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PRODUCT OF BIPOLAR INTUITIONISTIC FUZZY GRAPHS AND
THEIR DEGREE

SONIA MANDAL!, MADHUMANGAL PALZ, §

ABSTRACT. In this paper, bipolar intuitionistic fuzzy graphs with four operations namely
Cartesian product, composition, tensor product, normal product are defined. Also, the
degrees of the vertices of the resultant graphs which are obtained from two given bipolar
intuitionistic fuzzy graphs GG1 and G2 using the operations Cartesian product, composi-
tion, tensor product, normal product are determined.
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tensor product, normal product.

AMS Subject Classification: 05C72

1. INTRODUCTION

In 1965, Zadeh [30] represented the uncertainty as fuzzy subset of sets. Since then,
the theory of fuzzy sets has become a vigorous area of research in different disciplines
including medical and life sciences, management sciences, social sciences, engineering,
statistics, graph theory, artificial intelligence, signal processing, multiagent systems, pat-
tern recognition, robotics, computer networks, expert systems, decision-making, automata
theory, etc. Graph theory has numerous applications to problems in computer science,
networking routing, system analysis, electrical engineering, operations research, econom-
ics, transportation and many others. In many cases, some aspects of a graph-theoretic
problem may be uncertain. The bipolar fuzzy sets have been explained by Zhang [31] in
1994. Zhang extended the fuzzy sets as bipolar fuzzy sets by assigning the membership
value in the range [—1,1]. In a bipolar fuzzy set, the membership degree 0 of an element
means that the element is irrelevant to the corresponding property, the membership degree
(0,1] of an element indicates that the element somewhat satisfies the property, and the
membership degree [—1, 0] of an element indicates that the element somewhat satisfies the
implicit counter property.
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In 2001, Mordeson and Nair [7] discussed about the properties of fuzzy graphs and
hypergraphs. After that, the operation of union, join, Cartesian product and composi-
tion on two fuzzy graphs was defined by Mordeson and Peng [8]. Bhattacharya in 1987
developed some remarks on fuzzy graphs. Hai Long Yang et al.[6] gave the generalized
bipolar fuzzy graphs. Atanassov [5] introduced the concept of intuitionistic fuzzy set as
a generalization of fuzzy sets. Atanassov added a new components which determines the
degree of non-membership in the definition of fuzzy set. In 1975, Rosenfeld [16] discussed
the concept of fuzzy graph. The fuzzy relations between fuzzy sets were also considered
by Rosenfeld and he developed the structure of fuzzy graphs, obtained analogs of several
graphs theoretical concepts. After Rosenfeld [16] the fuzzy graph theory increases with
its various types of branches, such as - fuzzy tolerance graph [24], fuzzy threshold graph
[23], bipolar fuzzy graphs [14, 15, 28], balanced interval-valued fuzzy graphs [10, 12], fuzzy
k-competition graphs and p-competition fuzzy graphs [26], fuzzy planar graphs [22, 29],
bipolar fuzzy hypergraphs [25], etc. Also several works have been done on fuzzy graphs
by Samanta and Pal[28]. Sahoo and Pal [19] discussed the concept of intuitionistic fuzzy
competition graph. They also discussed intuitionistic fuzzy tolerance graph with appli-
cation [20], different types of products on intuitionistic fuzzy graphs [18] and product of
intuitionistic fuzzy graphs and their degrees [21].

2. PRELIMINARIES

Let V be a universe of discourse. It may be taken as the set of vertices of a graph G.
If the membership value of u € V' is non-zero, then w is considered as a vertex of G.

Definition 2.1. A fuzzy set of a set V' is a mapping o from 'V to [0,1]. A fuzzy graph G =
(V,o, 1), where V is a set of vertices, o and p are two functions defined as p:V xV —»
[0,1] is a symmetric fuzzy relation and o : 'V — [0,1], such that p(u,v) < o(u) A o(v),
where o(u) and p(u,v) represent the membership values of the vertex u and the edge (u,v)
or uv respectively. The underlying crisp graph of G = (V, o, ) is denoted by G* = (V, E)
where E CV x V.

Definition 2.2. Let G = (V, 0, 1) be a fuzzy graph, the degree of a vertex u in G is defined
by
dy = Zu;ﬁv M(’U,, U) = Z’LLUGE ,U(U,, ’U).

