20) one has

U(u) = / F(z,u(x))dx < / c(1+ |u(x)]®) dz
’ < C?meaS(Q) +llul®}
where meas(€2) denotes the Lebesgue measure of the open set Q. This and (14) lead
to In(u) := ®(u) — A\V(u) > (%) |lulP — Ac{meas(2) + ci|lul|*} and, since s < p,
coercivity of Iy is obtained. In addition since g: Q xR — Risin C (Q x R) and satisfying

condition (g1), the functional J(u) := [, G )) dz, where G(z,1t) fo (x,s)ds for
each (z,t) € Q x R, is well deﬁned and contlnuously Gateaux dlfferentlable on X with a
compact derivative, and J'(u =Jq 9 Ju(z)dz for all u,v € X. Thus, all the

hypotheses of Lemma 2.1 are satlsﬁed Also note that the solutions of the equation ®'(u)—
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AV (u) — pJ'(u) = 0 are exactly the weak solutions of the problem (1). So, taking into

account that A, 4 C } W%Zi% , supq>(u)rgr T [, the conclusion follows from Lemma 2.1. [

Remark 3.1. When r = 1 condition (f4) of Theorem 3.1 becomes

1 a
(f1) thereexists d > 0 withp < (0H=2) L such that {aic, ( pH_ )P a0 (mot=a)r} <

moH—a q
N p\N - N_(D\N
koinf,ecq F(z,d), where ko := (W;?()—)mlm and L := 7[21“(&()2) ] <2d(%71))p
2 2

Remark 3.2. We observe that, if f(z,0) # 0, then, by Theorem 3.1, we obtain the
existence of at least three non-zero weak Solutlons

We present an example to illustrate Theorem 3.1 as follows in which the nonlinear-
ity f(t,x) verifies the hypotheses of Theorem 3.1 and the construction of the nonlinear
function is partly motivated by [9, Example 5.1].

Example 3.1. The following function verifies the assumptions requested in Theorem 3.1.
Let » > 1, g € (1,p*), s € (1,p). We consider the function f :  x R — R defined

1+ [¢9t, r e, t<r, .. . . . .
as f(z,t) = { ) —|—"Pq‘_st5_1, ety Condition (f1) is easily verified. Taking
<0, r €, t<0,

14
into account that F(x,t) = t+ q’ T €, 0<tST e has F(z,t) > 0 for

tS
t+r?—, x €Q, t>r
s
each (z,t) € Q x [0,400[ and the condition (f2) is verified. Finally, we observe that
<0, r €Q, t<0,
rq
Flz, ) =4 ST+ v €, 0<t=T and since F(z,t) < (r+ Z)(1 +|#]*) for
rq
<(r+—)t°, x €Q, t>r,
s
each (z,t) € Q x R, the condition (f4) is verified.

If the function f is dependent on w only, we can get better result than Theorem 3.1.
For simplicity, fixing Q C RY, p = 2, consider the following equation

M ([ 80P a) @) - = a) 4o, me )
u=0, Au=0, on 0.

Now, we present another result, which is a immediate consequence of Theorem 3.1, in the
following Theorem. Note that, for the case p = 2, the constant H is also accountable (see

[7])-

Theorem 3.2. Suppose that (H1) and 0 < a < moH hold (with H is as in (9)). Also let
f:R = R be a positive continuous function satisfying the following condition
(f1) there exist by, by € [0, +0o[ and q € (1,2%) such that | f(t)] < by +be|t|9L for each

2N
t € R, where 2 1= §=5;

(f4) there exist ¢ > 0 and s € (1,2) such that F(t) := fo s)ds < c¢(14[t|%), for
each t € R.

Moreover, assume that there exist two positive constants r,d with r < (

20
N o piN.
/ L
thatw', = * {blc“/mggr(l b2 ngra } < k(F(d'), where kjy := sz( %))g; , L=
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N 1pN_(D\N , 2
iz %)F(%()Q) ] (d (%71)) , and I' is the Gamma function. Then, for every A € A, g =
]W , U%,[, and for every g € C(Q x R) satisfying in the condition (g1), there exist
0 T

p >0 and § > 0 such that, for each u € [0,0], the problem (21) admits at least three weak
solutions in X whose norms are less than p.
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