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ON SOME NEW INEQUALITIES FOR s− CONVEX FUNCTIONS

MEHMET EYUP KIRIŞ1, HASAN KARA2, §

Abstract. In this paper, we establish a few new generalization of Hermite-Hadamard
inequality using s−convex functions in the 2nd sense. For this purpose we used some
special inequalities like Hölder’s.
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1. Introductions

Definition 1.1. A function f : I ⊆ R+ → R+, where R = [0,∞) is said to be s-convex
on I if the inequality,

f (tx+ (1− t)y) ≤ tsf (x) + (1− t)sf (y) (1)

holds for all x, y ∈ I and t ∈ [0, 1] with t+ (1− t) = 1 and for some fixed s ∈ (0, 1]. This
class of s- convex functions is usually denoted by K2

s (see:[17]).

It can be easilly that for s = 1, s-convexity reduces to ordinary convexity of funtions
defined on [0,∞).

One of the most famous inequality for the class of convex functions is known as Hermite-
Hadamard inequality which is,
f : I ⊆ R→ R be convex mapping defined on the interval I of real numbers and a, b ∈ I,

with a < b. Then

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f (a) + f (b)

2
. (2)

Within the past thirty years, different variants of this kind of inequalities have been
obtained. A few of them can be found in the papers ([5]-[28]).
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Theorem 1.1. Suppose that f : [0,∞) → [0,∞) is an s-convex function in the second
sense, where s ∈ (0, 1] and let a, b ∈ [0,∞),a < b, f ∈ L1[0, 1], then the following inequal-
ities hold

2s−1f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f (x) dx ≤ f(a) + f(b)

s+ 1
. (3)

In [8], Dragomir and Fitzpatrick proved a variant of Hermite-Hadamard inequality which
holds for the s- convex functions.

Theorem 1.2. Let f be a s- convex in the second sense on I = [a, b] and let w : [a, b]→ R
be nonnegative, integrable and symmetric about a+b

2 . Then

2s−1f

(
a+ b

2

) b∫
a

w(x)dx ≤
b∫

a

f(x)w(x)dx

≤ f(a) + f(b)

2

b∫
a

[(
b− x
b− a

)s

+

(
x− a
b− a

)s]
w(x)dx (4)

see:([18]).

Theorem 1.3. Let f, w : [a, b]→ R, a, b ∈ [0,∞), a < b, be functions such that w and f
are in L1([a, b]). If f is s-convex in the second sense and nonnegative on [a, b] for some
fixed s ∈ (0, 1), Then for all t ∈ [0, 1], we have,

2f
(
a+b

2

)
w
(
a+b

2

)
≤ 1

b−a

b∫
a
f(x)w(x)dx

+ 1
(s+1)(s+2)M(a, b) + 1

(s+2)N(a, b)
(5)

where
M(a, b) = f(a)w(a) + f(b)w(b)
N(a, b) = f(a)w(b) + f(b)w(a)

(6)

see:([19]).

2. Hermite- Hadamard Type Inequality for s -Convex Functions

Theorem 2.1. Let f, w : I ⊂ R → R be a s-convex in the second sense and nonnegative
function on I = [a, b]. If w is symmetric about a+b

2 then for all t ∈ [0, 1], we have

1

b− a

b∫
a

f(x)w(x)dx ≤ s!s!

(2s+ 1)!
M(a, b) +

1

2s+ 1
N(a, b) (7)

where M(a, b) and N(a, b) are given by (6).

Proof. Since w is symmetric about a+b
2 and f, w be s-convex functions in the second sense

and then a+ b− x = x we have

1

b− a

b∫
a

f(x)w(x)dx =
1

b− a

b∫
a

f(x)w(a+ b− x)dx
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So x = ta+ (1− t)b and dx = (a− b)dt ⇐⇒ dt = dx
a−b . By integrating limit values t→ 1

and t→ 0. Therefore, we obtain

1

b− a

b∫
a

f(x)w(a+ b− x)dx =

1∫
0

f(ta+ (1− t)b)w(a+ b− (ta+ (1− t)b))dt

=

1∫
0

f(ta+ (1− t)b)w((1− t)a+ tb)dt

Since f and w are s-convex functions in the second sense, we have

1∫
0

f(ta+ (1− t)b)w((1− t)a+ tb)dt ≤
1∫
0

[tsf(a) + (1− t)sf(b)] [(1− t)sw(a) + tsw(b)] dt

=

{
1∫
0

ts(1− t)sf(a)w(a) + t2sf(a)w(b)

