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ON THE SPECTRA OF CYCLES AND PATHS

F. CELIK!, I. N. CANGUL!", §

ABSTRACT. Energy of a graph was defined by E. Hiickel as the sum of absolute values of
the eigenvalues of the adjacency matrix during the search for a method to obtain approx-
imate solutions of Schrodinger equation which include the energy of the corresponding
system for a class of molecules. The set of eigenvalues is called the spectrum of the graph
and the spectral graph theory dealing with spectrums is one of the most interesting sub-
areas of graph theory. There are a lot of results on the energy of many graph types.
Two classes, cycles and paths, show serious differences from others as the eigenvalues
are trigonometric algebraic numbers. Here, we obtain the polynomials and recurrence
relations for the spectral polynomials of these two graph classes. In particular, we prove
that one can obtain the spectra of Ca, and Ps,+1 without detailed calculations just in
terms of the spectra of C,, and P, respectively.
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1. INTRODUCTION

Throughout this paper, let G = (V, E) be a simple connected graph, that is a graph
with no loops nor multiple edges. Two vertices u and v of G are called adjacent if there
is an edge e of GG connecting u to v. Let vi, vo, -+, v, be the vertices of G. The n x n
matrix A = (a;;) defined by

S 1, if v; and vj are adjacent
K 0, otherwise.

is called the adjacency matrix of the graph G. With slight abuse of language, we shall
call the eigenvalues A1, Ao, -+, Ay of a square n X n matrix A which are the roots of the
equation |A — AI,| = 0 as the eigenvalues of the graph G. The polynomial on the left
hand side of this equation is called the characteristic (or spectral) polynomial of A (and of
the graph G). The set of all eigenvalues of the adjacency matrix A is called the spectrum
of the graph G, denoted by S(G). For more detailed information about the fundamental
topics on graphs and spectrums of some well-known graphs, see [2], [8], [4], [5], [6], [11],
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[13], [14], [16], [17] and [21].

The energy of GG defined as the sum of the absolute values of the eigenvalues of G is the
basis for the subfield of graph theory called spectral graph theory, see [1], [12], [8], [15],
[18], [19], [20].

We shall denote a path graph by P, and a cycle graph by C,,. The spectrum of path
and cycle graphs are known in literature, [18], [8]. These two spectra show differences with
the other graph types as these two are the only ones the elements of which can be stated
in terms of the roots of unity. The authors, in [10], found the characteristic polynomials of
some graph types including path and cycle graphs, and also gave the recurrence formulae
for these graphs. In this paper, we shall consider the spectrum of path and cycle graphs
and find these spectra in terms of spectra of some smaller graphs. In particular, we give
the spectrum of Psy,1 in terms of the spectrum of P,, and the spectrum of Cs, in terms
of the spectrum of C),.

2. SPECTRUM OF CYCLE GRAPHS AND THEIR RECURRENCES

It is known that the spectrum of a cycle graph C,, is given by

Qi
S(Cn):{)\@)\1:2cos<m>, i:0’1’27...,n_1}

n

see [8], [10], [18]. If we note that the elements of S(C,,) are all algebraic numbers defined
by means of trigonometrical functions, then we can obtain the eigenvalues of some cycle
graph in terms of the eigenvalues of a smaller cycle graph. We first need the following
result:

Lemma 2.1. Let C,, be a cycle graph. Then
Ak = Ak
for every k=1,2,--- ;n—1.

Proof. Using the properties of cosine function, we have

2 —k
An—k = QCOS(M)
2k
= 2cos(2m — i)
n
21k
— 92cos(2
cos( - )
= A
O
Lemma 2.1 enables one to calculate only Ao, A1, , A, 2] instead of calculating all

A0s AL, c 5, Ap—1 as follows:

Let the spectrum of C), be
S(Crn) ={ Mo, M1, , An—2, Ap—1}
and the spectrum of Cy, be
S(Can) = {po, i1, + s Han—2, pton—1}
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where n > 3. Then the relations between \;’s and p;’s are given below:

