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DECODING OF ORBIT CODES

M. HAKIMI POROCH1, A. A. TALEBI1, §

Abstract. Subspace codes have an important role to correct errors and erasures for
random network coding. Orbit codes are a family of constant dimension subspace codes
and they are interesting for their error correction. In this work, we want to propose two
algorithms for decoding of orbit codes.
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1. Introduction

Subspace codes have gained considerable attention during the last decade due to their
crucial role in random network coding. Subspace codes are defined as sets of vector spaces
over a finite field. Subspace codes can be used to correct errors and erasures in network
with linear network coding. Networks are exposed to noise such that messages can be lost
or modified during the transmission of subspace V. Therefore some vectors of V might
be lost and we will received smaller subspace V ′ < V. On the other hand, vectors which
are not contained in V might be received. These erroneous vectors span a vector space E ,
thus R = V ′ ⊕ E will be received. In fact, there are two types of errors that may occur
during transmission, a decrease in dimension, which is called an erasure and an increase
in dimension, called an insertion.
The set of all k-dimensional subspaces of Fnq is called Grassmann variety and denoted by
G(k,Fnq ). Constant dimension codes are a family of subspace codes where codewords have
the same dimension. In fact, constant dimension codes are subsets of G(k,Fnq ). Orbit
codes are a subclass of constant dimension codes. These are subspace codes that arise
as an orbit of a subspace in Fnq under a subgroup of GLn(Fq). If the subgroup is cyclic,
it is called cyclic orbit code. Also, if the subgroup is irreducible, the code is called an
irreducible cyclic orbit code.
In [9], Trautmann et al., present an algebraic construction of cyclic orbit codes. They
investigate two algorithms for decoding of cyclic orbit codes. If field size q and the dimen-
sion of the vector spaces k are small, the first algorithm is efficient. The second algorithm
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explains syndrome decoding of irreducible cyclic orbit codes. The main idea is that the
pairwise quotients of the elements of a subspace are invariant for all elements of the same
orbit. When the number of quotients is small, this algorithm is more efficient that other
known decoding algorithms.
The goal of this paper is to decode orbit codes. The paper is organized as follows: In
the second section, we will give some preliminaries about subspace codes, orbit codes and
their minimum distance. In the third section, we derive two algorithms for decoding of
orbit codes. Finally in section 4, we conclude this work.

2. preliminaries

Let Fq be the finite field of size q and let Fnq be the vector space of dimension n. The set
of all k-dimensional subspaces of Fnq , called Grassmann variety or simply Grassmannian
and it is denoted by Gq(k, n). In fact

Gq(k, n) := {U ≤ Fnq | dim(U) = k}.
The union of all Grassmann varieties, i.e. the set of all subspaces of Fnq is called the
projective space and it is defined by

Pq(n) =

n⋃
k=0

Gq(k, n).

The set of all k × n-matrices over Fq is represented by Matk×n.
Let U ∈Matk×n be matrix of rank k, then

U = rs(U) := rowspace(U) ∈ Gq(k, n).

For any U ,V ∈ Pq(n), the subspace distance is defined as:

dS(U ,V) = dim(U + V)− dim(U ∩ V)

= dim(U) + dim(V)− 2 dim(U ∩ V).

Definition 2.1. A subspace code C is a subset of Pq(n) and C is called a constant dimen-
sion code, if all codewords of C have the same dimension.

The minimum distance of a subspace code C is defined as:

d(C) = min{dS(U ,V) | U ,V ∈ C, U 6= V}.
The general linear group of dimension n is the set of all invertible n × n-matrices with
entries in Fq and it is denoted by GLn(Fq).
The GLn(Fq)-elements define a group action from the right on the Grassmannian as:

Gq(k, n)×GLn(Fq) −→ Gq(k, n)

(U , A) 7−→ UA
Let U ∈ Gq(k, n) be fixed and let G be a subgroup of GLn(Fq), then

C = {UA | A ∈ G}
is called an orbit code [10].
If G ≤ GLn(Fq) is cyclic, an orbit code is called cyclic orbit code. The size of code C is

|C| = |G|
|StabG(U)|

,

where

StabG(U) := {A ∈ G | UA = U},
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and its minimum distance of the code C is

d(C) = min{dS(U ,UA) | A ∈ G, A 6∈ StabG(U)}.

