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A DESCENT PRP CONJUGATE GRADIENT METHOD FOR

UNCONSTRAINED OPTIMIZATION

H. NOSRATIPOUR1, K. AMINI1, §

Abstract. It is well known that the sufficient descent condition is very important to
the global convergence of the nonlinear conjugate gradient methods. Also, the direction
generated by a conjugate gradient method may not be a descent direction. In this paper,
we propose a new Armijo-type line search algorithm such that the direction generated
by the PRP conjugate gradient method has the sufficient descent property and ensures
the global convergence of the PRP conjugate gradient method for the unconstrained
minimization of nonconvex differentiable functions. We also present some numerical
results to show the efficiency of the proposed method.The results show the efficiency of
the proposed method in the sense of the performance profile introduced by Dolan and
Moré.
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1. Introduction

The nonlinear conjugate gradient (CG) method plays a very important role for solving
the unconstrained optimization problem

min f(x), x ∈ Rn (1)

where f : Rn → R is continuously differentiable. CG methods are usually designed by the
iterative form

xk+1 = xk + αkdk, (2)

where xk is the current iterate point, αk > 0 is a steplength and dk is the search direction
defined by

dk =

{
−gk if k = 0
−gk + βkdk−1 if k ≥ 1

(3)
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where βk ∈ R is known as the conjugate gradient parameter. A lot of versions of conjugate
gradient methods, correspond to the selection procedure of parameters βk, are already
known. Some of these selections are given as follows.

βFRk =
‖gk‖2

‖gk−1‖2
, (4)

βDYk =
‖gk‖2

(gk − gk−1)Tdk−1
, (5)

βPRPk =
gTk (gk − gk−1)
‖gk−1‖2

, (6)

βHSk =
gTk (gk − gk−1)

(gk − gk−1)Tdk−1
, (7)

where ‖.‖ denotes the Euclidian norm [8, 12, 11, 17, 2, 5]. Although these methods are
equivalent when f is a strictly convex quadratic function and αk is computed by the
following exact line search rule, i.e.

f(xk + αkdk) = min
α>0

f(xk + αdk), (8)

but their behaviors for general objective functions may be far different. Their convergence
properties have been studied by many authors, including [8, 12, 11, 17, 2, 5].
The global convergence of the PRP method is established when f is strongly convex and
the line search is exact [13]. Powell [15] has proved that for a general nonlinear function,
the PRP is globally convergent if

(1) the stepsize xk+1 − xk approaches zero,
(2) the line search is exact,
(3) the Lipschitz Assumption of g holds.

In 1984, by using of a 3 dimensional example, Powell [14] showed that even with αk ob-
tained by an exact line search, the PRP method can cycle infinitely without approaching
to a stationary point. Hence, this assumption that the stepsize tends to zero is needed for
convergence. Under the assumption that the search direction is a descent direction, Yuan
[20] has established the global convergence of the PRP method for strongly convex objec-
tive functions along with the Wolfe line search. However, for the strong Wolfe line search,
Dai [3] has introduced an example which shows that even when the objective function is
strongly convex and σ ∈ (0, 1) (the parameter of curvature condition) is sufficiently small,
the PRP method may still fail by generating an ascent search direction.

In summary, the convergence of the PRP method for general nonlinear function is
uncertain, Powell’s example shows that when the function is not strongly convex, the
PRP method may not converge even with an exact line search. Based on insight gained
from this example and to cope with possible convergence failure in the PRP algorithm,
Powell [15] has suggested the following modification in the update parameter for the PRP
method as

βPRP
+

k = max{βPRPk , 0}. (9)

Gilbert and Nocedal [9] have shown that this choice guarantees the global convergence
of the PRP+ algorithm. However, for the unconstrained minimization of strongly convex
(nonquadratic) functions with exact line searches, Gilbert and Nocedal showed that βPRPk

can be negative when the PRP method is convergent. This indicates that the choice βPRP
+

k
may not be the only way to enforce global convergence of the PRP method. Although the
PRP+ algorithm addresses the possibility of convergence failure, it interferes with the n-
step convergence property of the conjugate gradient method for strongly convex quadratic
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functions and possibly decreases the rapid convergence of algorithm.
Another important approach for rectifying the convergence failure in the PRP algorithm
is to retain the PRP update formula and modify the line search. In this regard, Grippo
and Lucidi [10] by modifying Leone et al.’s line search [6] proposed an new line search as
follows.