Theorem 2.1. For j =0,1,--- ,n — 1, the spectrum of Cay, can be given as below using
the spectrum of Cy:

e ifn=0 (mod 4), then
fr2j = Ajs fin = =2, puzn = puan = 0;
M2j+1:{ Vi1 42, forj=0.1,- . 50 or G 3G, n =1
_\/m7 for j =747 2,
e ifn=1 (mod 4), then
H2j = Ajs b = =2,

, n—5 3n+1 3n+5
M2j+1 = VA2%4+1+2, forj= 0,11, , 2 gr3nj, e n—1
5 —
! _\/)‘2j+1+27 fOT‘j—n nIa'”7nT7

e ifn=2 (mod 4), then
p2; = Njs fin = =2, pum = %t =0,

+ i n—>6 3n+2 3n+6
Ugit] = Aojy1+2, forj=0,1,--- 57 or == 2 n—1
— +2 n+6 3n—6
¢ Aojy1+2, forj=" ”4’...7714 7

and
e if n=23 (mod 4), then
H2j = Aj, fin = —2,

1 n—3 3n—1 3n+5
fiig] = Agjr1+2, for j=0,1,--- 272 or == 2R ... n—1
— +1 n+45 3n—>5
J )\2j+1+2, fO?”]——" n4 sttt "4 .

Proof. Recall that S(Cy,) = {M\o, A1, -+, An—2, An—1}. Further we know that

27
)\—2(:08( )forz-O,l, ,n—1.
n

As S(Con) = {110, 11, , Hon—2, pian—1}, we similarly know that

2729 219
sz:QCOS <M> = 2eos <m> fOT‘j:O,L--- ;2n — 1.
2n n

Now it is clear that
217
H2; = 208 (n > = Aj

for j =0,1,--- ,n — 1. Also, using double angle formulae, we have

e = FV Ak + 2

cos <27rl<:> = 2cos® <M> -1
n 2n
2k 2
cos<ﬂ>+1—2cos <7Tk>
n 2n

as
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2k 2k
2 cos (W> +2 = 4 cos? <7r>
n 2n
$\/QCOS (27rk> + 2 =2cos (27rk:>
n 2n

. 0,1,2 ,”772 if nis even
770 0,1,2

where k = 25 4+ 1 with
, 1, ,'--,”7_3 if nis odd.

There are four possible cases:

If n =0 (mod 4), then we have the distribution of 1;’s as follows:

90° 180° 2700 360°

Ho Mz .« Moot PR pntd . fnop Hpo Hp4 e W3not [Bn UEned o Hopop
2 ? 2 : 2 :2 2 :

f1 M3 e Mn2 fine2 e g Hpgq e M3no2 M3ne2 .. flop g

2 2 I & 1 2 1

Figure 1.1 The case n = 0 (mod 4) for cycle graph Cay,

Then we have pg; 41 as asserted.
If n =1 (mod 4), then we have the distribution of p;’s as follows:

90° 180° 270° 360°

i i i
o M2 e Mnztl fays e Hn—1 ! Mot oo H3nss L
2! T 2 ! 2
1

1

Hr H3 e Hn=3 DML e Hn—2 Ma Hpez .. H3nmil HEnds L liopog

2 > : 2 . 2
1 1

Figure 1.2 The case n =1 (mod 4) for cycle graph Coy,

Then we have the required values.

If n =2 (mod 4), then we have the distribution of 1;’s as follows:

90° 180° 270° 360°

o M2 H;Z.Uﬂ Siips un Pz Nuﬂﬂ Wiy 1
M K i HL [T 1“11—1; Hngt oo Hanca u? Harts o Hon-t |
5 i ) i ) i & i

Figure 1.3 The case n = 2 (mod 4) for cycle graph Coy,

Then we have the asserted values for pi9541.

If n =3 (mod 4), then we have the distribution of 1;’s as follows:
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90° 180° 270° 360°

MHn+1 Hn-1 : Mut1 o Mzn-1! Hantz o Hop_o
: 2 2

!
1 1 ]
1 i
Un+s ... nun—Z ‘Li” Han-3 i Man+1 "‘1211—1 .
2 H 2 i 2 1
i i 1

Figure 1.4 The case n = 3 (mod 4) for cycle graph Co),

similarly giving the result. O

Example 2.1. For n = 4, the spectrum of Cy is shown by {Ao, A1, A2, A3} and the spec-
trum of Cs is shown by {po, pu1, 2, 113, fia, fis, fis, 7} By using the spectrum of Cy, we
can find the spectrum of Cy:

By Lemma 2.1, we can write

n1 = pr, p2 = e, U3 = U5

and we can also say that A\ = A\3. By Theorem 2.1, we have pg = Ay = —2.

