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ON THE SPECTRA OF CYCLES AND PATHS

F. CELIK1, I. N. CANGUL1∗, §

Abstract. Energy of a graph was defined by E. Hückel as the sum of absolute values of
the eigenvalues of the adjacency matrix during the search for a method to obtain approx-
imate solutions of Schrödinger equation which include the energy of the corresponding
system for a class of molecules. The set of eigenvalues is called the spectrum of the graph
and the spectral graph theory dealing with spectrums is one of the most interesting sub-
areas of graph theory. There are a lot of results on the energy of many graph types.
Two classes, cycles and paths, show serious differences from others as the eigenvalues
are trigonometric algebraic numbers. Here, we obtain the polynomials and recurrence
relations for the spectral polynomials of these two graph classes. In particular, we prove
that one can obtain the spectra of C2n and P2n+1 without detailed calculations just in
terms of the spectra of Cn and Pn, respectively.

Keywords: Spectrum of a graph, graph energy, recurrence relation, path, cycle

AMS Subject Classification: 05C30, 05C38

1. Introduction

Throughout this paper, let G = (V,E) be a simple connected graph, that is a graph
with no loops nor multiple edges. Two vertices u and v of G are called adjacent if there
is an edge e of G connecting u to v. Let v1, v2, · · · , vn be the vertices of G. The n × n
matrix A = (aij) defined by

aij =

{
1, if vi and vj are adjacent
0, otherwise.

is called the adjacency matrix of the graph G. With slight abuse of language, we shall
call the eigenvalues λ1, λ2, · · · , λn of a square n × n matrix A which are the roots of the
equation |A − λIn| = 0 as the eigenvalues of the graph G. The polynomial on the left
hand side of this equation is called the characteristic (or spectral) polynomial of A (and of
the graph G). The set of all eigenvalues of the adjacency matrix A is called the spectrum
of the graph G, denoted by S(G). For more detailed information about the fundamental
topics on graphs and spectrums of some well-known graphs, see [2], [8], [4], [5], [6], [11],
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[13], [14], [16], [17] and [21].

The energy of G defined as the sum of the absolute values of the eigenvalues of G is the
basis for the subfield of graph theory called spectral graph theory, see [1], [12], [8], [15],
[18], [19], [20].

We shall denote a path graph by Pn and a cycle graph by Cn. The spectrum of path
and cycle graphs are known in literature, [18], [8]. These two spectra show differences with
the other graph types as these two are the only ones the elements of which can be stated
in terms of the roots of unity. The authors, in [10], found the characteristic polynomials of
some graph types including path and cycle graphs, and also gave the recurrence formulae
for these graphs. In this paper, we shall consider the spectrum of path and cycle graphs
and find these spectra in terms of spectra of some smaller graphs. In particular, we give
the spectrum of P2n+1 in terms of the spectrum of Pn, and the spectrum of C2n in terms
of the spectrum of Cn.

2. Spectrum of Cycle Graphs and Their Recurrences

It is known that the spectrum of a cycle graph Cn is given by

S(Cn) =

{
λi : λi = 2 cos

(
2πi

n

)
, i = 0, 1, 2, · · · , n− 1

}
see [8], [10], [18]. If we note that the elements of S(Cn) are all algebraic numbers defined
by means of trigonometrical functions, then we can obtain the eigenvalues of some cycle
graph in terms of the eigenvalues of a smaller cycle graph. We first need the following
result:

Lemma 2.1. Let Cn be a cycle graph. Then

λk = λn−k

for every k = 1, 2, · · · , n− 1.

Proof. Using the properties of cosine function, we have

λn−k = 2 cos(
2π(n− k)

n
)

= 2 cos(2π − 2πk

n
)

= 2 cos(
2πk

n
)

= λk.

�

Lemma 2.1 enables one to calculate only λ0, λ1, · · · , λbn/2c instead of calculating all
λ0, λ1, · · · , λn−1 as follows:

Let the spectrum of Cn be

S(Cn) = {λ0, λ1, · · · , λn−2, λn−1}
and the spectrum of C2n be

S(C2n) = {µ0, µ1, · · · , µ2n−2, µ2n−1}
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where n ≥ 3. Then the relations between λi’s and µj ’s are given below:

Theorem 2.1. For j = 0, 1, · · · , n − 1, the spectrum of C2n can be given as below using
the spectrum of Cn:

• if n ≡ 0 (mod 4), then

µ2j = λj , µn = −2, µn
2

= µ 3n
2

= 0;