Definition 2.2. Let p(x) = p0+p1x+ · · ·+pn−1xn−1+xn ∈ Fq[x]. The companion matrix
p(x) is described as:

Mp :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−p0 −p1 −p2 . . . −pn−1


Definition 2.3. A polynomial p(x) ∈ Fq[x] is called irreducible, if it cannot be factored into
the product of two non-constant polynomials of Fq[x]. In fact, for any a(x), b(x) ∈ Fq[x],
we have

p(x) = a(x)b(x) =⇒ deg(a(x)) = 0 or deg(b(x)) = 0.

Theorem 2.1. [5] Let p(x) = p0 + p1x + · · · + pn−1x
n−1 + xn be a monic irreducible

polynomial of degree n over the finite field Fq and α ∈ Fqn be a root of p(x). Then the
extension field Fqn can be represented by

Fqn ∼= Fq[x]/p(x) ∼= Fq[α] ∼= Fq[Mp].

Lemma 2.1. [7] For any finite field Fq, the multiplicative group F∗q is cyclic, i.e. it can
be generated by one element.

An irreducible polynomial p(x) ∈ Fq[x] of degree n is called primitive, if any of its roots
is a multiplicative generator of F∗qn .

Lemma 2.2. [7] If p(x) ∈ Fq[x] is a primitive polynomial, then the multiplicative group
generated by Mp has order qn − 1.

Lemma 2.3. [9] Let p(x) be an irreducible polynomial over Fq of degree n and Mp its
companion matrix. Furthermore, let α ∈ F∗qn be a root of p(x) and φ be the canonical
homomorphism

φ : Fnq −→ Fqn

(v0, . . . , vn−1) 7−→
n−1∑
i=0

viα
i.

Then the multiplication with Mp resp. α commutes with the mapping φ, i.e. for all v ∈ Fnq ,
we get

φ(vMp) = φ(v)α.

Definition 2.4. A multiset is a generalization of the notion of set in which members are
allowed to appear more than once. To distinguish it from usual sets {x ∈ X}, we will
denote multisets by {{x ∈ X}}. The number of times an element x belongs to the multiset
X is the multiplicity of that element, denoted by mX(x).

Let p(x) ∈ Fq[x] be a primitive polynomial of degree n and α be a root of it. Thus α
is a primitive element of Fqn . For any non-zero element u ∈ Fnq , there exists an i ∈ Zqn−1
such that φ(u) = αi.
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Theorem 2.2. [8, Theorem 15] Over Fq let p(x) be a primitive polynomial and α a root
of it. Assume U = {0, u1, . . . , uqk−1} ∈ Gq(k, n),

φ(ui) = αbi ∀i = 1, . . . , qk − 1,

and d < k be minimal such that any element of the set

{bm − bl (mod qn − 1) | l,m ∈ Zqk−1, l 6= m}

has multiplicity less that or equal to qd − 1, i.e. a quotient of two elements in the field
representation appears at most qd − 1 times in the set of all pairwise quotients. Then the
orbit of the group generated by the companion matrix Mp of p(x) on U is an orbit code of
cardinality qn − 1 and minimum distance 2k − 2d.

An orbit code is called completely reducible, if its generating group is completely re-
ducible. In general, a group is completely reducible if it is the direct product of irreducible
groups.
Now suppose that our generator matrix Mp is of the type

Mp =

(
Mp1 0

0 Mp2

)
, Mp1 and Mp2 are companion matrices of the primitive polynomials p1(x), p2(x) ∈ Fq[x]
with deg p1(x) = n1,deg p2(x) = n2 respectively. Let

U = (U1 U2)

be the matrix representation of U ∈ Gq(k, n), where

U1 ∈Matk×n1 , U2 ∈Matk×n2 ,

then UMi
p = rs(U1M

i
p1 U2M

i
p2).

