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ON THE HYPERBOLIC FIBONACCI MATRIX FUNCTIONS

M. BAHŞİ1,∗, S. SOLAK2, §

Abstract. In this study, we will introduce a new class of hyperbolic matrix functions.
By comparing Binet formulas for the Fibonacci and Lucas numbers to the formulas of
classical hyperbolic matrix functions, we will define hyperbolic Fibonacci matrix func-
tions and we will deal with some of their properties.
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1. Introduction

Many problems of applied sciences are described by differential systems, so differential
systems have many applications in applied sciences such as mathematics and engineering
[1− 7] and references therein. Computing matrix functions plays a very important role in
the solutions to the differential systems. Some important matrix functions are exponential,
cosine, sine, hyperbolic sine and hyperbolic cosine of a matrix. Their importances arise in
solving differential systems of first and second order or coupled partial differential systems,
for example see [8− 11]. It is well known that x (t) = eAtx0 is the solution to differential
system

dx

dt
= Ax, x (0) = x0 (1)

where A ∈ Cn×n and x ∈ Cn. Hyperbolic sine and cosine of a matrix play a similar role
in coupled partial differential systems. An exact solution of coupled hyperbolic systems
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of the form

utt (x, t) = Auxx (x, t) , 0 < x < 1, t > 0,

u (0, t) +B1ux (0, t) = 0, t > 0,

A2u (1, t) +B2ux (1, t) = 0, t > 0,

u (x, 0) = f(x), 0 ≤ x ≤ 1,

ut (x, 0) = g(x), 0 ≤ x ≤ 1,


(2)

where A,B1, A2, B2 are n×n complex matrices, and u, f, g are n−vector valued functions,
was constructed by Jodar et al. [11] in terms of a series which used hyperbolic cosine and
sine of a matrix, respectively defined by

cosh(A) =
eA + e−A

2
and sinh(A) =

eA − e−A

2
, A ∈ Cn×n. (3)

Many different algorithms for computing the matrix functions mentioned above have
been reported in the last decades [2, 8, 9, 11− 17]. For example, Moore [15] has put forward
the idea of expanding in either Chebyshev, Legendre or Laguerre orthogonal polynomials
for the matrix exponentials. An algorithm for computing the cosine matrix function
has been presented by Sastre et al. [17] based on Taylor series and the cosine double
angle formula. Defez and Jodar [13] have presented some new methods for computing
matrix exponential, sine and cosine based on Hermite matrix polynomial series. Recently,
a method for computing hyperbolic matrix functions, sinh(A) and cosh(A), has been
proposed by Defez et al. [2] based on Hermite matrix polynomial expansions.

In this work we introduce a new class of hyperbolic matrix functions called hyperbolic
Fibonacci matrix functions by comparing Binet formulas for the Fibonacci and Lucas
numbers to the formulas of classical hyperbolic matrix functions in (3) and we present
some of their recursive and hyperbolic properties.

This work is organized as follows. In section 3, we first define matrix power of the
golden ratio and give some of its properties. After, we introduce hyperbolic Fibonacci
matrix functions. For this purpose, we give some preliminaries about hyperbolic Fibonacci
functions in section 2. Our main results about properties of hyperbolic matrix functions
are given in section 4.

2. Preliminaries

The Fibonacci numbers are defined by the second order linear recurrence relation:
Fn+1 = Fn + Fn−1 (n ≥ 1) with the initial conditions F0 = 0 and F1 = 1. Similarly,
the Lucas numbers are defined by Ln+1 = Ln + Ln−1 (n ≥ 1) with the initial conditions
L0 = 2 and L1 = 1. The characteristic equation of Fn and Ln is [18, 19]:

t2 − t− 1 = 0. (4)

The roots of Equation (4) are α = 1+
√

5
2 , β = 1−

√
5

2 and α and β are the only numbers

such that the reciprocal of each is obtained by subtracting 1 from it, that is, t − 1 = 1
t ,

where t = α or β. Thus α is the only positive number that has the properties α− 1 = 1
α

, α2 = 1 + α and α−2 = 1 − α−1. Moreover, the number α = 1+
√

5
2 is called golden

ratio which has been very attractive for researchers because it occurs ubiquitous such as
in nature, art, architecture, and anatomy. The relations between golden ratio and the
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Fibonacci and Lucas numbers

lim
n→∞

Fn+1

Fn
= α = lim

n→∞

Ln+1

Ln

are well-known. Also, the Binet formulas for Fn and Ln are [18, 19]:

Fn =

{
αn+α−n
√

5
, n odd,

αn−α−n
√

5
, n even,

(5)

Ln =

{
αn − α−n, n odd,
αn + α−n, n even.