+
1∫
0

(1− t)2sf(b)w(a) + ts(1− t)sf(b)w(b)dt

}
=

{
1∫
0

ts(1− t)s [f(a)w(a) + f(b)w(b)] dt

+
1∫
0

t2sf(a)w(b)dt+ (1− t)2sf(b)w(a)dt

}

By using the fact that
1∫
0

ts(1− t)sdt = β(s+ 1, s+ 1) and therefore,

1∫
0

ts(1− t)s [f(a)w(a) + f(b)w(b)] dt+

1∫
0

t2sf(a)w(b)dt+ (1− t)2sf(b)w(a)dt

= β(s+ 1, s+ 1) [f(a)w(a) + f(b)w(b)] +
t2s+1

2s+ 1

∣∣∣∣1
0

f(a)w(b) + −(1− t)2s+1

2s+ 1

∣∣∣∣1
0

f(b)w(a)

Using Beta function, β(s+ 1, s+ 1) = Γ(s+1)Γ(s+1)
Γ(2s+2) = s!s!

(2s+1)!

=
Γ(s+ 1)Γ(s+ 1)

Γ(2s+ 2)
[f(a)w(a) + f(b)w(b)] +

1

2s+ 1
f(a)w(b) +

1

2s+ 1
f(b)w(a)

=
s!s!

(2s+ 1)!
[f(a)w(a) + f(b)w(b)] +

1

2s+ 1
[f(a)w(b) + f(b)w(a)]

=
s!s!

(2s+ 1)!
M(a, b) +

1

2s+ 1
N(a, b)

which completes the proof. �

Remark 2.1. If we take s = 1 and for all x ∈ [a, b] in Theorem 1.4, the inequality (7)
reduce to inequality

1

b− a

b∫
a

f(x)w(x)dx ≤ 1

6
M(a, b) +

1

3
N(a, b)

which is proved by Pachpatte in [20].
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Lemma 2.1. Let f : I ⊂ R → R be differentiable function on I◦(the interior I) If
f ′ ∈ L1 [a, b] for a, b ∈ I

1

b− a

b∫
a

f (x) dx− f
(
a+ b

2

)
= (b− a)

1∫
0

p(t)f ′ (ta+ (1− t)b) dt (8)

where

p(t) =

{
t, t ∈

[
0, 1

2

)
t− 1, t ∈

[
1
2 , 1
]

Proof. Proved by Kirmaci [3]. �

Theorem 2.2. Let f : I ⊂ R → R be differentiable function on I◦(I interval) and
f ′ ∈ L1 [a, b] for a, b ∈ I. If |f ′| is the s- convex in the second sense on [a, b], then
following inequality holds:

∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣ ≤ (b−a)

{[∣∣f ′(a)
∣∣+
∣∣f ′(b)∣∣] [ 2s+1 − 1

(s+ 1)(s+ 2)2s+1

]}
(9)

Proof. From Lemma 2.1 and s-convexity in the second sense of |f ′| function , we obtained

∣∣∣∣ 1

b− a

∫ b

a
f (x) d (x)− f

(
a+ b

2

)∣∣∣∣ ≤ (b− a)

1∫
0

|p(t)|
∣∣f ′ (ta+ (1− t)b)

∣∣ dt
= (b− a)


1
2∫

0

t
∣∣f ′ (ta+ (1− t)b)

∣∣ dt
+

1∫
1
2

|t− 1|
∣∣f ′ta+ (1− t)b

∣∣ dt


≤ (b− a)


1
2∫

0

t [ts |f ′(a)|+ (1− t)s |f ′(b)|] dt

+
1∫
1
2

(1− t) [ts |f ′(a)|+ (1− t)s |f ′(b)|] dt


= (b− a)


1
2∫

0

{tts |f ′(a)|+ t(1− t)s |f ′(b)|} dt

+
1∫
1
2

{(1− t)ts |f ′(a)|+ (1− t)(1− t)s |f ′(b)|} dt


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If we change the variable with (1− t) = u then right hand side of the last inequality.