S(Cs) = {10, b1, 2, 13, [hd, 5, 465 17 }
= {2,V M+ 200, VA3 + 2, 0, — VA3 + 2,03, VA + 2)
= {2,V M1+ 2,00, VA1 2,00, VAL 2,00,V +2)

= {2, )\1+2(2),)\§2),—\/)\1—1—2(2),—2}
= {2.v3?,00,-v3? 2},

Example 2.2. For n = 5, the spectrum of Cs is shown by {Xo, A1, A2, A3, A1} and the

spectrum of Cho is shown by {jo, i1, 2, 13, Ha, 15, H6 17, s fo }- By using the spectrum
of Cs, we find the spectrum of Cig as follows. By Lemma 2.1, pu1 = po, o = pg, 3 =

w7, e = e and also we can say that A\ = Mg, Ao = A3. By Theorem 2.1, we get pus = —2.
Therefore

S<CIO) = {NO7M17/’L27/’L37/1’47M57/’L67M77M87u9}

= {2V T2 0 VA 200,280 VA + 2,0,V 12
= VA F2 0 VA 200 -2 0 VA + 2,0,V T2

_ {2, M2 A2 + 2 AP, —2} .

Example 2.3. Forn = 6, let the spectrum of Cg be { Ao, A1, A2, A3, Ay, A5 } and the spectrum
of C1a be {10, 111, 2, 13, [14, [, 165 475 185 1, 110, H11}- By using the spectrum of Cg, find
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the spectrum of C1o. By Lemma 2.1 and Theorem 2.1,

S(Cr2) = {10, 11, p2, 13, fa, 155 465 47, 185 19, [110, H11 }

= {27\/A1+27)‘1707>‘2)_\/)\1+27_27_V>\1+2)
)\2,0,)\1,\/)\1+2}

_ {2, )\1+2(2),)\9),0(2),)\52),—\/)\1+2(2),—2}.

Example 2.4. Forn =17, the spectrum of Cy is shown by

{)\07 )\17 )\27 )‘37 )\47 )‘5a )\6}

and the spectrum of C4 is shown by

{105 115 P2, 143, 4y 115, 165 475 485 49, 1410 Fo115 4125 413} -

By using the spectrum of C7, we find the spectrum of C14.

By Lemma 2.1 and Theorem 2.1

S(Cha)

3.

= {0, 1, b2, 1135 44, 1155 [465 10T 185 49, F4105 [115 4125 413 }

= {2V T2 0 V82,0 -V e + 2,00, -2 0,
-V )\2 +2))‘Qa \/)‘3+25)‘1)\/>\1 +2}
= 220D e 202 2 AP, ey

SPECTRUM OF PATH GRAPHS AND THEIR RECURRENCES

It is known that the spectrum of a path graph P, is given by

S(Pn):{)\i:)\i:2cos( 7_:_11> i:1,2,...,n}
n

see [8], [10], [18]. Like S(C,,), the elements of S(P,) are all algebraic numbers defined by
means of cosine function. We shall now obtain the eigenvalues of the path graph P51 in
terms of the eigenvalues of the smaller path graph P,. We first have

Lemma 3.1. Let P, be a path graph. Then

Ak = —Ant1k

for every k=1,2,...,n.

Proof. Using the properties of cosine function, we have

m(n+1—k)

Anti—k = 2cos( it )
wk
prg 2 —
cos(m - 1)
wk

- 9

COS(n + 1>
= =\
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Lemma 3.1 enables one to calculate only Ao, A1, , A|(n41)/2) instead of calculating all
)\07 )‘17 e 7)\2n+1-

Let the spectrum of P, be
S(P) = {1, A2, -+, An}
and the spectrum of P41 be
S(Pony1) = {p, p2, -+, on, pons1}
where n > 3. Then the relation between \;’s and p;’s is given below:

Theorem 3.1. For j =1,2,...,n, the spectrum of Pap 1 can be given as below using the
spectrum of Py:

e if n is odd, then
H2j = Aj;
L aand forj=12
V= - o airs 72, for =38 m8 L gy

e if n is even, then
w2 = Aj,  pnt1 = 0

i1 = VAzj—1 + 2, for j=1,2,---,2
J— —\/m, forj:nTH’n—Q&-G""’n_'_l'

Proof. Let S(P,,) = {1, A2, -, A\n}. Further we know that

Ai = 2cos <n7_r|_11> fori=1,2,--- ,n.