Given constants τ > 0, σ ∈ (0, 1), δ > 0 and 0 < c1 < 1 < c2, their line search aims to
find

αk = max{σjτ
|gTk dk|
‖dk‖2

; j = 0, 1, · · ·}, (10)

such that xk+1 = xk + αkdk with dk+1 = −gk+1 + βPRPk+1 dk satisfies

f(xk+1) ≤ f(xk)− δα2
k‖dk‖2, (11)

and

−c2‖gk+1‖2 ≤ gTk+1dk+1 ≤ −c1‖gk+1‖2. (12)

Grippo and Lucidi [10] have proved the global convergence of the PRP conjugate gradient
method equipped the line search rule (10)-(12) for the unconstrained minimization of
nonconvex differentiable functions.
Dai [4] also has proposed a new line search for nonlinear conjugate gradient methods as
follows.

Given λ ∈ (0, 1), δ ∈ (0, 1) and c1 ∈ (0, 1), determine the smallest integer m ≥ 0 such
that if one defines

αk = λm, (13)

then

f(xk + αkdk) ≤ fk + δαkg
T
k dk, (14)

0 6= gTk+1dk+1 ≤ −c1‖dk+1‖2. (15)

The global convergence of the PRP conjugate gradient method with this line search rule
has been proved in [4].

The PRP method generally performs better than the other conjugate gradient methods
in practice. However, it is not generally a descent method when Armijo-type line search
is used, thus [10] and [4] for satisfying sufficient descent property added the extra relation
(12) and (15) to Armijo-type line search, respectively. These strategies are valuable from
the theoretical viewpoint.

It has been proved that these line search approaches are well defined and have the
advantage that they can guarantee the global convergence of the original PRP method.
However similarly to the strong Wolfe line search, they are computationally expensive.
More precisely, to calculate a steplength to satisfy in the second condition any of these
strategies (i.e., the inequalities (12) and (15)), it may be necessary to compute gk+1 and
dk+1 several times in each iteration. Hence, it is clear that the above mentioned line search
rules are more computationally expensive.

The purpose of this paper is to overcome this drawback. To this end, using an estimated
local Lipschitz constant of the derivative of objective function and choosing an adequate
initial steplength sk, we modify and improve the two line search strategies proposed in
[4, 10] for computing a suitable steplength αk at each iteration by omitting the second
inequalities (12) and (15). We prove that, under some mild conditions, the PRP method
along with the new line search rules generate search directions that satisfy the sufficient
descent condition. Also, the PRP method is proved to be strong globally convergent.

The paper is organized as follows. In §2, we present a new Armijo-type line search. In
§3, we prove the global convergence of the proposed algorithm. In §4, to show efficiency
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of the adaptive initial steplength sk and the new line search rules, we reported some
numerical results.

Notation. Throughout this paper g(x) = ∇f(x) denotes the gradient of f(x). We write
‖.‖ for the Euclidean norm of a vector. Furthermore, For all values, a subscript k means
that this is the evaluation at xk or the value in the kth iteration, e.g., fk, gk.

2. New algorithm

In this section, we propose a modified Armijo-type line search that is used in con-
junction with the PRP method. Its form is similar to that is given in relation (11) by
Grippo and Lucidi but with different initial steplength sk which allows us to establish a
global convergence result. Throughout this paper, we consider the following assumptions
in order to analyze the new algorithm:

(H1). The function f is continuously differentiable and bounded below on the level
set L(x0) = {x ∈ Rn|f(x) ≤ f(x0)} .