Definition 2.3. A bipolar fuzzy graph with an underlying set Vis defined to be a pair
G = (V, A, B) where A = (u4, 1) is a bipolar fuzzy set in V and B = (ub, u¥) is a
bipolar fuzzy set in E CV XV such that

(e, y) < min(ul (), p(y)) and pg(z,y) > maz(pf (x), 1 () for all (z,y) € E.

Definition 2.4. An intuitionistic fuzzy graph is of the form G = (V, u, \) where
(i) The vertex set V- = {vg,v1,...,vn} such that py : V. — [0,1] and A\ : V — [0,1],
denote the degree of membership and non-membership of the vertex v; € V respectively
and 0 < py1(vi) + M (vi) <1 for everyv; € V (i=1,2,...,n), and
(it) E CV xV where pus : VxV —[0,1] and Xp : V x V — [0,1], where pa(v;,v;)
and Aa(vi,vj) denote the the degree of membership and non-membership value of the edge
(vi,v) respectively such that pa(vi, vj) < min{pg(vs), p1(vj)} and Xa(vi, v;) < max{Ai(v;), A (vj)},
0 < po(vi, v) + A2(vi,v5) < 1 for every edge (v;,vj).

The main objective of this paper is to study the bipolar intuitionistic fuzzy graph and
this graph is based on the bipolar intuitionistic fuzzy set defined below.
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3. BIPOLAR INTUITIONISTIC FUZZY GRAPHS

Definition 3.1. Let X be a non empty set. A bipolar intuitionistic fuzzy set B =
{(z, u" (@), pN (2)

AP (), AWV (2)} where pf : X — [0,1], p¥ 1 X — [-1,0], A\ : X — [0,1], AV : X —
[—1,0] are the mappings such that 0 < pf'(z) + AP(z) <1, =1 < pN(2) + AV (z) < 0.
Definition 3.2. A bipolar intuitionistic fuzzy graph with an underlying set V is defined
to be a pair G = (A, B), where A = (uff, Y, NI, A is a bipolar intuitionistic fuzzy set
on Vand B = (ug,ug,)\g,)\g) is a bipolar intuitionistic fuzzy set on E C V x V such

that

ph(z,y) < min(ph (z), ph(y)
iy (z,y) > max(pl) (x), uf (v)
/\g (x,y) < max()\ﬁ(a:), )\f(y)

AN (2, 9) > min(\ (2), A (y) for all (z,y) € E

we call A the bipolar intuitionistic fuzzy vertex set of V', B the bipolar intuitionistic fuzzy
edge set of E, respectively. A bipolar intuitionistic fuzzy relation A on X is called sym-
metric if uh(r,y) = phly.2), i (@.y) = 1Y (y.2) (0, y) = Na({y.a}), AN (z.p) =
We use the notation xy for an elemant of E.

Now, we give an example of bipolar intuitionistic fuzzy graph:

Example 3.1. Consider a graph G* = (V, E) such that V = {a, b, c}, E = {ab, be, ca} (figure
1). Let A = (pk, Y, MNE MY be a bipolar intuitionistic fuzzy subset of V. and let B =
(ug,ug, /\g, )\g) be a bipolar intuitionistic fuzzy subset of E CV XV defined by
a b c

uh 0.4 0.5 0.3

p =05 —04 -02

MU05 0.3 0.7

Mo —0s8 04 -05

ab be ca

pk 0.3 0.2 0.5
py o =04 —01 —02
Ao 04 0.6 0.6
AN =08 =05 —0.4

The corresponding intuitionistic fuzzy graph is shown in Figure 1.

Definition 3.3. Let G = (V, A, B) be a bipolar intuitionistic fuzzy graph. The open degree
of a vertex u is defined as deg(u) = (degf(u), degﬁ’(u), deg? (u), degl (v)) where,

degl(u)= Y ph(u0),deg¥(w) = ¥ pb(u,0) and

uFv,veV uFv,veV
degf(u) = > )\g(u, v), degiv(u) = > )\g(u,v).
uFv,weV uFv,veV

4. PRODUCT AND DEGREE OF BIPOLAR INTUITIONISTIC FUZZY GRAPHS

In this section, we are consider different types of product of bipolar intuitionistic fuzzy
graph(BIFG). Then we determine the degree of the resultant graphs.
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a(0.4,-0.5,0.5,-Q.3) b(0.5,—0.4,0.3, —0.4)
(0.3,-0.4,0.4,—0.3)

