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SOLVABILITY TO COUPLED SYSTEMS OF FUNCTIONAL

EQUATIONS VIA FIXED POINT THEORY

H. IŞIK1, §

Abstract. The purpose of the present paper is to establish the existence and uniquness
of coupled common fixed points for a pair of mappings satisfying F -contraction. As a
consequence of our results, we discuss the existence of a unique common solution of
coupled systems of functional equations arising in dynamic programming.
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1. Introduction and Preliminaries

The metric fixed point theory regarded as starting with Banach contraction principle [2]
in 1922 is a branch of mathematics, which is widely used not only in various mathematical
theories, but also in many practical problems of natural sciences and engineering. In fact,
by introducing suitable operators in different types of spaces, it is possible to find the
existence and uniqueness of solutions of differential, integral or functional equations by
searching the fixed points of such operators. This situation motivates researchers to study
on extensions and generalizations of the Banach contraction principle [2]. One of the most
interesting generalizations this phenomenon principle has been given by Wardowski [19]
by introducing the following notion of F -contraction.

Definition 1.1. A self-mapping T on a metric space (X, d) is said to be an F -contraction,
if there exist F ∈ F and σ ∈ (0,+∞) such that

x, y ∈ X, d(Tx, Ty) > 0 =⇒ σ + F (d(Tx, Ty)) ≤ F (d(x, y)), (1)

where F is the set of functions F : (0,+∞)→ R satisfying the following conditions:

(F1) F is strictly increasing;
(F2) for each sequence {tn}n∈N of positive numbers, limn→∞ tn = 0 if and only if

limn→∞ F (tn) = −∞;
(F3) there exists α ∈ (0, 1) such that limt→0+ tαF (t) = 0.
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Let T : X → X. The following functions Fi : (0,+∞) → R for i ∈ {1, 2, 3, 4} , are the
elements of F . Furthermore, substituting in (1) these functions, we obtain the following
contractions known in the literature: for all x, y ∈ X with Tx 6= Ty,

F1(t) = ln t, d(Tx, Ty) ≤ e−σd(x, y),

F2(t) = ln t+ t,
d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ e−σ,

F3(t) = − 1√
t
, d(Tx, Ty) ≤ 1

(1 + σ
√
d(x, y))2

d(x, y),

F4(t) = ln(t2 + t)
d(Tx, Ty)(d(Tx, Ty) + 1)

d(x, y)(d(x, y) + 1)
≤ e−σ.

Remark 1.1. Clearly, the equation (1) implies that T is a contractive mapping, that
is, d(Tx, Ty) < d(x, y) for all x, y ∈ X such that Tx 6= Ty. Hence every F -contraction
mapping is continuous.

By using the concept of F -contraction, Wardowski [19] established a fixed point theorem
which improves Banach contraction principle in a different way than in the known results
from the literature. For more details about this subject, see [11, 16–18,20] and references
therein.

Theorem 1.1 ( [19]). Let (X, d) be a complete metric space and T : X → X be an F -
contraction. Then T has a unique fixed point x?. Moreover, for each x ∈ X, the sequence
{Tnx} converges to x?.

Another concept, coupled fixed point was introduced and studied by Opoitsev [13, 14]
and then by Guo and Lakhsmikantham [7]. Bhaskar and Lakhsmikantham [4] were the first
to study coupled fixed points in connection to contractive type conditions. They applied
their results to prove the existence and uniqueness of solutions for a periodic boundary
value problem. Since then, coupled fixed point theory have been a subject of interest by
many authors regarding the application potential of it, for example see [1, 6, 8–10,12,15].

Definition 1.2 ( [5–7]). Let X be a non-empty set, f ,g : X → X and F,G : X ×X → X
be given mappings.

(1) An element x ∈ X is called a common fixed point of f and g, if x = fx = gx.
(2) An element (x, y) ∈ X ×X is said to be a coupled fixed point of F if x = F (x, y)

and y = F (y, x).
(3) An element (x, y) ∈ X ×X is said to be coupled common fixed point of F and G,

if x = F (x, y) = G(x, y) and y = F (y, x) = G(y, x).