Also φ(n1) : Fn1
q −→ Fqn1 and φ(n2) : Fn2

q −→ Fqn2 are standard vector space isomorphisms.

Theorem 2.3. [9, Theorem 27] Let α1, α2 be primitive elements of Fqn1 , Fqn2 respectively,
n1 + n2 = n.

φ(n1,n2) : Fnq −→ Fqn1 × Fqn2

(u1, . . . , un) 7−→ (φ(n1)(u1, . . . , un1), φ(n2)(un1+1, . . . , un))

is a vector space isomorphism. Moreover, u = vMi
p for some u, v ∈ Fnq if and only if

(1) φ(n1)(u1, . . . , un1) = φ(n1)(v1, . . . , vn1)αi1 and

(2) φ(n2)(un1+1, . . . , un) = φ(n2)(vn1+1, . . . , vn)αi2.

Suppose that φ(n1)(ui) 6= 0 and φ(n2)(ui) 6= 0 for all non-zero elements ui of a given
vector space U ∈ Gq(k, n), then we have the following Proposition.

Proposition 2.1. [9, Proposition 28] Assume U = {0, u1, . . . , uqk−1} ∈ Gq(k, n) and for
all ui there exist bi, b

′
i such that

φ(n1,n2)(ui) = (αbi1 , α
b′i
2 ) ∀i = 1, . . . , qk − 1.

Let δ be minimal such that any element of the multiset

D := {{(bm − bl (mod qn1 − 1), b′m − b′l (mod qn2 − 1)) | m, l ∈ Zqk−1, m 6= l}}

has multiplicity less than or equal to qδ−1. If δ < k, then the orbit of the group generated
by Mp on U is an orbit code of cardinality ord(Mp) = lcm(qn1 − 1, qn2 − 1) and minimum
distance 2k − 2δ.
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Now, suppose that G is not cyclic. Put

G = {
(

Mi
p1 0

0 Mj
p2

)
| 0 ≤ i ≤ qn1 − 1, 0 ≤ j ≤ qn2 − 1},

thus we can write

U
(

Mi
p1 0

0 Mj
p2

)
= rs(U1M

i
p1 U2M

j
p2).

Note that in Proposition 2.1, if degp1(x) = degp2(x) = n, then we have

bm − bl ≡ b′m − b′l (mod qn − 1).

But in the following Proposition, we do not have this limitation for polynomials with same
degree.

Proposition 2.2. Assume U = {0, u1, . . . , uqk−1} ∈ Gq(k, n) and for all ui there exist bi,
b′i such that

φ(n1,n2)(ui) = (αbi1 , α
b′i
2 ) ∀i = 1, . . . , qk − 1.

Let d be minimal such that any element of multiset

D := {{(bm − bl ≡ h (mod qn1 − 1), b′m − b′l ≡ h′ (mod qn2 − 1)) | m, l ∈ Zqk−1, m 6= l}}

has multiplicity less than or equal to qd − 1. If d < k, then the orbit of the group G on U
is an orbit code of cardinality ord(G) = (qn1 − 1)(qn2 − 1) and minimum distance 2k− 2d.

Proof. The proof is similar to Proposition 2.1 and the only difference is about the set of
D, so we focus on it.

We consider U ∩ U
(

Mi
p1 0

0 Mj
p2

)
for 0 ≤ i ≤ qn1 − 1, 0 ≤ j ≤ qn2 − 1. A non-zero

element um ∈ U is in U
(

Mi
p1 0

0 Mj
p2

)
if only if αbm1 = αbl+h1 and α

b′m
2 = α

b′l+h
′

2 , for some

l, 1 ≤ l ≤ qk − 1. Then it results that

bm − bl ≡ h (mod qn1 − 1), b′m − b′l ≡ h′ (mod qn2 − 1).