= (b− a)

∣∣f ′(a)
∣∣ 1

2∫
0

ts+1dt−
∣∣f ′(b)∣∣ 1∫

1
2

(1− u)usdu

+
∣∣f ′(a)

∣∣ 1∫
1
2

(1− t)ts +
∣∣f ′(b)∣∣ 1∫

1
2

(1− t)s+1dt


= (b− a)

{∣∣f ′(a)
∣∣ ∣∣∣∣( ts+2

s+ 2

) 1
2

0

−
∣∣f ′(b)∣∣ ∣∣∣∣( us+1

s+ 1
− us+2

s+ 2

) 1
2

1

+
∣∣f ′(a)

∣∣ ∣∣∣∣(− ts+2

s+ 2
+

ts+1

s+ 1

)1

1
2

+
∣∣f ′(b)∣∣ ∣∣∣∣(−(1− t)s+2

s+ 2

)1

1
2

}

= (b− a)

{∣∣f ′(a)
∣∣ ( 2

2s+2(s+ 2)
+
−s− 1 + s+ 2

(s+ 1)(s+ 2)
− 1

2s+1(s+ 1)

)
+
∣∣f ′(b)∣∣ ( 2

2s+2(s+ 2)
+
s+ 2− s− 1

(s+ 1)(s+ 2)
− 1

2s+1(s+ 1)

)}
= (b− a)

{[∣∣f ′(a)
∣∣+
∣∣f ′(b)∣∣]

×

[
2−(s+1)2s+1(s+ 1)

(s+ 1)(s+ 2)2s+1
+

2s+1

(s+ 1)(s+ 2)2s+1
+

−s− 2

(s+ 1)(s+ 2)2s+1

]

= (b− a)

{[∣∣f ′(a)
∣∣+
∣∣f ′(b)∣∣] [ 2s+1 − 1

(s+ 1)(s+ 2)2s+1

]}
So the theroem is proved. �

Remark 2.2. If we take s = 1 and for all x ∈ [a, b] in Theorem 2.2., the inequality (9)
reduce to inequality.(see: [3])∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣ ≤ (b− a)

8

{∣∣f ′(a)
∣∣+
∣∣f ′(b)∣∣}

Theorem 2.3. Let f : I ⊂ R → R be a differentiable function on I◦(the interior I) and
f ′ ∈ L1 [a, b] for a, b ∈ I.If |f ′|q is s- convex in the second sense on [a, b] , q > 1 then the
folloving inequalities hold:∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)dx− f
(
a+ b

2

)∣∣∣∣∣∣ (10)

≤ (b− a)
(

2−p−1

(p+1)

)1/p (
1

sq+1

)1/q
{[|f ′(a)|] + [|f ′(b)|]}

where 1
p + 1

q = 1.
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Proof. From Lemma 2.1, using Hölder’s inequality and s-convex in the second sense of |f ′|
functions , we obtained

∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣
=

∣∣∣∣∣∣(b− a)

1∫
0

p(t)f ′ (ta+ (1− t)b) dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣(b− a)


1/2∫
0

tf ′ (ta+ (1− t)b) dt+

1∫
1/2

(t− 1) f ′ (ta+ (1− t)b) dt


∣∣∣∣∣∣∣

≤ |(b− a)|


1/2∫
0

∣∣tf ′ (ta+ (1− t)b)
∣∣ dt+

1∫
1/2

∣∣ (t− 1) f ′ (ta+ (1− t)b)
∣∣ dt


and then using Hölder’s inequality,

∣∣∣∣ 1

b− a

∫ b

a
f (x) dx− f

(
a+ b

2

)∣∣∣∣ ≤ |(b− a)|


1/2∫
0

∣∣tf ′ (ta+ (1− t)b)
∣∣ dt

+

1∫
1/2

∣∣ (t− 1) f ′ (ta+ (1− t)b)
∣∣ dt


≤ (b− a)