(H2) The gradient g(x) of f(x) is Lipschitz continuous over an open convex S that con-
tains L(x0); i.e., there exists a positive constant L such that

‖g(x)− g(y)‖ ≤ L‖x− y‖,

for all x, y ∈ S.

Considering the points listed in beginning of this section, we now present Algorithm 1
to describe the steps of the PRP method with a new Armijo-type line search as follows.

In the following, we assume an infinite sequence {xk} is generated, otherwise, Algorithm
1 stops at a stationary point of problem (1).

Lemma 2.1. Suppose that (H2) holds and Algorithm 1 generates an infinite sequence
{xk}, then there exists c ∈ (0, 1), such that

(c− 2)‖gk‖2 ≤ gTk dk ≤ −c‖gk‖2. (16)

Proof. By induction, for k = 0, gT0 d0 = −‖g0‖2, since 0 < c < 1, we have

(c− 2)‖g0‖2 ≤ −‖g0‖2 ≤ c‖g0‖2,

so (16) holds. For k ≥ 1, from (3) and (6) we have

gTk dk = −‖gk‖2 + βPRPk gTk dk−1.

Using of hypothesis induction, we have gTk−1dk−1 < 0 , then

|gTk dk + ‖gk‖2| = |βPRPk gTk dk−1|

≤ ‖gk‖
2|‖gk − gk−1‖
‖gk−1‖2

‖dk−1‖

≤ Lαk−1‖dk−1‖2

‖gk−1‖2
‖gk‖2

≤ Lsk−1‖dk−1‖2

‖gk−1‖2
‖gk‖2.



H. NOSRATIPOUR, K. AMINI: A DESCENT PRP CONJUGATE GRADIENT METHOD 539

Algorithm 1: PRP method with an new Armijo-type line search

Input: x0 ∈ Rn, constants δ ∈ (0, 1), ρ ∈ (0, 1), c ∈ (0, 1), and a stoping tolerance
ε > 0;

Output: xb, fb;
1 begin
2 compute f0 and g0;

3 k ← 0;

4 while ‖gk‖ ≥ ε do
5 compute dk by (3) and (6);

6 set sk ← 1−c
L
‖gk‖2
‖dk‖2

;

7 α← sk;

8 x̂k ← xk + αdk;

9 while f(x̂k) > fk − α2|dk‖2 do
10 α← ρα;

11 x̂k ← xk + αdk;

12 end

13 xk+1 ← x̂k; fk+1 ← f(x̂k);

14 compute gk+1;

15 k ← k + 1;

16 end

17 xb ← xk; fb ← fk;

18 end

So, by the definition of sk, we have

|gTk dk + ‖gk‖2| ≤ (1− c)‖gk‖2

and

(c− 2)‖gk‖2 ≤ gTk dk ≤ −c‖gk‖2.
Thus (16) holds and the proof is complete. �

Lemma 2.2. Suppose that (H2) holds and Algorithm 1 generates an infinite sequence
{xk}, then there exists c ∈ (0, 1), such that

‖dk‖ ≤ (2− c)‖gk‖. (17)

Proof. For k = 0, ‖d0‖ = ‖g0‖, and so (17) holds. For k ≥ 1, from (3) and (6) we have

‖dk‖ = ‖ − gk + βPRPk dk−1‖

≤ ‖gk‖+
‖gk‖‖gk − gk−1‖
‖gk−1‖2

‖dk−1‖

≤ (1 +
Lαk−1‖dk−1‖2

‖gk−1‖2
)‖gk‖

≤ (1 +
Lsk−1‖dk−1‖2

‖gk−1‖2
)‖gk‖.

So, by the definition of sk, we have

‖dk‖ ≤ (2− c)‖gk‖.
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Thus (17) holds and the proof is complete. �

Lemma 2.3. Suppose that (H1) and (H2) hold, then the line search (11) is well-defined.