(6)

The Fibonacci numbers have many properties, continuous versions and generalizations
[18− 26]. Stakhov and Tkachenko [23] have introduced a new class of hyperbolic functions
called hyperbolic Fibonacci functions replacing the discrete variable n in Equation (5) with
the continuous variable x that takes its values from the set of the real numbers. Based on
an analogy between Binet formula, Equation (5), and the classical hyperbolic functions

sinh(x) =
ex − e−x

2
and cosh(x) =

ex + e−x

2
,

Stakhov and Rozin [24] have defined the so-called symmetrical hyperbolic Fibonacci and
Lucas functions as follows:

sFs(x) =
αx − α−x√

5
and cFs(x) =

αx + α−x√
5

, (7)

sLs(x) = αx − α−x and cLs(x) = αx + α−x, (8)

where sFs(x), cFs(x), sLs(x) and cLs(x) denote symmetrical hyperbolic Fibonacci sine,
cosine, symmetrical hyperbolic Lucas sine and cosine functions, respectively. The graphs
of the symmetrical hyperbolic Fibonacci functions have a symmetric form and are similar
to the graphs of the classical hyperbolic functions. Also, the symmetrical hyperbolic
Fibonacci functions sFs(x) and cFs(x) are increasing on (0,+∞). The graphs of the
symmetrical hyperbolic Fibonacci functions are given in [24]. The symmetrical hyperbolic
Fibonacci functions have properties that are similar to the classical hyperbolic functions.
Some of them are [24]:

cFs(x) = cFs(−x), sFs(x) = −sFs(−x) and [cFs(x)]2 − [sFs(x)]2 =
4

5
,

sFs(x+ 2) = cFs(x+ 1) + sFs(x) and cFs(x+ 2) = sFs(x+ 1) + cFs(x),

2√
5
cFs(x+ y) = cFs(x)cFs(y) + sFs(x)sFs(y).

Also, the derivatives of hyperbolic Fibonacci functions are [24]:

[cFs(x)](n) =

{
(lnα)n sFs(x), for n odd,
(lnα)n cFs(x), for n even,

[sFs(x)](n) =

{
(lnα)n cFs(x), for n odd,
(lnα)n sFs(x), for n even.

Recently, Bahşi [20] has introduced the analog of the Wilker inequality and the param-
eterized Wilker inequality for the hyperbolic Fibonacci functions. For more information
and the generalizations about hyperbolic Fibonacci functions see [20− 26] the references
cited therein.
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3. Hyperbolic Fibonacci Matrix Functions

Let us consider the diferential system

dx

dt
= (lnα)Ax, x (0) = x0 (9)

where A ∈ Cn×n, x ∈ Cn and α is the golden ratio. It is clear that the solution to the
Equation (9) is x (t) = αAtx0. The Taylor series expansions of the functions et and αt are

et = 1 + t+
1

2!
t2 +

1

3!
t3 + · · ·

and

αt = 1 + ln(α)t+
[ln(α)]2

2!
t2 +

[ln(α)]3

3!
t3 + · · ·

where t ∈ R and αt = et ln(α). The series expansions above give us the matrix functions

eA = I +A+
A2

2!
+
A3

3!
+ · · ·

αA = I + ln(α)A+
[ln(α)]2

2!
A2 +

[ln(α)]3

3!
A3 + · · · (10)

where A ∈ Cn×n and I is n−dimensional identity matrix. By using series expansion (10),
we can see easily that the matrix power of the golden ratio, αA, has similar properties to
that of matrix exponential, eA. Some of them are:

1. Zero matrix power of the golden ratio is an identity matrix. That is,

α0 = I.

2. Identitiy matrix power of the golden ratio is α times identity matrix. That is,

αI = αI and αmI = αmI for m ∈ Z.

3. Tranposed matrix power of the golden ratio equals the transpose of the matrix power
of the golden ratio. That is,

α(AT ) =
(
αA
)T
.

4. The inverse of the matrix power of the golden ratio exists and is given by(
αA
)−1

= α−A.

5. The derivative of the matrix power of the golden ratio is given by

dαAt

dt
= ln(α)AαAt.

6. The power of the matrix power of the golden ratio satisfies(
αA
)m

= αmA,

where m ∈ Z.
Next we give three lemmas related to matrix powers of golden ratio together with their

proofs, because we use them in our main results.

