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ANALYSIS OF TWO-DIMENSIONAL NON-LINEAR BURGERS’
EQUATIONS
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ABSTRACT. In this paper,we prove the existence, uniqueness and continuously of solution
of two-dimensional Burgers’ equations by iteration method.
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1. INTRODUCTION

The nonlinear coupled Burgers’ equations are a special form of incompressible Navier-
Stokes equation without having pressure term and continuity equation. Burgers’ equations
are an important partial differential equation from fluid dynamics, and are widely used
to describe various natural phenomena such as mathematically shown that the turbulence
and modelling of gas dynamics, shock waves, etc. Due to its wide range of applicability
some researchers have been interested in studying its solution using various numerical
methods. For a survey of these methods one refers to [2] and references cited there in
[5-16]. Construction of new solutions by superposition of known ones is a familiar tool in
nonlinear partial differential equations. The idea of superpositions for nonlinear differential
operators originated in 1893 by Vessiot [6]. Key references can be found in [6, 7, 8, 9, 10].
In this study, we use the superposition principle for nonlinear Burgers’ equations.

Consider two-dimensional coupled nonlinear Burgers’ equations taken from [2],
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two-dimensional non linear Burgers’ equations is given by the initial conditions:
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u(z,y,0) = f(z,y),z,ye D (3)
v(r,y,0) = g(x,y),z,y €D

and boundary conditions

u(z,y,t) = fi(z,y,t),z,y € ID,t >0 (4)
v(z,y,t) = qi(z,y,t),z,y € 0D, t >0

Here
D={(z,y):a<z<ba<y<b}
0D denotes the boundary of D, u(x,y,t) and v(x,y,t) are the velocity components to be
determinant f, g and fi g1 are known functions and R is Reynolds number.

In this paper, an iterative method is presented to find numerical solutions of two dimen-
sional non linear Burgers’ equations.To solve two dimensional non linear Burgers’ equa-
tions, we use the superposition principle for nonlinear partial equations [6, 7, 8, 9, 10].
Computed results are compared with analytical and other numerical results using various
values of the Reynolds number R.

D denotes the domain

D:={(z,y,t):0<z<mm 0<y<mO<t<T}

Partial differential equation (1) can be solved by splitting it into two one dimensional
equation from [6] rather than discretising the complete two-dimensional Burgers’ equation
to give an aproximating equation based on two-dimensional computational molecule, as
seen [11]. Let consider

Uy = f(x,t,u)
uy ~ f(y,t,u).

We can write equation (1) as equations (5) and (6)

1 1

§Ut - Eumc = ’U,f(l‘, t, u)7 (CE, t)GD (5)
1 1

§Ut - Euyy = Uf(yv t7 U), (y7 t)ED (6)

Applying the same estimations for equation (2) we can write as equations (7) and (8)

Lot = Lvse = ugla t,0), (2. £)eD (7)
2Ut val‘ =ug\r,1,v),(T,1)€

1 1

51)75 - Evyy = vg(ya t7 U)a (ya t)ED (8)

with the initial condition and the periodic boundary condition

u(@,0) = ¢@),uly,0) = ¢(y) z,y € [0,7]

u(0,t) = wu(m,t), uI(O t) = ug(m,t),uy(0,t) = uy(m,t)

v(,0) = @), v(y,0) = ¢(y) z,y € [0,7], (9)
v(0,t) = wv(m,1),v5(0,t) = vy(m,t),vy(0,t) = vy(m,t)
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The functions p(x), ¢(y) and f(x,t,u) ,f(y,t,u),g(x,t,u) and g(y,t,u) are given func-
tions on [0,7] and 90D X (—o0, 00), respectively.

The problem of finding the pair {u(z,t), v(x,t)}are solutions. In technical applications,
the following boundary conditions w(0,t) = u(mw,t),u,(0,t) = uy(m,t) are encountered
very often [1].

Definition 1.1. The pair {u(z,t),v(z,t)} from the class (C*>' (D)NCY0 (OD)) for which
conditions (5)-(9) are satisfied is called the classical solution of system (5)-(9).

2. EXISTENCE AND UNIQUENESS OF THE SOLUTION OF THE PROBLEM

The main result on the existence and the uniqueness of the solution of the problem
(5)-(9) is presented as follows:

We have the following assumptions on the data of the problem (5)-(9).