(0.2,—0.1,0.6, —0.5)

(0.3,-0.2,0.6, —0.4)

¢(0.3,-0.2,0.7, —0.5)

FIGURE 1. An bipolar intuitionistic fuzzy graph

4.1. Cartesian product of two bipolar intuitionistic fuzzy graphs.

Definition 4.1. Let us consider two BIFG G1 and G2. The Cartesian product of two
BIFGs Gy = (V1, A1, B1) and Gy = (Va, Ag, Ba) with underline crisp graphs G = (V1, Eq)
and G35 = (Va, E) respectively is defined as a bipolar intuitionistic fuzzy graph G = G %
G2 = (A1 x Ay, By X By) where V.= V) x Vo and E = {(u1,u2)(v1,v2)|u; = vy, ugve €
Es or ug = vg,ujv1 € E1} with

(i)
ey (un,ug) = gy (un) Al (ug)
N ey (un,ug) =l (un) Vol (u2)
Ay (ui,uz) = N (ur) VAL, (ug)
AN sy (ui,uz) = N (ua) A A, (u2),
for all (uy,u2) € V
(i1)
1y (U ug), (u,v2)) = puly, (u) A g, (ug, v2)
Py (0, u2), (u,v2)) Y, () V g, (ug, v2)
Ay x5, (1, u2), (u, v2)) N, (w) VAR, (ug, va)
ABxBs (s ug), (u,v2)) = A (u) A NG, (ug, va),
for all w € V1 and usvy € Eo
(iii)
e, (U1, 0), (v1,0)) = g, (ug, v1) A ply, (v)
13 B, (11, ), (v1,0)) pi, (ur,01) V i, (v)
A5y, (w1, 0), (v1,0)) AB, (u1,01) VN, (v)
ABxps (u1,0), (v1,0)) = AR, (w1, 01) AN, (v),

for allv € Vo and uyivy € Ey

Definition 4.2. Let G = (V,E) where V. = V) x Vo, E = FE; x Ey be the Cartesian
product of two bipolar intuitionistic fuzzy graphs G1 = (Vi, A1, B1) and Gy = (Va, Ag, B2)
with underline crisp graphs G7 = (V1, E1) and G5 = (Va, E2) respectively. Then the degree
of the vertex (u1,us) in V is denoted by
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dG1 X Go (’LLl, UQ) - (d5G1 xGo (u17 Ug), d/]yGl xGo (Ul, UQ), dfGl X Ga (ub ’LLQ), dﬁ\VGl xGo (ula UQ)) where

iy x Gy (U1, u9) = S k) App,(ugve) + > g (ur,01) Ay (v2)
u1=v1,u2v2€ L2 uz=v2,u1v1 €L

e <,y (U1, ug) = S ) v, (ugv) + > g (ur, o) Vol (v2)
u1=v1,u2v2€E> u2=v2,u1v1 €L

A\, (1, ug) = > ML) VAR (u,v) + Y A (un,v1) VAL, (v)
u1=v1,usv2€ Ko uz=v2,u1v1€E1

3Gy <y (1, u9) = > AL ) A (g, v) + D AR, (un,vn) AN, (o)
u1=v1,ugv2E€ Ko u2=v2,u1v1 €L

Theorem 4.1. Let Gy = (A1, B1) and Gy = (Az, B2) be two bipolar intuitionistic fuzzy
graphs. If uﬁl > Wy N, S Bgye N S MG, A, 2 AL, and pll, > g i, < e
M, S ABL MY = MG then day xa, (w1, ug) = da, (u1) + da, (uz).

Proof. From the defination of vertex in Cartesian product, we have,

dijleg (ur,ug) = Z M£1X32((U1,U2), (v1,v2))
((u1,u2)(v1,02))EE

= > ply, (ur) A g, (ug, va) + > piz, (u1,01) A il (v3)

ui=v1,(u2,v2)E€E> (u2=wv2,(u1,v1)€E)

=Y b+ Y (o) since w2 b, andydy, > i)
(u2,v2)€E> (u1,v1)€EEL

= diGQ(UQ)—i-dﬁGl(m)

= dyg, (n) + dlg, (u2)

similarly, we proved dﬁfcl G, (U1, u2) = dﬁ[Gl (u1) + dﬁGQ(ug)
d§G1 X G2 (u17 ’LLQ) = df\)Gl <’U,1) + dng ('LLQ)
djxvcl G, (U1, u2) = divcl (u1) + df\VG2 (u2).