 1/2∫

0

tpdt


1/p

×

 1/2∫
0

∣∣f ′ (ta+ (1− t)b)
∣∣q dt


1/q

+

 1∫
1/2

|t− 1|p dt


1/p

×

 1∫
1/2

∣∣f ′ (ta+ (1− t)b)
∣∣q dt


1/q

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furthermore,

I1 =

 1/2∫
0

∣∣f ′ (ta+ (1− t)b)
∣∣q dt


1/q

I2 =

 1∫
1/2

∣∣f ′ (ta+ (1− t)b)
∣∣q dt


1/q

If we take it as, Using to s-convex in the second sense of |f ′| functions and∑n
k=1(ak + bk)r ≤

∑n
k=1 ak

r +
∑n

k=1 bk
r,

I1 =

 1/2∫
0

∣∣f ′ (ta+ (1− t)b)
∣∣q dt


1/q

≤

 1/2∫
0

[
ts
∣∣f ′(a)

∣∣+ (1− t)s
∣∣f ′(b)∣∣]q dt


1/q

≤

 1/2∫
0

[
ts
∣∣f ′(a)

∣∣]q dt+

1/2∫
0

[
(1− t)s

∣∣f ′(b)∣∣]q dt


1/q

=

∣∣f ′(a)
∣∣q 1/2∫

0

[tsq] dt+
∣∣f ′(b)∣∣q 1/2∫

0

[(1− t)sq] dt


1/q

=

(∣∣f ′(a)
∣∣q tsq+1

sq + 1

∣∣∣∣1/2

0

+
∣∣f ′(b)∣∣q −(1− t)sq+1

sq + 1

∣∣∣∣1/2

0

)1/q

=

(
1

sq + 1

)1/q ([
2−sq−1

∣∣f ′(a)
∣∣q]+

[(
1− 2−sq−1

) ∣∣f ′ (b)∣∣])1/q
and

I2 =

 1∫
1/2

∣∣f ′ (ta+ (1− t)b)
∣∣q dt


1/q

≤

 1∫
1/2

[
ts
∣∣f ′(a)

∣∣+ (1− t)s
∣∣f ′(b)∣∣]q dt


1/q

≤

 1∫
1/2

[
ts
∣∣f ′(a)

∣∣]q dt+

1∫
1/2

[
(1− t)s

∣∣f ′(b)∣∣]q dt


1/q
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=

∣∣f ′(a)
∣∣q 1∫

1/2

[tsq] dt+
∣∣f ′(b)∣∣q 1∫

1/2

[(1− t)sq] dt


1/q

=

(∣∣f ′(a)
∣∣q ( tsq+1

sq + 1

∣∣∣∣1
1/2

)
+
∣∣f ′(b)∣∣q (−(1− t)sq+1

sq + 1

∣∣∣∣1
1/2

))1/q

=

(
1

sq + 1

)1/q ([(
1− 2−sq−1

) ∣∣f ′(a)
∣∣q]+

[(
2−sq−1

) ∣∣f ′(b)∣∣q])1/q
and

[I1 + I2] =

(
1

sq + 1

)1/q ([
2−sq−1

∣∣f ′(a)
∣∣q]+

[(
1− 2−sq−1

) ∣∣f ′ (b)∣∣])1/q
+

(
1

sq + 1

)1/q ([(
1− 2−sq−1

) ∣∣f ′(a)
∣∣q]+

[(
2−sq−1

) ∣∣f ′(b)∣∣q])1/q
=

(
1

sq + 1

)1/q {([
2−sq−1

∣∣f ′(a)
∣∣q]+

[(
1− 2−sq−1

) ∣∣f ′ (b)∣∣])1/q
+
([(

1− 2−sq−1
) ∣∣f ′(a)

∣∣q]+
[(

2−sq−1
) ∣∣f ′(b)∣∣q])1/q}

≤
(

1

sq + 1

)1/q {([
2−sq−1

∣∣f ′(a)
∣∣q]1/q +

[(
1− 2−sq−1

) ∣∣f ′ (b)∣∣]1/q)
+
([(

1− 2−sq−1
) ∣∣f ′(a)