Proof. By Taylor theorem, we can observe

f(xk + αdk) = fk + αgTk dk +O(α2‖dk‖2).
So, we deduce

lim
α→0+

fk − f(xk + αdk)− δα2‖dk‖2

α

= lim
α→0+

−αgTk dk −O(α2‖dk‖2)− δα2‖dk‖2

α

= −gTk dk > 0.

Since α > 0, it is concluded that there exists άk > 0 such that

f(xk + αdk) ≤ fk − δα2‖dk‖2, ∀α ∈ [0, άk].

Setting α̂k = min(sk, άk) yields

f(xk + αdk) ≤ fk − δα2‖dk‖2, ∀α ∈ [0, α̂k].

So, the new line search is well-defined and the proof is complete. �

3. Convergence analysis

In this section, we prove the global convergence of Algorithm 1 under mild assump-
tions.

Lemma 3.1. Suppose that (H1) and (H2) hold and Algorithm 1 generates an infinite
sequence {xk}. then

η0 = inf
∀k≥0
{αk}, (18)

is positive.

Proof. On the contrary, we suppose η0 = 0. So, there exists an infinite subset K ⊆
{0, 1, 2, ...} such that

lim
k∈K ,k→∞

αk = 0. (19)

By the definition of sk and (17), we have

sk ≥
1− c

L(2− c)2
> 0. (20)

Thus, the sequence {sk} is positive and bounded from below. This along with (19) imply

that there is ḱ such that

αk/ρ ≤ sk ∀k ≥ ḱ and k ∈ K.
On the other hand, from the line search rule (11), we observe that α̂ = αk/ρ doesn’t
satisfy (11), so

f(xk + α̂dk) > fk − δα̂2‖dk‖2. (21)

This leads to
f(xk + α̂dk)− fk > −δα̂2‖dk‖2. (22)

Using the mean value theorem on the left-hand side of the above inequality, there exists
θk ∈ (0, 1) such that

f(xk + α̂dk)− fk = α̂g(xk + α̂θkdk)
Tdk,
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so

−δα̂2‖dk‖2 < α̂g(xk + α̂θkdk)
Tdk.

Thus, we can deduce

−δα̂‖dk‖2 < gTk dk + (g(xk + α̂θkdk)− gk)Tdk. (23)

By the Cauchy-Schwartz inequality and (23), we have

−δα̂‖dk‖2 < gTk dk + ‖g(xk + α̂θkdk)− gk‖‖dk‖. (24)

Using of (H2) along with θk ∈ (0, 1) , we have

−δα̂‖dk‖2 < gTk dk + Lα̂θk‖dk‖2 < gTk dk + Lα̂‖dk‖2. (25)

Thus, we obtain

α̂ ≥ 1

L+ δ

−gTk dk
‖dk‖2

. (26)

Since dk is a descent direction, so we have

αk = α̂ρ ≥ ρ

L+ δ

|gTk dk|
‖dk‖2

. (27)

It follows from (27), Lemma 2.1 and Lemma 2.2 that

αk ≥
ρc

(L+ δ)(2− c)2
> 0 for k ≥ ḱ. (28)

This contradicts (19). Therefore the proof is complete. �

Theorem 3.1. Suppose that (H1) and (H2) hold and Algorithm 1 generates an infinite
sequence {xk}. Then

lim
k→∞

‖gk‖ = 0. (29)

Proof. Cauchy-Schwartz inequality and Lemma 2.1 along with gTk dk ≤ 0 imply that

‖dk‖ ≥ c‖gk‖. (30)

By Lemma 3.1, (11) and (30), we have

fk − fk+1 ≥ δα2
k‖dk‖2 ≥ δη20c2‖gk‖2. (31)

This accompanied by assumption (H1) get∑
k≥0
‖gk‖2 < +∞.