Hence, dg, xa, (u1,u2) = dg, (u1) + da, (u2).

Example 4.1. Here, “51 > ;/52, ,LL]XI < ,qu, Ail < AgQ,)\% > ,ugz and ,ui > ,ugl,
uf}{ < ugl, )\P < )\P )\N > ug Then by Theorem 1, we have

duGleg (ur, ug) = dfj’G1 (1) + dy(;?( 2) =0.1+0.1=0.2

duGleQ(ul, ug) = MGl(ul)—i—du%( 9) =—-0.2-0.3=-0.5

dAGleg(ula uz) = Ol,\G1 (u1) + d)\Gz (ug) =0.4+0.4=0.8

A, v, (U1, ug) = dig (1) + dig, (u2) = —0.3 — 0.3 = —0.6 So, dg,xa,(u1,u2) =
(0.2,-0.5,0.8,—0.6). Similarly, we can find the degree of all vertices in Gy x Gg.This
is verfied in Figure 2.
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(0.2,-0.3,0.4,-0.3)  (0.2,-0.3,0.4,—0.2)
u1(0.2,—0.3,0.1, —0.2) u3(0.2, —0.3,0.4, —0.3) (u1, u2) (1, vo)
. )

°
(0.1,-0.3,0.4,-0.3)

(0.1,-0.2,0.4, —0.3)

(0.1,-0.3,04,-0.3)  (0.1,-0.2,0.4,-0.3) (0.1,-0.2,0.4,-0.3)
0.1,-0.3,0.4,-0.3
| ! J 4,-0.3) ®
v1(0.3, —0.4, 0.4, —0.3p2(0.3, —0.4,0.4, —0.2) j (01, 09)
G Gy (0.2, 0 3 0. (0.2,-0.4,0.8,—0.3)

G1><G2

FI1GURE 2. Cartesian product of two bipolar intuitionistic fuzzy graphs

4.2. Composition of BIFG. Here, we define the Composition of BIFG and also we
determined the degree of each vertex of the resultant graph.

Definition 4.3. The Composition of two bipolar intuitionistic fuzzy graphs G1 = (V1, A1, B1)
and Gy = (vg, Ag, By) with underline crisp graphs G} = (V1, E1) and G5 = (Va, Eg) re-
spectively is defined as a bipolar intuitionistic fuzzy graph G = G1[Gs] = (A10 Ay, Byo Bs)
with underline crisp graph G* = (V, E) where V.=V) x Vo and E = {(u1, u2)(v1,v2)|u; =
vy, ugVy € Fy or ug = vo,u1v1 € E1} and E* = E U {(u1,u2)(vy,v2)|urvy € E1,ug # va}
with

(1)

M%loAg (ulv u2) = M%l (ul) \ M%Q (u2)
Mo, (U1, uz) = N5 (1) v AR, (u2)

)\%10142 (ula UQ) = )‘gl (ul) A )‘%2 (u2)7

for all (ui,u2) €V

(i)
MgloBg ((u’ u2)a (u, UZ)) = :ujjl (u) A /“ng (uQv 1)2)
MglOBQ((U,UQ), (’LL, UZ)) = ,ngl (u) \/ lugz (UQ,UQ)
>\§1OBQ ((U, UQ), (’LL, 'U2)) = )\il (U) \/ )\gg (UQ, /UQ)
/\gloBg((uﬂ‘?)’ (uv UQ)) - )‘%1 (u) A )\gg (uQvUQ)’



S. MANDAL, M. PAL: PRODUCT OF BIPOLAR INTUITIONISTIC FUZZY GRAPHS ...

for all uw € V1 and usvy € Eo

333

(iii)
iom, (U1, 0), (v1,0)) = ply, (V) A pig, (w1, 01)
10, (w1, v), (v1,0)) pgs, (w) Ve, (ug, v2)
AByoB, ((u1,0), (v1,v)) N, (0) V AR, (ur,v1)
ABom, ((u1,v), (v1,0)) = A, (v) AN, (ur, v1),
for all v € Vo and uyvi € E4
(iv)
Ko, (U1, u2), (vi,v2)) =y, (ug) A ply, (v2) A i, (w1, 01)
Whon, (U1, ug), (v1,v2)) py (u2) V il (v2) V g, (ua, v1)
Ao, (u1,u2), (v1,v2)) N, (u2) VAT, (02) VAL, (ur,v1)
ABrom, (ur,ug), (vi,v2)) = AN, (u2) Al (v2) A AE, (u,v1),

for all (ui,u2)(vi,v2) € E* — E
Definition 4.4. Let G = G1[G2]