(A1) (@), ¢(y) € C[0, 7],

v(0) = ¢(7), ¢ (0) = ¢ (m),

(A2) Let the function f(z,t,u) and f(y,t,u) is continuous with respect to all arguments
in 0D x (—o00,00) and satisfies the following condition

(1)
[f(@, t,u) = fz,t,0)] < bx,t)u—ql (10)
l9(@,t,u) —g(z,t,u)] < bz, t)|u—1al,
where b(z,t) € La(D), b(z,t) > 0,
[f(y,tu) = fy 6, @) < by, 1) [u—al (11)
l9(y.t,u) —g(y,t,a)] < b(y,t)u—al

where b(y,t) € La(D), b(y,t) >0,
(2) f(z,t,u), g(x,t,u) € C[0, 7], te[0, T],
(3) f(a;,t,u)|x:0 = f(l' t u)’x =7 fa: (O t u)|gc 0— fac(ﬂ— L u)‘

g(ZL‘,t u)|x 0 — g(m,t,u)|$:ﬂ, 9z (07t7u)’x:() = gz(ﬂ-vtau”x:ﬂ— .
(4) f(y,t,u), 9(y,t,u) € C[0, 7], te[0, T1,
( ) f(yat u)|x 0 — f(yvta u)‘w:ﬂ"’ fx (Oatvu)|x:0 = fm(ﬂ-atvuﬂx:w'

9wt )l = 9, 6| pr s 92 (0,8, 0)] g = Go(m, by u)|pr -
(Same conditions for v is considered)

By applying the standard procedure of the Fourier method, we obtain the following
representation for the solution of (5)-(6) and (7)-(8)

uo(t

~—

u(z,t) = 5 + Z Uek () cos 2kx + ugp(t) sin 2kz] (12)
v(x,t) = v02(t) + [Vek (t) cos 2kx + vy (t) sin 2kz]
k=1
t oo
u(y,t) = u02( ) + Z [tek (t) cos 2ky + ugk(t) sin 2ky] (13)
k=1
w(t) | <

v(y,t) = 5 + Z [Ver (t) cos 2ky + vk (t) sin 2ky] ,
k=1
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For equation (5) Fourier coefficient is:

uo(t) = w+ijfu@ﬂf@ﬂmaﬂmwﬂ (14)
0 0
uek(t) = %Mﬂ?“+i]]u@ﬂf@nmaﬂnw%&ﬁ?%Tuwn
0 0
wa(t) = %mﬂ?t+i/]u@ﬂf@nm¢mQMMeﬁﬁ“ﬂ%w
0 0
4

-2
™

O—x

where ¢g = %f(p(x)dx,cpck = o(x) sin 2kzdz, w(&,7) =
0

folt,u) = 2 [ f(z,t,u)dz, fo(t,u) = 2 [ f(z,t,u) cos2kzdz, fo,(t,u) = 2 [ f(z,t,u) sin 2kzd,
0 0 0
k=1,2,3,...
For (6) equation Fourier coefficient is
9 t
wt) = got = [ [o@r)f rutn) dndr (15)
00
t
—ep?, 2 (t—7)
valt) = e K42 [ [otnn) o utn, 7)) cos2bn e E 0 dar,
T
00
) 9 t
vsk(t) = Psk e t+//U(U,T)f(n,7’,u(77,7’))51n2kn e G o " dndr.
T
00

where g = %f Y)dy, pex = %fgo(y) cos 2kydy, psi = %fgo(y) sin 2kydy, u(n, 7) =
0 0 0

L}z@ + 21 [tk (T) cos 2kn + ugy(7) sin 2kn)]

fot,u) = 2 [vf(y,t,w)dy, fos(t,u) =2
0
k=1,2,3,.

™
vf(y,t,u) cos2kydy, fs(t,u) %f f(y,t,u)sin 2kydy,
0

O%ﬁ

Same estimation for Fourier coefficient to (7)-(8) equation.

Definition 2.1. Denote the set

{u(®)} = {uo(t), uck(t), usk(t), k = 1,...,n},

of continuous on [0,T| functions satisfying the condition

[uo(2) t by By. Let
a5+ (g 01+ g 01 < o b By L
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uo
Ju()] = max ] +Z(max ek (8)] + max |usk<>\),

0<t<T 0<t<T 0<t<T

be the norm in B.
It can be shown that By are the Banach spaces.

{v(t)} = {vo(t), ver (1), ver(t), k = 1,...,n},
of continuous on [0,T] functwns satisfying the condition

|v0 )|
goax = + Z <r%1tagx |ver (1)] +01;1%>§F|vsk(t)|) < 00, by By. Let

Jo(6)] = s +Z<max (0] + g, o))

be the norm in Bs.
It can be shown that Bo are the Banach spaces.