Thus (29) is hold and the proof is complete. �

4. Discussion

In Algorithm 1, we have proposed an Armijo-type line search rule equipped an adaptive
initial steplength to be used in conjunction with the PRP method and established some
convergence results. We note the proposed Armijo-type line search rule base on

f(xk+1) ≤ f(xk)− δα2
k‖dk‖2, (32)

is also suitable for free-derivative methods. In comparison with the usual acceptance
condition

f(xk + αkdk) ≤ fk + δαkg
T
k dk, (33)
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the condition (32) enforces a greater reduction of f , for large values of αk‖dk‖, while it
becomes more tolerant when αk‖dk‖ is small. In practical computations, to make the
steplength αk easily accepted, it may be very useful to use the following ad hoc condition

f(xk + αkdk) ≤ fk + max{δαkgTk dk,−γα2
k‖dk‖2}, (34)

where δ and γ are constants in (0, 1)[4]. In fact, in the right hand side of (34), the max
term makes steplength to be more easily accepted than the acceptance conditions (32)
and (33).

we wonder whether, when the condition (32) in Algorithm 1 is replaced to the condition
(33) or the condition (34), the similar convergence results can be established. The answer
is Yes, and it is interesting that the theoretical results obtained in previous Lemmas and
Theorem 3.1 are still true. Moreover, if initial steplength in Algorithm 1 is replaced to

sk = ρk
|gTk dk|
‖dk‖2

, (35)

proposed in [10] with ρk = 1−c
L , for all k, then the theoretical results obtained in previous

Lemmas and Theorem 3.1 are still true.

5. Numerical results

In this section, we report some computational performances of the new algorithm
on a set including 75 unconstrained optimization test problems. The test problems and
initial points have been selected from Andrei collection of unconstrained test functions [1].
We have performed our experiments in double precision arithmetic format in MATLAB

Figure 1. Iteration performance profiles for the four algorithms
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7.4 programming environment on a 2.54 GHz Intel single-core processor computer with
512 MB of RAM. Our results are reported for the following four PRP algorithms:

AN1 : Algorithm 1;
AN2 : Algorithm 1 with the acceptance condition (33);
Max : Algorithm 1 with the acceptance condition (34);
GL : Algorithm 1 with with initial steplength sk computed by (35).

It is observed that L, the Lipschitz constant, plays an important role in the algorithm
1, but L is not generally known in practical computation. So, we need to estimate it at
each iteration for using in the proposed line search. we can set a large Lk to guarantee the
global convergence. However, if Lk is very large then αk will be very small and will slow
the convergence rate of descent methods. On the other hand, very small values of Lk may
fail to guarantee the global convergence. Thus, it is better to set an adequate estimation
Lk at each iteration. Recently, some approaches for estimating L were proposed in [18, 19].
For example, Shi and Guo [19] proposed an approximation for the Lipschitz constant in
the kth iteration as follows.

Lk = max(L0,
‖gk − gk−1‖
‖xk − xk−1‖

), (36)

with L0 > 0.
In all algorithms, we set δ = γ = 0.25, ρ = 0.9, c = 0.51 and L0 = 3. We also use

(36) to estimate L for using in the proposed line search. All attempts to solve the test
problems were limited to achieving a solution with

‖gk‖ ≤ 10−6‖g0‖, (37)

the numerical results are given in Table 1 which the columns have the following meanings:
Problem : The test problem name;

Dim : The dimension of the test problem;
ni: The total number of iterations;
nf : The total number of function evaluations.

In the following, we offer some observations about the numerical results related to the
total number of iterations from Table 1. First, we observe that the methods AN1, AN2
and Max that use the same initial steplength are superior than the method GL that uses
another steplength. When comparing the methods AN1, AN2 and Max, we see that the
methods AN2 and Max are faster than the methods AN1.

At the same time, for more comprehensive comparison between the methods, we adopt
the performance profiles of Dolan and Moré [7] to to evaluate the number of iterations and
the number of function evaluations. In Figures 1 and 2, the vertical axis gives the fraction
P of problems for which any given method is within a factor τ of the best performance.
The left axis of the plot gives the percentage of the test problems for which a method
needs least iterations. The right side of the plot gives the percentage of the test problems
that are successfully solved by each of the methods. Clearly, the right side is a measure
of an algorithms robustness.