(Ay o Ag, By o By) with underline crisp graph G*

(V,E) where V.= V) x Vo, E = E} X Ey be the composition of two bipolar intuitionistic
fuzzy graphs G1 = (Vi, A1, B1) and Gy = (Va, A2, Ba) with crisp graph G = (Vi, Eq) and
G5 = (Va, E2) respectively. Then the degree of the vertex (ui,u2) in V is denoted by

day (o) (U1, u2) = (dfcl[Gg](ul’ u2), dﬁfGl[GQ](ul,ug), dfcl[GQ](ul, uz2), diVGl[Gﬂ (u1,us)), where

by

u1=v1,u2v2€ k>

i G (015 u2) = gy, (ua) A g, (g, v2) +

>

u2#v2,u1v1€E1

+ gk, (u) A ply, (v2) A pg, (ua, v1).

by

u1=v1,u2v2€E>

A, (6] (w15 u2) = Y, (ua) Vg, (ug, va) +

2.

u2#v2,u1v1€E1

+ plY, (uo) v Y, (v2) V B, (u, v1).

2.

ulzvl,u2v2€E2

Aiz(UQ) V AZQ(UQ) V /\g1 (ul, ’Ul).

dfGl[Gg} (uy,ug) = )\51 (uy) Vv )\22 (ug,v2) +

2.

uz#v2,u1v1 €L

_|_

)\]XI (Ul) N )\g2 (’LLQ7 ’1)2) +

2.

u1=v1,u2v2€Fo

AN, (u2) A Y, (v2) A NG, (ur, 7).

dé\VGl [GQ} (’LL]_7 ’LL2) =

>

ug#v2,u1v1 €L

+

U=

ug=

uQ=

2

1, (1, v1) A ply, (02)

ug2=v2,u1v1 €L

>

v2,u1v1 €EE

pi, (w1, 01) V i, (v9)

2.

v2,u1v1 €L

AB, (u1,v1) V Alp, (v2)

AR, (u1,v1) AN, (v2)

2.

v2,u1v1 €L

Theorem 4.2. Let G1 = (V1, A1, B1) and Go = (Va, Ag, By) be two bipolar intuitionistic
Juzzy graphs. If iy, > pig, . pif, < pfy,, Ny, < Mg, MY > MG, and ply, > s i, < pi
)\IIZQ < ASI,AXQ > )\gl, then dG’l[Gg] (ul, ’LLQ) = ‘V2|dG1 (ul) + dG2 (UQ)
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(0.2, —0.3,0.1 —0.3) O 2,—0.3,0.2, —0. 2
U17u2j Ul 112
(0.1 —0.2,0.2, —0. 3

u1(02,-0.3,0.1, ~0.2) u(0.3,~0.3,0.1, ~0.2)

2,-0.2,0.2,—-0.3
(0.1,-0.2,0.2, —0.3)

(0.2,-0.2,0.2, —0.3) 2,24.2,0.2,-0.3
0.2,-0.2,0.2, —0.3) \
[} L] o
v1(0.3,-0.4,0.2,—0.3) v2(0.4,-0.4,0.2,-0.2) (072,-0.2,0.2, —0.3)
G1 Go ( (o —-0.3,0.2,-0.2) v1,03)
(%
(0.3, 030 —0.3) (0.3,-0.4/02,-0.3)
G1]G2]

Ficure 3. Composition of two bipolar intuitionistic fuzzy graphs

Example 4.2. Here, ,uﬁl > ng “%1 < /ﬂ]};, /\ﬁ1 < )\§2,/\%1 > uﬁ and ui > ,ugl,
/‘ng < Mgl, )\52 < )\P )\N > /‘B Then by Theorem 2, we have

dfcl[cg] (u1,us) = \VQ\d“GI (u1) + dl, (u2) =2 % (0.2) + 0.1 = 0.5
dﬁ’GI[GQ} (uy,uz) = \Vz\d#Gl (u1) + d#G2( 2) =2x(-0.2) +(-0.2) = —-0.5
dfGl[GQ](ul, ug) = |[Valdiy, (u1) + dig, (u2) = 2 x (0.2) + 0.2 = 0.6
df\vcl[GQ](ul,w) [Valdg, (u1) + dig, (ug) = 2 x (—=0.3) — 0.3 = —0.8

So, dg,(G,)(u1,u2) = (0.5,-0.6,0.6,—-0.8). Similarly, we can find the degree of all
vertices in G1[Ga]. This is verfied in Figure 3.