µ2j+1 =

{ √
λ2j+1 + 2, for j = 0, 1, · · · , n−44 or 3n

4 ,
3n+4

4 , · · · , n− 1
−
√
λ2j+1 + 2, for j = n

4 ,
n+4
4 , · · · , 3n−44 ,

• if n ≡ 1 (mod 4), then

µ2j = λj , µn = −2,

µ2j+1 =

{ √
λ2j+1 + 2, for j = 0, 1, · · · , n−54 or 3n+1

4 , 3n+5
4 , . . . , n− 1

−
√
λ2j+1 + 2, for j = n−1

4 , n+3
4 , · · · , 3n−34 ,

• if n ≡ 2 (mod 4), then

µ2j = λj , µn = −2, µn
2

= µ3n
2 = 0,,

µ2j+1 =

{ √
λ2j+1 + 2, for j = 0, 1, · · · , n−64 or 3n+2

4 , 3n+6
4 , · · · , n− 1

−
√
λ2j+1 + 2, for j = n+2

4 , n+6
4 , · · · , 3n−64 ,

and

• if n ≡ 3 (mod 4), then

µ2j = λj , µn = −2,

µ2j+1 =

{ √
λ2j+1 + 2, for j = 0, 1, · · · , n−34 or 3n−1

4 , 3n+5
4 , · · · , n− 1

−
√
λ2j+1 + 2, for j = n+1

4 , n+5
4 , · · · , 3n−54 .

Proof. Recall that S(Cn) = {λ0, λ1, · · · , λn−2, λn−1}. Further we know that

λi = 2 cos

(
2πi

n

)
for i = 0, 1, · · · , n− 1.

As S(C2n) = {µ0, µ1, · · · , µ2n−2, µ2n−1}, we similarly know that

µ2j = 2 cos

(
2π2j

2n

)
= 2 cos

(
2πj

n

)
for j = 0, 1, · · · , 2n− 1.

Now it is clear that

µ2j = 2 cos

(
2πj

n

)
= λj

for j = 0, 1, · · · , n− 1. Also, using double angle formulae, we have

µk = ∓
√
λk + 2

as

cos

(
2πk

n

)
= 2 cos2

(
2πk

2n

)
− 1

cos

(
2πk

n

)
+ 1 = 2 cos2

(
2πk

2n

)
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2 cos

(
2πk

n

)
+ 2 = 4 cos2

(
2πk

2n

)
∓

√
2 cos

(
2πk

n

)
+ 2 = 2 cos

(
2πk

2n

)
where k = 2j + 1 with

j =

{
0, 1, 2, · · · , n−22 if n is even
0, 1, 2, · · · , n−32 if n is odd.

There are four possible cases:

If n ≡ 0 (mod 4), then we have the distribution of µj ’s as follows:

Figure 1.1 The case n ≡ 0 (mod 4) for cycle graph C2n

Then we have µ2j+1 as asserted.

If n ≡ 1 (mod 4), then we have the distribution of µj ’s as follows:

Figure 1.2 The case n ≡ 1 (mod 4) for cycle graph C2n

Then we have the required values.

If n ≡ 2 (mod 4), then we have the distribution of µj ’s as follows:

Figure 1.3 The case n ≡ 2 (mod 4) for cycle graph C2n

Then we have the asserted values for µ2j+1.

If n ≡ 3 (mod 4), then we have the distribution of µj ’s as follows:
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Figure 1.4 The case n ≡ 3 (mod 4) for cycle graph C2n

similarly giving the result. �

Example 2.1. For n = 4, the spectrum of C4 is shown by {λ0, λ1, λ2, λ3} and the spec-
trum of C8 is shown by {µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7}. By using the spectrum of C4, we
can find the spectrum of C8:

By Lemma 2.1, we can write

µ1 = µ7, µ2 = µ6, µ3 = µ5

and we can also say that λ1 = λ3. By Theorem 2.1, we have µ4 = λ2 = −2.

S (C8) = {µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7}
= {2,

√
λ1 + 2, λ1,−

√
λ3 + 2, λ2,−

√
λ3 + 2, λ3,

√
λ1 + 2}

= {2,
√
λ1 + 2, λ1,−

√
λ1 + 2, λ2,−

√
λ1 + 2, λ1,

√
λ1 + 2}

=

{
2,
√
λ1 + 2

(2)
, λ

(2)
1 ,−

√
λ1 + 2

(2)
,−2

}
=

{
2,
√

2
(2)
, 0(2),−

√
2
(2)
,−2

}
.