If S(Pony1) = {1, p2, -+ H2n, fH2nt1 )}, we similarly know that

9 ,
2 = 2 cos ") —2cos [ —2
2n+1+1 n+1

for j=1,2,---,2n+ 1. Now it is clear that

mj
oy COS<n+1) j

for j =1,2,---,n. Also using double angle formulae, we have

[ = FV Ak + 2

7k 7k
= 2 cos? —1
o8 <n+1> o8 (2n+2)
cos mk +1 = 2cos? mk
n+1 2n + 2
7k wk
2 2 = 4 cos?
cos <n—|—1)+ cos <2n+2>
wk 7k
2 — 2=2
$\/ o8 (n+1) + o8 (2n+2)

if nis even
1,2,--- %1 if nis odd.

as

where k = 25 — 1 with

Il
—
—
[\ vl\D
33
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There are two possible cases:

If n is odd, then we have the distribution of u;’s as follows:

My H3 Hn-2 Hn : Hny2 Hang1 !

0° 90° 180°
: W2 Ha Hp-1 /1)(!+1 Hn+3 Han :

Figure 3.1 The case n is odd for path graph Ps,41

Then we have

o \/m, forj:1,2,...’nT+1
PR =~ Danajes + 2, for j =18 m35 Ly 4

and
B2 = Aj.
If n is even, then we have the distribution of u;’s as follows:

g 90° 180°

Hi  Hz Hn—-1 :u?;F+1 Hn+3 Han+1!

Hz2 Mg Hn-2 Hn | Hn+2 Hon i

=)

Figure 3.2 The case n even for path graph Pa,41

Then we have

[i2i_1 = \/m, forj:l,g’...,%
- _\/m, fOTj:n—Q"_Z‘L,n;_G’... 7n+1

and
p2j = Aj;  Hnt1 = 0.
n

Example 3.1. For n = 7, the spectrum of P; is shown by {A1, A2, A3, -+, A7} and the
spectrum of Py5 is shown by {1, po, us, -+, is}. By using the spectrum of Pr, we can
find the spectrum of P15 as follows:

By Theorem 3.1, we get

S(Pi5) = {VM+220, V342,20, VA5 + 2,03, VA7 + 2, A, — VA7 + 2,25,
=V A5+ 2,0, =V A3+ 2, A7, =/ A1 + 2}

Also by Lemma 3.1,

A=A, Ad=-X, A3=-X5, M\ =0,
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and then
S(Pi5) = {VAMA2,0 VA 342,20, VA3 +2, A3,/ = 1 +2,0, —/ =) + 2,
_)\37_ V _)\3 + 27 _)\27 -V )‘3 + 27 _)\17_ V A1 + 2}

Example 3.2. For n = 8, the spectrum of Py is shown by {\1,\2,A3,..., g} and the
spectrum of Py7 is shown by {1, pa, us, -+, pi7}. By using the spectrum of Pg, we can
obtain the spectrum of Pi7.

By Theorem 3.1, one has

S(Pry) = {\//\1+2,)\1,\/)\3+2,)\2,\/)\5+2,/\3,\/)\7+2,)\4,0,/\5,—\/>\7+2,
>\67_\/)‘5+2;>‘77_\/>‘3+2a)\87_\/)\1+2}

Also by Lemma 3.1,

)\1 = _)‘87 )\2 = _)\77 )\3 = _)‘67 )‘4 = _)\5
and then

S(Pi7) = {\/M+27/\1,\/)\34—27)\27\/—)\44—2,)\37\/—)\2+2,)\4707—>\47
_\/_>\2+ 7_)‘37_\/_)\4+ 7_>\27_\/>\3+ a_>\17_\//\1+2}-
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