Lemma 3.1. For the commutable n× n matrices A and B,

αA+B = αAαB.
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Proof. Series expansions of matrix powers of golden ratio yield

αA+B = I + lnα (A+B) +
[lnα]2

2!
(A+B)2 +

[lnα]3

3!
(A+B)3 + · · ·

= I + lnα (A+B) +
[lnα]2

2!

(
A2 +AB +BA+B2

)
+ · · · ,

αAαB =

(
I + [lnα]A+

[lnα]2

2!
A2 + · · ·

)(
I + [lnα]B +

[lnα]2

2!
B2 + · · ·

)

= I + lnα (A+B) +
[lnα]2

2!

(
A2 + 2AB +B2

)
+ · · ·

αA+B − αAαB =
[lnα]2

2!
(BA−AB) + · · ·

If AB = BA, then αA+B − αAαB = 0. Thus, desired result is obtained.

Lemma 3.2. The following identities that are analogous to identities for the golden ratio
α2 = 1 + α , α−2 = 1 − α−1 and α − α−1 = 1 are valid for matrix power of the golden
ratio:

α2I = I + αI ,

α−2I = I − α−I

and

αI − α−I = I.

Proof.

I + αI = I + αI = (1 + α) I = α2I = α2I ,

I − α−I = I − α−1I =
(
1− α−1

)
I = α−2I = α−2I

and

αI − α−I = αI − α−1I =
(
α− α−1

)
I = I.

Lemma 3.3. The following identity that is analogous to identitiy for the golden ratio
1
5

(
α2 + α−2 + 2

)
= 1 is valid for matrix power of the golden ratio:

1

5

(
α2I + α−2I + 2I

)
= I.

Proof. Lemma 2 yields

1

5

(
α2I + α−2I + 2I

)
=

1

5

(
I + αI + I − α−I + 2I

)
=

4

5
I +

1

5

(
αI − α−I

)
=

4

5
I +

1

5
I

= I

Now we give the definition of the hyperbolic Fibonacci matrix functions based on an
analogy between Binet formulas (5), (6) and the hyperbolic matrix functions (3).
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Definition 3.1. Let α be the golden ratio. The symmetrical hyperbolic Fibonacci sine and
cosine matrix functions are defined by, respectively

sFs(A) =
αA − α−A√

5
and cFs(A) =

αA + α−A√
5

, (11)

where A is n × n matrix. Similarly, the symmetrical hyperbolic Lucas sine and cosine
matrix functions are defined by, respectively

sLs(A) = αA − α−A and cLs(A) = αA + α−A. (12)

The classical hyperbolic matrix functions and symmetrical hyperbolic Fibonacci matrix
functions have series expansions as follows:

cosh(A) = I +
1

2!
A2 +

1

4!
A4 + · · ·

sinh(A) = A+
1

3!
A3 +

1

5!
A5 + · · ·

cFs(A) =
2√
5
I +

2√
5

(lnα)2

2!
A2 +

2√
5

(lnα)4

4!
A4 + · · · (13)

sFs(A) =
2√
5

(lnα)A+
2√
5

(lnα)3

3!
A3 +

2√
5

(lnα)5

5!
A5 + · · · . (14)

From the properties of αA and the definitions of the hyperbolic Fibonacci matrix functions,
we have some basic properties of cFs(A) and sFs(A):

1. For the zero matrix, cFs(0) = 2√
5
I and sFs(0) = 0.

2. For the identity matrix, cFs(I) = I and sFs(I) = 1√
5
I

3. cFs(−A) = cFs(A) and sFs(−A) = −sFs(A).

4. For the transpose matrix, [cFs(A)]T = cFs(AT ) and [sFs(A)]T = sFs(AT ).
5. cFs(A) = 2√

5
cosh (A lnα) and sFs(A) = 2√

5
sinh (A lnα) .

Throughout this paper sFs(A), cFs(A), sLs(A) and cLs(A) denote the symmetrical
hyperbolic Fibonacci and Lucas matrix functions given in (11), (12) and α denotes the

golden ratio, α = 1+
√

5
2 . Also, in statements of our theorems, we will mention some iden-

tities related to hyperbolic Fibonacci functions given in [24] .

4. Recursive and Hyperbolic Properties of the Symmetrical Hyperbolic
Fibonacci Matrix Functions

Theorem 4.1. (Recursive relation). The following correlations that are analogous to the
recurrent equations for the hyperbolic Fibonacci Functions sFs(x+2) = cFs(x+1)+sFs(x)
and cFs(x+ 2) = sFs(x+ 1) + cFs(x) are valid for the symmetrical hyperbolic Fibonacci
matrix functions:

sFs(A+ 2I) = cFs(A+ I) + sFs(A),

cFs(A+ 2I) = sFs(A+ I) + cFs(A).