Example 2.2. For n = 5, the spectrum of C5 is shown by {λ0, λ1, λ2, λ3, λ4} and the
spectrum of C10 is shown by {µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9}. By using the spectrum
of C5, we find the spectrum of C10 as follows. By Lemma 2.1, µ1 = µ9, µ2 = µ8, µ3 =
µ7, µ4 = µ6 and also we can say that λ1 = λ4, λ2 = λ3. By Theorem 2.1, we get µ5 = −2.
Therefore

S (C10) = {µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9}

=
{

2,
√
λ1 + 2, λ1,−

√
λ3 + 2, λ2,−2, λ3,−

√
λ3 + 2, λ4,

√
λ1 + 2

}
=

{
2,
√
λ1 + 2, λ1,−

√
λ2 + 2, λ2,−2, λ2,−

√
λ2 + 2, λ1,

√
λ1 + 2

}
=

{
2,
√
λ1 + 2

(2)
, λ

(2)
1 ,−

√
λ2 + 2

(2)
, λ

(2)
2 ,−2

}
.

Example 2.3. For n = 6, let the spectrum of C6 be {λ0, λ1, λ2, λ3, λ4, λ5} and the spectrum
of C12 be {µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9, µ10, µ11}. By using the spectrum of C6, find



576 TWMS J. APP. ENG. MATH. V.9, N.3, 2019

the spectrum of C12. By Lemma 2.1 and Theorem 2.1,

S (C12) = {µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9, µ10, µ11}

=
{

2,
√
λ1 + 2, λ1, 0, λ2,−

√
λ1 + 2,−2,−

√
λ1 + 2 ,

λ2, 0, λ1,
√
λ1 + 2

}
=

{
2,
√
λ1 + 2

(2)
, λ

(2)
1 , 0(2), λ

(2)
2 ,−

√
λ1 + 2

(2)
,−2

}
.

Example 2.4. For n = 7, the spectrum of C7 is shown by

{λ0, λ1, λ2, λ3, λ4, λ5, λ6}
and the spectrum of C14 is shown by

{µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9, µ10, µ11, µ12, µ13} .
By using the spectrum of C7, we find the spectrum of C14.

By Lemma 2.1 and Theorem 2.1

S(C14) = {µ0, µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9, µ10, µ11, µ12, µ13}

=
{

2,
√
λ1 + 2, λ1,

√
λ3 + 2, λ2,−

√
λ2 + 2, λ3,−2, λ3,

−
√
λ2 + 2, λ2,

√
λ3 + 2, λ1,

√
λ1 + 2

}
= {2,

√
λ1 + 2

(2)
, λ

(2)
1 ,
√
λ3 + 2

(2)
, λ

(2)
2 ,−

√
λ2 + 2

(2)
, λ

(2)
3 ,−2}.

3. Spectrum of Path Graphs and Their Recurrences

It is known that the spectrum of a path graph Pn is given by

S(Pn) =

{
λi : λi = 2 cos

(
πi

n+ 1

)
, i = 1, 2, . . . , n

}
see [8], [10], [18]. Like S(Cn), the elements of S(Pn) are all algebraic numbers defined by
means of cosine function. We shall now obtain the eigenvalues of the path graph P2n+1 in
terms of the eigenvalues of the smaller path graph Pn. We first have

Lemma 3.1. Let Pn be a path graph. Then

λk = −λn+1−k

for every k = 1, 2, . . . , n.

Proof. Using the properties of cosine function, we have

λn+1−k = 2 cos(
π(n+ 1− k)

n+ 1
)

= 2 cos(π − πk

n+ 1
)

= −2 cos(
πk

n+ 1
)

= −λk.
�
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Lemma 3.1 enables one to calculate only λ0, λ1, · · · , λb(n+1)/2c instead of calculating all
λ0, λ1, · · · , λ2n+1.

Let the spectrum of Pn be

S(Pn) = {λ1, λ2, · · · , λn}
and the spectrum of P2n+1 be

S(P2n+1) = {µ1, µ2, · · · , µ2n, µ2n+1}
where n ≥ 3. Then the relation between λi’s and µj ’s is given below:

Theorem 3.1. For j = 1, 2, . . . , n, the spectrum of P2n+1 can be given as below using the
spectrum of Pn:

• if n is odd, then

µ2j = λj ;

µ2j−1 =

{ √
λ2j−1 + 2, for j = 1, 2, · · · , n+1

2 ,
−
√
λ2n−2j+3 + 2, for j = n+3

2 , n+5
2 , · · · , n+ 1.