Theorem 2.1 (optional text). Let the assumptions (A1)-(A2) be satisfied. Then the prob-
lem (5)-(9) has a unique solution for small T.

Proof.
W) = W)+ / / W™ (e, 7)f (& u™Mie 7)) dear, (16)
0 0
ug, () = ug)(0) + i/t / WM (g, 7) £(€, 7, ul™) (€, 7)) cos 2kE e~ F D,
0 0
uly ) = “(?3<’f)+72r/t / WM (€, 7) £(€, 7, ut™) (€, 7)) sin 2k e F T dedr,
0 0

—(2k)2

ud (8) = po.uly) (1) = pee™ S LulD(t) = pape ™

From the conditions of the theorem we have u(®)(t)eBy , te[0, T7.
Let us write N =0 in (16).

t

™

t
0 =u’ @+ 2 [ [uOens (6 n) dedr
0 0

tm
Adding and subtracting [ [ f(§, 7,0)dédr to the last equation, we obtain
00

t w
2
u(()l)( t)+—

)
\

0

Applying Cauchy inequality,

/ (€ m, O (€, 7))~ £(, 7, 0)]u® (€, r)dédr > / / f(&,, 0)dédr.
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N

t - ) ,
(/ {i/ d (5’7’“(0)(577))f(&,ﬂo)]u(o)(ﬁm)df} dr>

0 0

)] < 900+</ df)

0

+ (/th)z (/{iif(&n@ u<°><s,f)ds}2d7)2-
0 0 0

Using Lipschitzs condition in the last equation

¢ - 2 3
‘U(()l)(t)‘ < s00+\[</{7r/ (Té)‘ (5,7)2d§} dr)

0 0

t ™ 2 3
Vi (!{io/f(§,7‘,0)u(o)(f,T)‘dﬁ} dT) .

Applying Cauchy inequality to the last equation on [0, 7],

t (w 2 2
0] < el +2Y (/{/ b, ) [ (e, >2df} df)

0 0

+2f (/{/fs,ro (e, 7) d5}2d7)2,

0
Taking the maximum of both side of the last inequality we have :

max ‘u(()l)(t)) < |900|+2\F’|b($ t)”LQ H 0) ‘

0<¢<T VT B
s
2 1 0)
t m
(1) = +72T/ / (67 u (6, 7) cos 2kge™F(Tdgar
0

tm
Adding and subtracting [ [ f(£,7,0)dédr to the last equation,
00

t m
(2k)2

O = e F +727// (&7 u (€, 7) = £(&,7,0)] [ul0(&,7)| cos 2hee ™R g

0

™

t
o2
+2//f(§aT,O)COSQk§e & (t*T)dng'
s
0 0
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Applying Cauchy,Bessel,Holder, Lipshitzs condition and taking maximum:

o0
E max
ogth

k=1

Applying the same estimations we obtain,

0] < 3ot o e Ol [0, 44 [

Zofz% 3

Finally we have the following inequality:

MO o
Hu(l)(t)H = max ) ’ (t)‘ —|—Z<max u&)(t)‘ + max gk)( )D

0<t<T 0<t<T

IN

o0

ol

N Z | Pk| + |9skl)
k=1

(2T ) sl [,
(o F ) e,

Same estimation for equation (6)

1 (2,2, 0)[| £,y -

o] = g5 it g i)
== k=1

0<t<T 0<t<T

o
2
5 + ) (lperl + loskl)

(4 ) o o0
(/2

M) 170 [0,

IA

By

L) < me ||b<x Oluaio O, + 5 H ®),, 170y -

0, 170l
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[0l = @]+ [,

[o@)
< ool +2 (el + pur])

k=1
+ (2\/§+ %) 106 Do) H“ )(t)’ B,
) o,
+ (2 %—&- ;\;%R) Hb(y7t)HL2(D H H31 HU(O)(w’ Bs
. Wf s \f’}?) 15t Ol [0,

From the conditions of the theorem u(V)(t) € Bj.
Same estimation for N

HU(N—I—l)(t)‘Bl = ‘uéN)(t)‘+i<0rgta<)§p ug§><t>]+0@%]u$><t>])
. wwi (il + il
+< + 22 oG, Ol H“(N)@)\;
+< Z 4 23?) [« @], 1510z,
(o F 2 i [0, [0,
+ <2 T4 Q) 1Ol [+,

Since u(M)(t) € By and from the conditions of the theorem, we have u(N+1)(t) € By,

{u(t)} = {uo(t), uek(t), usk(t), k=1,2,...} € By.