Also, these correlations correspond to the recurrence relation Fn+2 = Fn+1 + Fn for the
Fibonacci numbers.
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Proof. By Lemmas 1 and 2, we have

cFs(A+ I) + sFs(A) =
αA+I + α−A−I√

5
+
αA − α−A√

5

=
αA(αI + I)− α−A(I − α−I)√

5

=
αAα2I − α−Aα−2I

√
5

=
αA+2I − α−A−2I

√
5

= sFs(A+ 2I)

and

sFs(A+ I) + cFs(A) =
αA+I − α−A−I√

5
+
αA + α−A√

5

=
αA(αI + I) + α−A(I − α−I)√

5

=
αAα2I + α−Aα−2I

√
5

=
αA+2I + α−A−2I

√
5

= cFs(A+ 2I).

Theorem 4.2. The following Cassini type identities are valid for the symmetrical hyper-
bolic Fibonacci matrix functions:

[sFs(A)]2 − cFs(A+ I)cFs(A− I) = −I, (15)

[cFs(A)]2 − sFs(A+ I)sFs(A− I) = I. (16)

Proof. By Lemmas 1 and 3, the left hand side of the first identity (LHS) is

(LHS) =
(αA − α−A)2 − (αA+I + α−A−I)(αA−I + α−A+I)(√

5
)2

=
α2A − 2I + α−2A −

(
α2A + α2I + α−2I + α−2A

)
5

=
−(2I + α2I + α−2I)

5
= −I



M.BAHŞİ, S.SOLAK: ON THE HYPERBOLIC FIBONACCI MATRIX FUNCTIONS 461

and the left hand side of the second identity (LHS) is

(LHS) =
(αA + α−A)2 − (αA+I − α−A−I)(αA−I − α−A+I)(√

5
)2

=
α2A + 2I + α−2A −

(
α2A − α2I − α−2I + α−2A

)
5

=
2I + α2I + α−2I

5
= I.

The identities (15) and (16) correspond to the Cassini identity, F 2
n − Fn+1Fn−1 =

(−1)n+1 , for the Fibonacci numbers and similar to the equations for the hyperbolic Fi-

bonacci functions [sFs(x)]2−cFs(x+1)cFs(x−1) = −1 and [cFs(x)]2−sFs(x+1)sFs(x−
1) = 1.

The proofs of the next two theorems are similar to the proofs of the previous theorems.
So, we give them without proof.

Theorem 4.3. The following correlations that are similar to the equations for the hyper-
bolic Fibonacci Functions cFs(x+1)+cFs(x−1) = cLs(x) and sFs(x+1)+sFs(x−1) =
sLs(x) are valid for the symmetrical hyperbolic Fibonacci matrix functions:

cFs(A+ I) + cFs(A− I) = cLs(A),

sFs(A+ I) + sFs(A− I) = sLs(A).

Also, these correlations correspond to the identity Fn+1 + Fn−1 = Ln for the Fibonacci
and Lucas numbers.

Theorem 4.4. The following correlations that are similar to the equations for the hy-
perbolic Fibonacci Functions cFs(x) + sLs(x) = 2sFs(x + 1) and sFs(x) + cLs(x) =
2cFs(x+ 1) are valid for the symmetrical hyperbolic Fibonacci matrix functions:

cFs(A) + sLs(A) = 2sFs(A+ I),

sFs(A) + cLs(A) = 2cFs(A+ I).

Also, these correlations correspond to the identity Fn +Ln = 2Fn+1 for the Fibonacci and
Lucas numbers.

Theorem 4.5. (Pythagorean theorem). The following correlation that is similar to the

equation for the hyperbolic Fibonacci functions [cFs(x)]2 − [sFs(x)]2 = 4
5 is valid for the

symmetrical hyperbolic Fibonacci matrix functions:

[cFs(A)]2 − [sFs(A)]2 =
4

5
I.

The equation [cFs(A)]2−[sFs(A)]2 = 4
5I correspond to the identity [cosh(x)]2−[sinh(x)]2 =

1 for the classical hyperbolic functions.
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Proof. From Lemma 1, we have

[cFs(A)]2 − [sFs(A)]2 =

(
αA + α−A√

5

)2

−
(
αA − α−A√

5

)2

=
α2A + 2I + α−2A − α2A + 2I − α−2A

5

=
4

5
I.

Theorem 4.6. The following correlation that is similar to the equation for the hyper-
bolic Fibonacci functions 2√

5
cFs(x + y) = cFs(x)cFs(y) + sFs(x)sFs(y) is valid for the

symmetrical hyperbolic Fibonacci matrix functions:

2√
5
cFs(A+B) = cFs(A)cFs(B) + sFs(A)sFs(B), (17)

where A and B commute.