Hence, it is sufficient to write

D := {{(bm − bl (mod qn1 − 1), b′m − b′l (mod qn2 − 1)) | m, l ∈ Zqk−1,m 6= l}}.
Since d < k, it leads that all elements of the orbit code are distinct, so the cardinality of
the code is ord(G) = (qn1 − 1)(qn2 − 1). �

3. Decoding of orbit codes

When we have at most 1 error, we want to consider two algorithms for decoding of orbit
codes.
First we define an algorithm for an irreducible cyclic orbit code C = U < Mp > where
U ∈ Gq(k, n) and Mp is the companion matrix of an irreducible polynomial p(x) ∈ Fq[x] of
degree n. Also R ∈ Gq(k′, n) is a received vector.

Algorithm: Decoding algorithm for irreducible cyclic orbit codes in Gq(k, n)

Require: Code C = U < Mp >⊆ Gq(k, n), received vector space R ∈ Pq(n),dim(R) = k′,
k′ =: k + 1, the quotient set S = { ulum | ul, um ∈ U \ {0}, ul 6= um} in extension field rep-

resentation, vector space W with dim(W) = k inside R, all (k− 1)-dimensional subspaces

Wj of W, j = 1, . . . , (qn−1)(qn−1−1)...(q2−1)
(qn−1−1)(qn−2−1)...(q−1)

for each subspace Wj do



230 TWMS J. APP. ENG. MATH. V.9, N.2, 2019

for each rj ∈ Wj \ {0} do
for each sj ∈ Wj \ {0, rj} do
compute the quotient crj ,sj :=

rj
sj

in extension field representation

end for
end for

for crj ,sj be in S do

find θ(α) = αi such that ∃ x, y ∈ U : xθ(α) = rj , yθ(α) = sj
compute UMi

p

end for
if UMi

p is a subspace of R then

find k-th linearly independent vector from UMi
p

return Wj with k-th linearly independent vector
end if

end for

Example 3.1. Consider G2(3, 6) and the primitive polynomial p(x) = x6 +x+ 1 in F2[x].
Let α be a root of p(x). Assume that

U = rs

 0 1 1 0 1 0
1 0 0 1 0 1
0 1 1 0 0 0

 .

Indeed

U = {(0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 1, 0), (1, 0, 0, 1, 0, 1), (0, 1, 1, 0, 0, 0), (1, 1, 1, 1, 1, 1),

(1, 1, 1, 1, 0, 1), (0, 0, 0, 0, 1, 0), (1, 0, 0, 1, 1, 1)}.

Moreover

Mp =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 0 0 0 0

 .

We observe that

φ6(u2) = α36, φ6(u3) = α23, φ6(u4) = α7, φ6(u5) = α58,

φ6(u6) = α40, φ6(u7) = α4, φ6(u8) = α60.

It results that

b2 = 36, b3 = 23, b4 = 7, b5 = 58, b6 = 40, b7 = 4, b8 = 60.

Due to the definition of D, we have

D = ±{13, 29, 41, 59, 32, 39, 16, 28, 26, 19, 46, 12, 30, 3, 10, 18, 54, 61, 36, 43, 7}.

Hence d = 1 and C = U < Mp > has minimum distance

2k − 2d = 2× 3− 2× 1 = 4.

Because the minimum distance is 4, it can correct at most 1 error. We try to correct the
error.
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Suppose that we received vector space R. Since we have at most 1 error, we can have a
4-dimensional subspace R in the form

R = rs


1 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 0
0 0 1 0 1 0

 .

Choose a 3-dimensional subspace W inside R. In fact

W = rs

 1 0 1 1 0 0
0 1 0 0 1 1
0 1 1 0 0 0

 .

We make seven of 2-dimenstional subspaces of W which are:

W1 = rs

(
1 0 1 1 0 0
0 1 0 0 1 1

)
∼= {0, α48, α46, α58},

W2 = rs

(
0 1 0 0 1 1
0 1 1 0 0 0

)
∼= {0, α46, α7, α50},

W3 = rs

(
1 0 1 1 0 0
0 1 1 0 0 0

)
∼= {0, α48, α7, α35},

W4 = rs

(
1 0 1 1 0 0
0 0 1 0 1 1

)
∼= {0, α48, α50, α60},

W5 = rs

(
0 1 0 0 1 1
1 1 0 1 0 0

)
∼= {0, α46, α35, α60},

W6 = rs

(
0 1 1 0 0 0
1 1 1 1 1 1

)
∼= {0, α7, α58, α60},

W7 = rs

(
1 1 1 1 1 1
1 1 0 1 0 0

)
∼= {0, α58, α35, α50}.