• if n is even, then

µ2j = λj , µn+1 = 0;

µ2j−1 =

{ √
λ2j−1 + 2, for j = 1, 2, · · · , n2 ,

−
√
λ2n−2j+3 + 2, for j = n+4

2 , n+6
2 , · · · , n+ 1.

Proof. Let S(Pn) = {λ1, λ2, · · · , λn}. Further we know that

λi = 2 cos

(
πi

n+ 1

)
for i = 1, 2, · · · , n.

If S(P2n+1) = {µ1, µ2, · · · , µ2n, µ2n+1}, we similarly know that

µ2j = 2 cos

(
π2j

2n+ 1 + 1

)
= 2 cos

(
πj

n+ 1

)
for j = 1, 2, · · · , 2n+ 1. Now it is clear that

µ2j = 2 cos

(
πj

n+ 1

)
= λj

for j = 1, 2, · · · , n. Also using double angle formulae, we have

µk = ∓
√
λk + 2

as

cos

(
πk

n+ 1

)
= 2 cos2

(
πk

2n+ 2

)
− 1

cos

(
πk

n+ 1

)
+ 1 = 2 cos2

(
πk

2n+ 2

)
2 cos

(
πk

n+ 1

)
+ 2 = 4 cos2

(
πk

2n+ 2

)
∓

√
2 cos

(
πk

n+ 1

)
+ 2 = 2 cos

(
πk

2n+ 2

)
where k = 2j − 1 with

j =

{
1, 2, · · · , n2 if n is even
1, 2, · · · , n+1

2 if n is odd.
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There are two possible cases:

If n is odd, then we have the distribution of µj ’s as follows:

Figure 3.1 The case n is odd for path graph P2n+1

Then we have

µ2j−1 =

{ √
λ2j−1 + 2, for j = 1, 2, · · · , n+1

2
−
√
λ2n−2j+3 + 2, for j = n+3

2 , n+5
2 , · · · , n+ 1

and

µ2j = λj .

If n is even, then we have the distribution of µj ’s as follows:

Figure 3.2 The case n even for path graph P2n+1

Then we have

µ2j−1 =

{ √
λ2j−1 + 2, for j = 1, 2, · · · , n2

−
√
λ2n−2j+3 + 2, for j = n+4

2 , n+6
2 , · · · , n+ 1

and

µ2j = λj , µn+1 = 0.

�

Example 3.1. For n = 7, the spectrum of P7 is shown by {λ1, λ2, λ3, · · · , λ7} and the
spectrum of P15 is shown by {µ1, µ2, µ3, · · · , µ15}. By using the spectrum of P7, we can
find the spectrum of P15 as follows:

By Theorem 3.1, we get

S (P15) = {
√
λ1 + 2, λ1,

√
λ3 + 2, λ2,

√
λ5 + 2, λ3,

√
λ7 + 2, λ4,−

√
λ7 + 2, λ5,

−
√
λ5 + 2, λ6,−

√
λ3 + 2, λ7,−

√
λ1 + 2}

Also by Lemma 3.1,

λ1 = −λ7, λ2 = −λ6, λ3 = −λ5, λ4 = 0,
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and then

S (P15) = {
√
λ1 + 2, λ1,

√
λ3 + 2, λ2,

√
−λ3 + 2, λ3,

√
−λ1 + 2, 0,−

√
−λ1 + 2,

−λ3,−
√
−λ3 + 2,−λ2,−

√
λ3 + 2,−λ1,−

√
λ1 + 2}.

Example 3.2. For n = 8, the spectrum of P8 is shown by {λ1, λ2, λ3, . . . , λ8} and the
spectrum of P17 is shown by {µ1, µ2, µ3, · · · , µ17}. By using the spectrum of P8, we can
obtain the spectrum of P17.

By Theorem 3.1, one has

S(P17) =
{√

λ1 + 2, λ1,
√
λ3 + 2, λ2,

√
λ5 + 2, λ3,

√
λ7 + 2, λ4, 0, λ5,−

√
λ7 + 2,

λ6,−
√
λ5 + 2, λ7,−

√
λ3 + 2, λ8,−

√
λ1 + 2

}
Also by Lemma 3.1,

λ1 = −λ8, λ2 = −λ7, λ3 = −λ6, λ4 = −λ5
and then

S (P17) =
{√

λ1 + 2, λ1,
√
λ3 + 2, λ2,

√
−λ4 + 2, λ3,

√
−λ2 + 2, λ4, 0,−λ4,

−
√
−λ2 + 2,−λ3,−

√
−λ4 + 2,−λ2,−

√
λ3 + 2,−λ1,−

√
λ1 + 2

}
.
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