4.3. Tensor product of two BIFGs. In this section, we described tensor product of
two BIFGs. The degree of each vertex of the resultant graph.

Definition 4.5. The tensor product of two bipolar intuitionistic fuzzy graphs G = (V1, Ay, By)
and Go = (Va, A, By) with underline crisp graphs G = (V1, E1) and G5 = (Va, E2) respec-
tively is defined as a bipolar intuitionistic fuzzy graph G = G1 @ Ga = (A1 ® Ag, B1 ® B3)
with underline crisp graph G* = (V, E) where V.= V1 x V3 and E = {(u1, uz)(v1, v2)|uivy €
El,UQUQ € EQ} with
(i)

M§1®A2 (’LL]_, UQ) Mil (Ul) A uig (UQ)
M]X1®A2 (’LL]_, ’LLQ) M]XI (Ul) N IJ/XQ (UQ)
Aljl@Ag (Ul, UQ) = )\Al (Ul) v )\Ijg (U’Q)
AJAZ@AQ (Ul, U2) = )\%1 (Ul) A AJXQ (’LLQ),

for all (uy,u2) € V (ii)

Winen, (U1, ug), (vi,v2)) = pp, (ur,v1) A g, (ug, v2)
1o, (U1 u2), (v1,02)) = g, (w1, v1) V pp, (ug, v2)
ABrop, (U1, u2), (v1,v2)) = AR, (u1,v1) V AL, (ug, va)
ABop, (U1, u2), (1,v2)) = AR, (u1,01) A AR, (u2, va),
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for all uyv1 € E1 and ugvy € Eo

Definition 4.6. Let G = G1 ® G2 with underline crisp graph (V, E) where V. =V} x Vs,
E = Ey| x Ey be the Cartesian product of two bipolar intuitionistic fuzzy graphs G1 =
(V1, Ay, B1) and Gy = (Va, Ag, Bs). Then the degree of the vertex (uy,ue) in V is denoted
by

day oG, (u1,u2) = (A, o0, (W1, u2), Ao wa, (u1,u2), diG, o0, (W1, u2), A, o6, (U1, u2)) and
defined by

dhwa, (W, u2) = Y pp, (u1,v1) A i, (ug, va).
u1v1 €F

d;]LVG1®Gg ('LLl, 'LL2) = Z /’Lgl (u’l? Ul) \/ /,ng ('UQ, U2)‘
uivi1€E]

Aorec, (W,us) = Y AR (ur,v1) VAR, (u, v2).
u1v1€E

Borec, (W,uz) = Y AN (ur,v1) AN, (us, v2).
uiv1 €E

Theorem 4.3. Let G; = (Vi, A1, B1) and Go = (Va, Ag, Ba) be two bipolar intuitionistic
Uzzy grapns. M Z MB,, M S HUp,s > s Z Hp,, UNEN 4G;G\UL, U2) =
f h If I§2 > 21 gz < gl >\§2 < >\§1 )\gz > gl th d 180G2

de, Emg and if ply > ph o pl < pf,, A S ARAN > uf . then dayee, (U1, ug) =
ng ug ).

4.4. Normal product of two BIFGs. In this section, we consider the normal product
of two BIFGs. The degree of each vertex of the resultant graph in terms of the original
graphs in calculated.

Definition 4.7. The normal product of two bipolar intuitionistic fuzzy graphs G =
(Vi, A1, B1) and Gy = (Va, Az, Ba) with underline crisp graph G7 = (V1,E1) and G5 =
(Va, E) respectively is defined as a bipolar intuitionistic fuzzy graph G = G e Gy =
(Aj @ Ay, By @ By) with underline crisp graph G* = (V, E) where V.= V; x Vo and E =
{(ul,u2)(v1,v2)\u1 = V1,UV2 € Ey or ugs = V2, U1V1 € El} UFE = {(Ul,UQ)(’Ul,’UQ)‘Ul’Ul S
El,UQvg € EQ} with