Figures 1 and 2 give the performance problems of the four algorithms for the number of
iterations and function evaluations, respectively. These figures show that in the perspective
of the number of iterations AN1 and Max are more robust than AN2 and GL, but AN2 is
the fastest method in more than 45% of the problems, in the perspective of the number
of function evaluations, it is seen that from the perspective of robustness all of them are
competitive with each other, but AN2 is still the fastest method in more than 45% of
the problems. It is interesting to note that if AN2 method does not use the new initial
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Figure 2. Function evaluation performance profiles for the four algorithms

steplength in line search procedure and uses the usual Armijo line search , then it will not
be globally convergent Thus, the new initial steplength sk used in line search procedure is
effective in theory and practical .

Table 1: Numerical results.

Problem Dim AN1 AN2 Max GL

ni/nf ni/nf ni/nf ni/nf

Almost.P. Quad. 1000 827/888 734/784 705/764 990/1048

ARGLINB 1000 8/378 7/367 8/367 23/392

ARGLINC 1000 8 / 377 7 / 366 7 / 374 23/390

ARWHEAD 1000 124/203 294/361 205/282 221/298

BDQRTIC 1000 728/ 878 674/803 741/894 909/1141

BG2 100 584 /632 996/997 996/997 382/383

Broyden Tridiag. 10000 138/151 277/289 178/216 207/214

COSINE 10000 26/27 26/27 26/27/1 73/74

CUBE 1000 581/643 587/645 519/580 1168/1224

Diagonal 1 1000 546/574 546/574 546/574 376/423

Diagonal 2 100 4785/4786 4785/4786 4785/4786 4799/4800

Continued on next page
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Table 1 – continued from previous page