Proof. By Lemma 1, the right hand side of the Equation (17) (RHS) is

(RHS) =
αA + α−A√

5

αB + α−B√
5

+
αA − α−A√

5

αB − α−B√
5

=
αA+B + αA−B + α−A+B + α−A−B + αA+B − αA−B − α−A+B + α−A−B

5

=
2αA+B + 2α−A−B

5

=
2√
5
cFs(A+B).

Theorem 4.7. The following correlation that is similar to the equation for the hyper-
bolic Fibonacci functions 2√

5
cFs(x − y) = cFs(x)cFs(y) − sFs(x)sFs(y) is valid for the

symmetrical hyperbolic Fibonacci matrix functions:

2√
5
cFs(A−B) = cFs(A)cFs(B)− sFs(A)sFs(B), (18)

where A and B commute.

Proof. By Lemma 1, the right hand side of the Equation (18) (RHS) is

(RHS) =
αA + α−A√

5

αB + α−B√
5

− αA − α−A√
5

αB − α−B√
5

=
αA+B + αA−B + α−A+B + α−A−B − αA+B + αA−B + α−A+B − α−A−B

5

=
2αA−B + 2α−A+B

5

=
2√
5
cFs(A−B).
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Theorem 4.8. The following correlations that are similar to the equation for the hyper-
bolic Fibonacci functions 2√

5
sFs(x± y) = sFs(x)cFs(y)± cFs(x)sFs(y) are valid for the

symmetrical hyperbolic Fibonacci matrix functions:

2√
5
sFs(A±B) = sFs(A)cFs(B)± cFs(A)sFs(B), (19)

where A and B commute.

Proof. The proof is similar to the proofs of Theorems 6 and 7.

Next theorem gives us nth derivatives of hyperbolic Fibonacci matrix functions.

Theorem 4.9. The nth derivatives of hyperbolic Fibonacci matrix functions are:

[cFs(At)](n) =

 (A lnα)n sFs(At), for n odd,

(A lnα)n cFs(At), for n even,

[sFs(At)](n) =

 (A lnα)n cFs(At), for n odd,

(A lnα)n sFs(At), for n even,

where t ∈ R.

Proof. From the series expansions of the functions cFs(A) and sFs(A), we have

[cFs(At)]
′

=

[
2√
5
I +

2√
5

(lnα)2

2!
A2t2 +

2√
5

(lnα)4

4!
A4t4 + · · ·

]′

= A (lnα)

[
2√
5

(lnα)At+
2√
5

(lnα)3

3!
A3t3 +

2√
5

(lnα)5

5!
A5t5 + · · ·

]
= (lnα)AsFs(At)

[cFs(At)]
′′

= [(lnα)AsFs(At)]
′

=

(
(lnα)A

[
2√
5

(lnα)At+
2√
5

(lnα)3

3!
A3t3 +

2√
5

(lnα)5

5!
A5t5 + · · ·

])′

= A2 (lnα)2

[
2√
5
I +

2√
5

(lnα)2

2!
A2t2 +

2√
5

(lnα)4

4!
A4t4 + · · ·

]
= A2 (lnα)2 cFs(At)

......

[cFs(A)](n) =

 (A lnα)n sFs(At), for n odd,

(A lnα)n cFs(At), for n even.

Similarly, one can see that

[sFs(At)](n) =

 (A lnα)n cFs(At), for n odd,

(A lnα)n sFs(At), for n even.
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Theorem 4.10. The hyperbolic Fibonacci matrix functions have Moivre type equation:

[cFs(A)± sFs(A)]n =

[
2√
5

]n−1

[cFs(nA)± sFs(nA)] .

Proof.[
2√
5

]n−1

[cFs(nA)± sFs(nA)] =

[
2√
5

]n−1 [αnA + α−nA√
5

± αnA − α−nA√
5

]

=

[
2√
5

]n
α±nA =

[
2√
5
α±A

]n
=

[
αA + α−A√

5
± αA − α−A√

5

]n
= [cFs(A)± sFs(A)]n .

5. Conclusion

In this study, we introduce a new class of hyperbolic matrix functions called hyperbolic
Fibonacci matrix functions and investigate their recursive and hyperbolic properties. The
similar properties can be obtained for the hyperbolic Lucas matrix functions. Also, we
think that some algorithms for the computing hyperbolic Fibonacci matrix functions based
on Hermite matrix polynomial expansions can be derived.
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