(i)
Whyeay (ur,ug) = gl (ur) A pl, (ug)
P yeay (ur,ug) = gl (ur) V i, (ug)
Mieas (ur,ug) = A (un) v NG (ug)
AN ey (ur,ug) = AN (ur) AN, (u2),
for all (uy,u2) € V
(it)
WEen, (U u2), (w,09)) = gy (u) A pi, (ug, va)
WEhen, (w,u2), (w,09)) = gl (u) V i, (g, va)
ABren, (U, u2), (w,v2)) = A, (w) V Aj, (ug, v)
ABrem, (W, u2), (w,v2)) = A, (w) A AR, (uz, va),
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for all uw € V1 and usvy € Eo

(iii)
BEen, (w1, 0), (v1,0)) = ply, (v) A p, (w1, v1)
BEen, (w1, 0), (v1,0)) = p, (u) V i}, (uz, vo)
ABres, (u1,0), (v1,0)) = A, (0) V AR, (w1, 01)
AB e, (u1,0), (v1,0)) = AN, (0) A AR, (w1, 01),
for allv € Vo and uyvy € Ey
(iv)
BEem, (w1, u2), (v1,09)) = pf, (w1, 01) A g, (ug, v2)
BBem, (w1, u2), (v1,09)) = pfy, (w1, 01) V i, (ug, v2)
ABren, (U1, ug), (vi,v2)) = A, (u1,01) V AR, (ug, v)
ABrem, (u1,ua), (v, 02)) = AR, (u1,v1) A AR, (uz, v2),

for all uyvy € E1 and ugvy € Eo

Definition 4.8. Let G = G e Gy with underline crisp graph G* = (V, E) where V. =

Vi x Vo, E = E1 X Ey be the normal product of two bipolar intuitionistic fuzzy graphs

G1 = (A1,B1) and Gy = (Aa, Ba) with crisp graph G7 = (Vi,Eq) and G5 = (Va, E»)

respectively. Then the degree of the vertex (uy,u2) in V is denoted by

dG1°G2 (uhu?) - (dfGloGQ (uh u2>7 dgGloGg <u17u2)7d§G1.G2 (u17u2)7 diVGloGQ (ula u2)) and de-
fined by

Duiracia (01, 12) = 2 e, (1) A i, (uz, v2) + ) p, (w1, 1) A iy, (v2)
ur=vy, (uz,v2) €F2 ug=vg,(u1,v1)€E
+ Z p, (w1, 01) A g, (ug, v2).
ul’UlEEl
dGiroc, (1, U2 = > Y, (ur) v g, (ug, va) + > pi, (ur,v1) Ve, (v2)
ur=vi,(uz,v2)€ B up=vz,(u1,v1)€E]
+ Z ’U/g1<u17v1) \/,Ung(u27'U2).
uivi€E,
d§G1oG2 (uly U2) = Z A,]Zl (Ul) V )\gg (U27 ’02) + Z Agl (Uh Ul) v /\IIZZ (02)
ur=v1,(u2,v2) €L ug=v2,(u1,v1)EEL
+ > AR (u1,01) VA, (ug, v9).
urv1€Fq
By () = 3 AN @) AN (e + DD AR (o) AN, ()
ur=v1,(u2,v2)€E wa=va,(u1,01)EEL
30 A () AN, (2, v2).
urv1€E

Theorem 4.4. Let G; = (V1, A1, B1) and Go = (Va, Ag, Ba) be two bipolar intuitionistic
fuzzy graphs. If pi, > g, i, < pg,. Ny, < Mgy M, > ARl = pg o, < g
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P P N N P P N N P P N N
)\A2 < )\Bl, )\A2 > )\Bl and KB, > B, HB, < KB, s )\32 < )\Bl, )\32 > KB, s then
dG1'G2 (u17u2) = ‘V2|dG'1 (ul) + dG2 (UQ)

5. CONCLUSION

In this paper, we defined bipolar intuitionistic fuzzy sets, bipolar intuitionistic fuzzy
graphs and then determined the degree of the vertices of the graphs G; x Ga, G1[G2],
G1 ® G2 and (G1 e (Go, in terms of the degree of the vertices of the bipolar intuitionistic
fuzzy graphs (G; and G5 under some conditions and illustrated them through examples.
The vertices and their degree of any graph are very important parameters. This study is
very useful to analyse various properties of Cartesian product, composition, tensor product
and normal product of two bipolar intuitionistic fuzzy graphs.
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