Because these sets are pairwise distinct, it is enough to compute the quotient of only one
pair of them. So we have

c1 :=
α48

α46
= α±2, c2 :=

α46

α7
= α±39, c3 :=

α48

α7
= α±41,

c4 :=
α48

α50
= α±61, c5 :=

α46

α35
= α±11, c6 :=

α7

α51
= α±12,

c7 :=
α58

α35
= α±23.

In addition

S = {α±13, α±29, α±22, α±4, α±32, α±24, α±16, α±35, α±17, α±19, α±37, α±51, α±33,
α±3, α±53, α±18, α±54, α±2, α±36, α±20, α±56}.

We see that ci, (i = 1, 2, 3, 4, 6) are in the set of S, thus we try to get a third linearly
independent vector from them.
For W1, we have

{α48−i, α46−i} = {α60, α58}.
So

48− 60 ≡ i (mod 63), 46− 58 ≡ i (mod 63) =⇒ i = 51.
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Similary for W2,

{α46−i, α7−i} = {α36, α60},
and

46− 36 ≡ i (mod 63), 7− 60 ≡ i (mod 63) =⇒ i = 10.

From W3, we can write

{α48−i, α7−i} = {α36, α58},
where

48− 36 ≡ i (mod 63), 7− 58 ≡ i (mod 63) =⇒ i = 12.

Also for W4,

{α48−i, α50−i} = {α60, α58},
and

48− 58 ≡ i (mod 63), 50− 60 ≡ i (mod 63) =⇒ i = 53.

At the end, for W6, we have

{α7−i, α58−i} = {α7, α58},
thus

7− 7 ≡ i (mod 63), 58− 58 ≡ i (mod 63) =⇒ i = 0.

After calculating UM51
p , UM10

p , UM12
p and UM53

p , we see that from UM10
p , we can get a

third linearly independent vector which is in R. So we decode to codeword

H = rs

 0 1 0 0 1 1
0 1 1 0 0 0
0 1 0 0 1 0

 .

Now we describe an algorithm for decoding of an orbit code C = UG, where

G = {
(

Mi
p1 0

0 Mj
p2

)
| 0 ≤ i ≤ qn1 − 1, 0 ≤ j ≤ qn2 − 1},

Mp1 and Mp2 are companion matrices of the primitive polynomials of p1(x), p2(x) ∈ Fq[x]
with deg p1(x) = n1, deg p2(x) = n2 and n = n1 + n2.
In addition, U = (U1 U2) is the matrix representation of U ∈ Gq(k, n), so

U
(

Mi
p1 0

0 Mj
p2

)
= rs(U1M

i
p1 U2M

j
p2).

Moreover, R = (R1 R2) is the matrix representation of a received vector R ∈ Gq(k′, n),
where R1 ∈Matk′×n1 and R2 ∈Matk′×n2 .
Algorithm: Decoding algorithm for orbit codes C = UG in Gq(k, n)

Require: Code C = UG, recived vector space R ∈ Pq(n), dim(R) = k′,
k′ := k + 1, the quotient set

S = {( ulum ,
u′l
u′m

) | ul, um, u′l, u′m ∈ U \ {0}, ul 6= um, u
′
l 6= u′m}

in extension field representation, vector space W with dim(W) = k inside R, all (k − 1)-

dimensional subspaces Wf of W, f = 1, . . . , (qn−1)(qn−1−1)...(q2−1)
(qn−1−1)(qn−2−1)...(q−1)

for each subspace Wf do
for each r = (rf r

′
f ) ∈ Wf \ {0} do

for each s = (sf s
′
f ) ∈ Wf \ {0, r} do
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compute crf ,sf :=
rf
sf