∣∣q]1/q +
[(

2−sq−1
) ∣∣f ′(b)∣∣q]1/q)}

and then  1/2∫
0

tpdt


1/p

=

(
2−p−1

(p+ 1)

)1/p

,

 1∫
1/2

|t− 1|p dt


1/p

=

 1∫
1/2

(1− t)p dt


1/p

=

(
2−p−1

(p+ 1)

)1/p

as it can be calculated as

(b− a)


 1/2∫

0

tpdt


1/p

I1 +

 1∫
1/2

|t− 1|p dt


1/p

I2


= (b− a)

{(
2−p−1

(p+ 1)

)1/p

I1 +

(
2−p−1

(p+ 1)

)1/p

I2

}

= (b− a)

{(
2−p−1

(p+ 1)

)1/p

[I1 + I2]

}
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≤ (b− a)

(
2−p−1

(p+ 1)

)1/p(
1

sq + 1

)1/q

{([
2−sq−1

∣∣f ′(a)
∣∣q]1/q +

[(
1− 2−sq−1

) ∣∣f ′ (b)∣∣]1/q)
+
([(

1− 2−sq−1
) ∣∣f ′(a)

∣∣q]1/q +
[(

2−sq−1
) ∣∣f ′(b)∣∣q]1/q)}

= (b− a)

(
2−p−1

(p+ 1)

)1/p(
1

sq + 1

)1/q {[∣∣f ′(a)
∣∣]+

[∣∣f ′(b)∣∣]}

This proof is completed. �

Remark 2.3. If we take s = 1 and for all x ∈ [a, b] in Theorem 5, the inequality (10)
reduce to inequality.(see: [3])

Lemma 2.2. Let f : I ⊂ R → R be a differentiable function on I◦(the interior I).If
f ′ ∈ L1[a, b] for a, b ∈ I, then the following equality holds:

f (a) + f (b)

2
− 1

(b− a)

b∫
a

f (x) dx

(11)

=
b− a

2

1∫
0

(2t− 1)
[
f ′ (tb+ (1− t) a)

]
dt.

Proof. Proved by Dragomir and Agarwal in [4]. �

Theorem 2.4. Let f : I ⊂ R → R be differentiable function on I◦(the interior I)
and |f ′| ∈ L1 [a, b] for a, b ∈ I, then |f ′| is the s-convex in the second sense on [a, b],
thenthe following inequality holds;

∣∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

b∫
a

f (x) dx

∣∣∣∣∣∣
(12)

≤ b− a
2

(
2−s + s

s2 + 3s+ 2

)[
s
∣∣f ′(b)∣∣+ s

∣∣f ′(a)
∣∣]
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Proof. From Lemma 2.2 and by using s-convexity function of |f ′| ,we have∣∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

b∫
a

f (x) dx

∣∣∣∣∣∣
≤ b− a

2

1∫
0

|2t− 1|
∣∣f ′ (tb+ (1− t) a)

∣∣ dt
≤ b− a

2

1∫
0

|2t− 1|
[
ts
∣∣f ′(b)∣∣+ (1− t)s

∣∣f ′(a)
∣∣] dt

=
b− a

2


1
2∫

0

−(2t− 1)
[
ts
∣∣f ′(b)∣∣+ (1− t)s

∣∣f ′(a)
∣∣] dt

+

1∫
1
2

(2t− 1)
[
ts
∣∣f ′(b)∣∣+ (1− t)s

∣∣f ′(a)
∣∣] dt


=

b− a
2

[
−

(∣∣f ′(b)∣∣ 2−(s+1)

s2 + 3s+ 2
−
∣∣f ′(a)

∣∣ 2−(s+1) + s

s2 + 3s+ 2

)

+

(∣∣f ′(b)∣∣ 2−(s+1) + s

s2 + 3s+ 2
+
∣∣f ′(a)

∣∣ 2−(s+1)

s2 + 3s+ 2

)]

=
b− a

2

[∣∣f ′(b)∣∣( 2−(s+1)

s2 + 3s+ 2
+

2−(s+1) + s

s2 + 3s+ 2

)