Same estimation for (7)-(8) equations

45
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o))

s

N
o (0] +

[e.o]
N
= max ’v(() )(t)‘—i— E max
B 0<t<T £ \0<t<T

IN

‘900‘ =+ 22 |(Pck| + |‘psk|

. ( 27TR
(nf5e
(n5e
; <2ﬁ ; %) loGe,t.0)lg, 0y [ ™01 -

{v()} = {wo(t), ver(t), vsr(t), k=1,2,...} € Ba.
Now we prove that the iterations u(N*D (¢ ) and vV 41 (¢ ) converge in By and Bs, as
N — o0.
Applying Cauchy inequality, Bessel inequality , Holder inequality,the Lipshitzs condition
;taking maximum of both side of the u(M) (t) — u(0)(t) for equation (5):

[e0t) - @) < <2\/f ﬁf}?) IbGe Dy )]

B:
n (2\/37T+7r> H

o, )0 [0 1)

B>

156, Dl o [|o ™ 1)

B>

)H ), latw. .0, m

O, 1@t Ol

oy (ﬁf . \f}?) (\|b<x,t>uL2(D) [« + [, M) '

oot w00, < 4

Applying Cauchy inequality, Bessel inequality , Holder inequality,the Lipshitzs condition
;taking maximum of both side of the u () — u(9)(¢) for equation (6):

[0 —u )| < (2 - g) 15, ) o ) [0

. (%) o], 17610l

o0 = (F+58) (o sl ) o

oot 01, < -

(@ (t) ‘

B, B>

B,

For N :
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VN! T 2V3

N
T V2nR A
Hu(N—i—l)(t)—u(N)(t)H < (2\/W+ 2\/5) Hb(y,t)H]LVQ(D)\/%

N
T 2R Br

(o) 2o

N
A T V2rR
HU(NH)(t) _ U(N)(t)H < 2T <2 — 4+ ) b(, )17, )

HU(NH)(t) — ) (t)’

IN

HWH) (t) — M) H1 + HuWH)(t) — a1 H2 (19)

T VarR\" -
(2\/;+ 2v/3 ) [|’b(w7t)||]LV2(D) + ||b(y7t)||g2(D)} \/%
N
T 2R Br
* (2\[r+ 23 ) V!

It is easy to see that u(M*1) — (V) | N — oo, for (5)-(6)
Same estimations for (7)-(8)

By

IN

IN

HMNH)(t) - U<N>(t>)

HUUVH)(t) Y (t)H1 + HU<N+1>(t) — @) (t)H2 (20)

T v\ 4
(2\/;+ 2\@) [Hb(w,t)HgQ(D)—i-Hb(%t)HLNz(D)]\/%
N
T 21 R Br
+ (2\/;4— 2\/§> VNI

lim w NV (8) = w(t), lim oNTV(1) = o(2).
N—o0 N—o0

For the uniqueness, we assume that the problems (5)-(9) have two solution pairs (u, v)
and (w,v) .Applying Cauchy inequality, Bessel inequality , Holder inequality,the Lipshitzs
condition ,taking maximum of both side of the |u(t) — u(t)| and |v(t) — T(t)|, we obtain

Bo

IN

u(t) —T(t)] < (2\@ + ;&?) (el 166 D)) + 1013, 1o Dl ) ) — )]

Applying Gronwall’s inequality to the last equations we have wu(t) = u(t)
Same estimation for |v(t) — v(t)| ,we have v(t) = v(¢) O

The theorem is proved.

Theorem 2.2. Under assumption (A1)-(A2) the solution (u,v) of the problem (5)-(9)
depends continuously upon the data .

Proof. Let ® = {¢, f} and ® = {, f} be two sets of the data, which satisfy the assump-
tions (A1)-(A2).

By using same estimations, we obtain:
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u—uf < fe—a|

2
x exp2M? [[o(e, ), ) + 158y

For¢)—>6thenu7—>ﬂ.
® = {p,g} and ® = {p, g} be two sets of the data, which satisfy the assumptions

(A1)-(A2),
2 =112
ool < o3|
2
2
xexp2M? [[lb(z, D, + 1603 o)
For & — ® then v — 7. O
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