, c′r′f ,s
′
f

:=
r′f
s′f

in extension field representation

end for
end for

for (crf ,sf , c
′
r′f ,s

′
f
) be in S do

find θ(α) = αi such that ∃ x, y ∈ U : xθ(α) = rf , yθ(α) = sf
find θ′(α) = αj such that ∃ x′, y′ ∈ U : x′θ′(α) = r′f , y′θ′(α) = s′f
compute U1M

i
p1 and U2M

j
p2

store rs(U1M
i
p1 U2M

j
p2)

end for
if rs(U1M

i
p1 U2M

j
p2) is a subspace of R then

find k-th linearly independent vector from rs(U1M
i
p1 U2M

j
p2)

return Wf with k-th linearly independent vector
end if

end for

Example 3.2. Consider U ∈ G2(3, 8) and primitive polynomials p1(x) = 1 + x + x4 and
p2(x) = 1 +x3 +x4 in F2[x]. Let α1, α2 be roots of p1(x) and p2(x), respectively. We have

Mp1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 , Mp2 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

 .

Assume that

U = rs

 1 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0
0 0 1 0 0 1 1 0

 .

In fact

U = {(0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 1, 0, 0, 0), (1, 1, 0, 0, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1, 1, 0),

(0, 1, 0, 0, 1, 0, 1, 0), (1, 1, 1, 0, 0, 1, 0, 0), (1, 0, 1, 0, 1, 1, 1, 0), (0, 1, 1, 0, 1, 1, 0, 0)}.

We observe that

φ(4,4)(u2) = (1, 1), φ(4,4)(u3) = (α4
1, α

2
2), φ(4,4)(u4) = (α2

1, α
13
2 ), φ(4,4)(u5) = (α1, α

9
2),

φ(4,4)(u6) = (α10
1 , α2), φ(4,4)(u7) = (α8

1, α
7
2), φ(4,4)(u8) = (α5

1, α
12
2 ).

Therefore

b2 = 0, b′2 = 0, b3 = 4, b′3 = 2, b4 = 2, b′4 = 13, b5 = 1, b′5 = 9,

b6 = 10, b′6 = 1, b7 = 8, b′7 = 7, b8 = 5, b′8 = 12.

It results that

D = ±{(11, 13), (13, 2), (14, 6), (5, 14), (7, 8), (10, 3), (2, 4), (3, 8), (9, 1), (11, 10), (14, 5),

(1, 4), (7, 12), (9, 6), (12, 1), (6, 8), (8, 2), (11, 12), (2, 9), (5, 4), (3, 10)}.

So d = 1 and the minimum distance of orbit code C = UG is 4.
Since the minimum distace is 4, it can correct at most 1 error. Assume that we recived
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vector R with dim(R) = 4. Let

R = rs


1 1 0 0 0 0 1 0
0 1 1 0 1 1 1 0
1 1 1 0 0 1 0 0
0 0 0 1 1 0 0 1

 .

Choose a 3-dimensional subspace W inside R in the form

W = rs

 1 1 0 0 0 0 1 0
1 1 1 0 0 1 0 0
0 1 0 1 1 1 0 1

 .