+
∣∣f ′(a)

∣∣(2−(s+1) + s

s2 + 3s+ 2
+

2−(s+1)

s2 + 3s+ 2

)]

=
b− a

2

(
2−s + s

s2 + 3s+ 2

)[
s
∣∣f ′(b)∣∣+ s

∣∣f ′(a)
∣∣]

which completes the proof. �

Remark 2.4. If we take s = 1 and for all x ∈ [a, b], then inequality (12) coincide with
the right sides of Hermite-Hadamard inequality proved by Dragomir and Agarwal in ([4])

Theorem 2.5. Let f : I ⊂ R → R be a differentiable function on I◦(the interior I) and
|f ′|q is the s-convex in the second sense on [a, b]. q > 1, the following inequality holds:∣∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

b∫
a

f (x) dx

∣∣∣∣∣∣
(13)

≤ b− a
2

(
1

p+ 1

) 1
p
(
|f ′(b)|q + |f ′(a)|q

s+ 1

) 1
q

where 1
p + 1

q = 1.
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Proof. From Lemma 2.2 by using Hölder’s inetgral inequality and s-convex in the second
sense of |f ′| functions , we heve∣∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

b∫
a

f (x) dx

∣∣∣∣∣∣
≤ b− a

2

 1∫
0

|2t− 1|p dt


1
p

×

 1∫
0

∣∣f ′ (tb+ (1− t) a)
∣∣q dt


1
q

obtained. And then since |f ′| is s-convex in the second sense function,∣∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

b∫
a

f (x) dx

∣∣∣∣∣∣
≤ b− a

2

(
1

p+ 1

) 1
p

 1∫
0

[
ts
∣∣f ′(b)∣∣q + (1− t)s

∣∣f ′(a)
∣∣q] dt


1
q

=
b− a

2

(
1

p+ 1

) 1
p

[
ts+1

s+ 1

∣∣∣∣1
0

∣∣f ′(b)∣∣q − (1− t)s+1

s+ 1

∣∣∣∣1
0

∣∣f ′(a)
∣∣q] 1

q

=
b− a

2

(
1

p+ 1

) 1
p
[
|f ′(b)|q + |f ′(a)|q

s+ 1

] 1
q

which completes the proof. �

Remark 2.5. If we take s = 1 and for all x ∈ [a, b], then inequality (13) coincide with
the right sides of Hermite-Hadamard inequality proved by Dragomir and Agarwal in [4].
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[12] Pearce C.E.M. and Pečarić J., (2000), Inequalities for differentiable mappings with application to
special means and quadrature formulae, Appl. Math. Lett., 13(2), 51–55.

[13] Youness E. A., (1999), E - Convex Sets, E - Convex Functions and E - Convex Programming,
Journal of Optimization Theory and Applications, 102, 2, 439-450.

[14] Sarikaya M. Z., (2013), On Hermite Hadamard-type inequalities for strongly ϕ-convex functions,
Southeast Asian Bull. Math., in press.

[15] Sarikaya M. Z., (2014), On Hermite Hadamard-type inequalities for ϕh-convex functions, Kochi J. of
Math., 9, 83-90.

[16] Sarikaya M.Z.,Buyukeken M., Kiris M.E., (2015), On some generilazed integral inequalities for ϕ-
convex functions, Stud.Univ. Babes-Bolyai Math. 60, No. 3, 367-377.

[17] Hudzik H., Maligranda L., (1994), Some remarks on s-convex functions, Aequationes Math, 48 :
100-111.

[18] Tseng, K., Hwang, S. & Dragomir, S. (2017). On Some New Inequalities of Hetmite-Hadamard-Fejer
Type Involving Convex Functions, Demonstratio Mathematica, 40(1), pp. 51-64. Retrieved 28 Apr.
2018, from doi:10.1515/dema-2007-0108

[19] Kirmaci U.S., Bakula M.K., Ozdemir M.E, Pecaric J., (2007), Applied Mathematics and Computation,
193 26–35.

[20] Pachpatte, B. G., (1992). On Some Inequalities for Convex Functions, RGMIA Res. Rep. Coll.6,
suplement.
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