Problem Dim AN1 AN2 Max GL

ni/nf ni/nf ni/nf ni/nf

Diagonal 3 1000 845/897 708/751 727/777 644/693

Diagonal 4 10000 251/306 259/283 226/278 210/265

Diagonal 5 1000 67/68 67/68 67/68 81/82

Diagonal 7 10000 8/9 8/9 8/9 23/24

Diagonal 8 10000 7/8 7/8 7/8 20/21

Diagonal 9 1000 5049/5148 5025/5119 4739/4820 2390/2677

DIXMAANA 6000 26/48 19/27 26/46 34/35

DIXMAANB 6000 24/41 18/26 24/40 37/51

DIXMAANC 6000 24/45 17/31 24/43 36/52

DIXMAAND 1500 23/44 17/38 24/44 35/50

DIXMAANE 6000 76/77 5278/5287 76/77 806/807

DIXMAANF 6000 2303/2311 1205/1213 2307/2314 2267/2269

DIXMAANG 6000 1503/1518 730/744 1053/1518 1510/1518

DIXMAANH 6000 520/557 431/452 533/569 533/570

DIXMAANJ 1500 2988/2992 2528/2536 2984/3021 2409/2411

DIXMAANL 6000 275/309 254 / 275 445/ 447 711/744

DQDRTIC 5000 177 / 222 84 / 121 174 /217 203/247

EDENSCH 1000 39 /56 52/ 65 41/ 57 45/53

ENGVAL1 1000 69/146 54/94 56/93 36/72

E. BD1 10000 34/35 34/35 34/35 39/40

E. Beale 1000 445/463 460/468 423/440 462/482

E. Cliff 10000 1/105 19/244 1/105 1/105

E.DENSCHNF 10000 25/76 21/66 26/75 32/79

E. Freud.Roth 1000 590/702 1289/1343 1348/1416 971/1215

E.Maratos 1000 805/848 1261/1327 977/1019 914/995

E.Penalty 10000 23/278 17/266 23/277 33/284

E.Powell 1000 1003/1050 1070/1115 989/1035 488/528

E. PSC1 10000 26/62 19/40 26/60 33/67

E. quad. exp. EP1 10000 7/59 7/46 7/57 23/74

E. quad. penalty QP1 10000 23/125 11/96 23/123 32/133

E. quad. penalty QP2 10000 18/117 146/231 18/115 29/126

E. TET 10000 33/35 31/36 33/35 41/43

E. Tridiag. 1 1000 3534/3535 3534/3535 3534/3535 3545/3546

E. Tridiag.2 10000 67/68 67/68 67/68 131/132

E. Wood 10000 596 / 659 1453/1515 490 / 552 454/510

Fletcher 100 4492 / 4548 4380 / 4415 4053 / 4106 2874/2935

Continued on next page
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Table 1 – continued from previous page

Problem Dim AN1 AN2 Max GL

ni/nf ni/nf ni/nf ni/nf

Full Hessian FH1 1000 927/1108 1053/1224 899/1078 1433/2115

Full Hessian FH3 1000 7/90 7/81 7/88 23/105

G. PSC1 10000 376/408 592/620 322/353 375/401

G.Quartic 10000 51/58 101/121 97/103 28/29

G. Rosenbrock 100 8681/8758 8895/ 8939 8746 / 8820 7375/7488

G. Tridiag. 1 10000 55/56 55/56 55/56 42/43

G. Tridiag. 2 10000 157/166 215/231 157/166 73/81

HARKERP2 1000 297 / 444 208 / 324 238 / 383 170/317

HIMELH 10000 30/31 30/31 30/31 34/35

LIARWHD 1000 2763/2859 2162/2231 3362/3445 1848/2044

NONDIA 10000 8 / 157 7 / 125 8 / 155 23/172

NONDQUAR 10000 148/250 150/242 170/270 177/278

NONSCOMP 1000 712/750 45/73 708/744 750/785

Par.Per.Quad. 1000 46/121 57/124 46/119 54/127

Per.Quad.tic 1000 720 / 783 847/897 646 / 706 585/645

Per. quad. diag. 5000 109 / 194 67 / 135 122 / 204 152/236

Per.Tridia. quad. 5000 1292/1383 1615/1680 1449/1538 1233/1322

POWER 100 5372/5445 5204/5275 5420/5491 2432/2501

Quadratic QF1 1000 768/813 726/769 874/917 596/637

Quadratic QF2 1000 1167/1217 1167/1215 1165/1213 832/901

QUARTC 1000 2846/2847 2846/2847 2846/2847 7643/7644

Raydan 1 1000 758/798 783/810 805/842 783/812

Raydan 2 1000 58/59 58/59 58/59 72/73

SINCOS 10000 26/62 19/40 26/60 33/67

Staircase 1 1000 1463/1583 1399/1509 799/917 2278/2397

Staircase 2 1000 1871/1991 1077/1187 2203/2321 1044/1163

TRIDIA 1000 7112/7180 7404/7454 7256/7322 4155/4217

Vardim 10000 23/606 16/594 23/605 33/610

6. Conclusion

It is well known that the sufficient descent condition is very important to the global
convergence of the nonlinear conjugate gradient methods while the direction generated by
a conjugate gradient method may not have sufficient descent condition, namely the PRP
method. In this paper, we introduced a new Armijo-type line search algorithm based on
the approach proposed by Grippo and Lucidi [10]. The proposed procedure is the same
with condition (11) with a new procedure for computing the initial value of the steplength
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such that the direction generated by the PRP conjugate gradient method has sufficient
descent property and ensures that the PRP conjugate gradient method AN1 is globally
convergent for general functions under proper conditions. In addition algorithms AN2
and Max that use the new initial steplength are globally convergent and competitive with
another. It is interesting to note that if AN2 method doesn’t use the new initial steplength
in line search procedure and uses the usual Armijo line search, then it will not be globally
convergent. Thus, the new initial steplength sk used in the new line search procedure is
effective in theory and practical.
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