We make seven of 2-dimenstional subspaces of W which are

W1 = rs

(
1 1 0 0 0 0 1 0
1 1 1 0 0 1 0 0

)
∼= {0, (α4

1, α
2
2), (α

10
1 , α2), (α

2
1, α

13
2 )},

W2 = rs

(
1 1 1 0 0 1 0 0
0 1 0 1 1 1 0 1

)
∼= {0, (α10

1 , α2), (α
9
1, α

5
2), (α

13
1 , α

4
2)},

W3 = rs

(
1 1 0 0 0 0 1 0
0 1 0 1 1 1 0 1

)
∼= {0, (α4

1, α
2
2), (α

9
1, α

5
2), (α

14
1 , α

6
2)},

W4 = rs

(
0 0 1 0 0 1 1 0
0 1 0 1 1 1 0 1

)
∼= {0, (α2

1, α
13
2 ), (α9

1, α
5
2), (α

11
1 , α

11
2 )},

W5 = rs

(
1 0 0 1 1 1 1 1
1 1 1 0 0 1 0 0

)
∼= {0, (α14

1 , α
6
2), (α

10
1 , α2), (α

11
1 , α

11
2 )},

W6 = rs

(
1 1 0 0 0 0 1 0
1 0 1 1 1 0 0 1

)
∼= {0, (α4

1, α
2
2), (α

13
1 , α

4
2), (α

11
1 , α

11
2 )},

W7 = rs

(
0 0 1 0 0 1 1 0
1 0 1 1 1 0 0 1

)
∼= {0, (α2

1, α
13
2 ), (α13

1 , α
4
2), (α

14
1 , α

6
2)}.

Since these sets are pairwise distinct, it is enough to compute the quotient of only one pair
of these sets. Therefore we have

c1 :=
α4
1

α10
1

= α±91 , c′1 :=
α2
2

α2
= α±12 , c2 :=

α10
1

α9
1

= α±11 , c′2 :=
α2

α5
2

= α±112 ,

c3 :=
α4
1

α9
1

= α±101 , c′3 :=
α2
2

α5
2

= α±122 , c4 :=
α2
1

α9
1

= α±81 , c′4 :=
α13
2

α5
2

= α±82 ,

c5 :=
α14
1

α10
1

= α±41 , c′5 :=
α6
2

α2
= α±52 , c6 :=

α4
1

α13
1

= α±61 , c′6 :=
α2
2

α4
2

= α±132 ,

c7 :=
α2
1

α13
1

= α±41 , c′7 :=
α13
2

α4
2

= α±92 .

On the other hand

S = {(α±111 , α±132 ), (α±131 , α±22 ), (α±141 , α±62 ), (α±51 , α±142 ), (α±71 , α±82 ), (α±101 , α±32 ), (α±21 , α±42 ),

(α±31 , α±82 ), (α±91 , α±12 ), (α±111 , α±102 ), (α±141 , α±52 ), (α±11 , α±42 ), (α±71 , α±122 ), (α±91 , α±62 ),

(α±121 , α±12 ), (α±61 , α±82 ), (α±8, α±2), (α±111 , α±122 ), (α±21 , α±92 ), (α±51 , α±42 ), (α±31 , α±102 )}.
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We see that (c1, c
′
1) and (c5, c

′
5) are in the set of S.

From (c1, c
′
1), we have

{α4−i
1 , α10−i

1 } = {α4
1, α

10
1 } =⇒ 4− i ≡ 4 (mod 15), 10− i ≡ 10 (mod 15).

{α2−j
2 , α1−j

2 } = {α2
2, α2} =⇒ 2− j ≡ 2 (mod 15), 1− j ≡ 1 (mod 15).

So (i, j) = (0, 0).
Also for (c5, c

′
5), we can write

{α14−i
1 , α10−i

1 } = {α8
1, α

4
1} =⇒ 14− i ≡ 8 (mod 15), 10− i ≡ 4 (mod 15).

{α6−j
2 , α1−j

2 } = {α7
2, α

2
2} =⇒ 6− j ≡ 7 (mod 15), 1− j ≡ 2 (mod 15).

Thus (i, j) = (6, 14). We calculate rs(U1M
6
p1 U2M

14
p2).

It shows that we can get a third linearly independent vector from rs(U1M
6
p1 U2M

14
p2) which

is in R. So we decode to the codeword

K = rs

 1 0 0 1 1 1 1 1
1 1 1 0 0 1 0 0
0 1 0 0 1 0 1 0

 .

4. Conclusion

First, we presented an overwiev of subspace codes, orbit codes and the minimum dis-
tance of them. Furthermore, when we have at most 1 error, we investigated how to decode
irreducible cyclic orbit code C = U < Mp > and orbit code C = UG. The complexity of
these two algorithms depend mainly on the number of quotients. When k is small, the
number of quotients is small. While when k is big, it gets more difficult to compute all
quotients. Therefore, if the dimension of vector spaces k is small, these two algorithms
are efficient.
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