In this study, we establish the existence and uniquness of coupled common fixed points
for a pair of mappings satisfying F -contraction. As a consequence of our results, we discuss
the existence of a unique common solution of the following coupled systems of functional
equations arising in dynamic programming:

α1 (x) = sup
y∈D
{g (x, y) + U (x, y, α1 (τ (x, y)) , β1 (τ (x, y)))}

β1 (x) = sup
y∈D
{g (x, y) + U (x, y, β1 (τ (x, y)) , α1 (τ (x, y)))}

(2)
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and
α2 (x) = sup

y∈D
{g (x, y) + V (x, y, α2 (τ (x, y)) , β2 (τ (x, y)))}

β2 (x) = sup
y∈D
{g (x, y) + V (x, y, β2 (τ (x, y)) , α2 (τ (x, y)))}

(3)

where x ∈ S and S is a state space, D is a decision space, τ : S ×D → S, g : S ×D → R
and U, V : S ×D × R× R→ R.

2. Main Results

First of all, we give the following lemma which will be used efficiently in the proof of
essential theorem of this study.

Lemma 2.1. Let (X, d) be a complete metric space, F ∈ F and f, g : X → X. If there
exists σ > 0 such that

σ + F (d(fx, gy)) ≤ F (d(x, y)), (4)

for all x, y ∈ X satisfying min {d(fx, gy), d(x, y)} > 0. Then f and g have a unique
common fixed point.

Proof. Notice that, by (F1) and (4), we deduce that

d(fx, gy) ≤ d(x, y), for all x, y ∈ X. (5)

Firstly, we prove that u is a fixed point of f if and only if u is a fixed point of g. Suppose
that u is a fixed point of g, but not a fixed point of f. Then, considering (5), we have

0 < d(fu, u) = d(fu, gu) ≤ d(u, u) = 0

which is a contradiction and this implies that fu = u. Similarly, it is easy to show that if
u is a fixed point of f, then u is a fixed point of g.

Let x0 ∈ X. Define the sequence {xn} in X by x2n+1 = fx2n and x2n+2 = gx2n+1 for
all n ∈ N0 = N ∪ {0}. If x2n = x2n+1 for some n ∈ N, then x2n = fx2n. Thus x2n is a
fixed point of f and so x2n is a fixed point of g, that is, x2n = fx2n = gx2n. Similarly,
if x2n+1 = x2n+2 for some n ∈ N, then it is easy to see that x2n+1 = fx2n+1 = gx2n+1.
Hence we can assume that xn 6= xn+1 for all n ∈ N. Then, for n = 2m+ 1, where m ∈ N0,
using (4) we have

F (d(xn, xn+1)) = F (d(x2m+1, x2m+2)) = F (d(fx2m, gx2m+1))

≤ F (d(x2m, x2m+1))− σ
≤ F (d(x2m−1, x2m))− 2σ

...

≤ F (d(x0, x1))− (2m+ 1)σ

= F (d(x0, x1))− nσ.
By a similar method to above, for n = 2m, where m ∈ N0, we can obtain

F (d(xn, xn+1)) ≤ F (d(x0, x1))− nσ. (6)

Thus the inequality (6) is satisfied for all n ∈ N. On taking limit of (6) as n→∞, we get
limn→∞ F (d(xn, xn+1)) = −∞ that together with (F2) gives

lim
n→∞

d(xn, xn+1) = 0. (7)
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Let dn := d(xn, xn+1) for all n ∈ N. Thus, from (6), we have

F (dn) ≤ F (d0)− nσ. (8)

To prove that {xn} is a Cauchy sequence, let us consider condition (F3). Then, there
exists α ∈ (0, 1) such that

lim
n→∞

dn
αF (dn) = 0. (9)

By (8), for all n ∈ N, we infer that

dn
αF (dn)− dnαF (d0) ≤ −dnαnσ ≤ 0. (10)

Letting n→∞ in (10) and using (9), we get

lim
n→∞

ndn
α = 0.

By the definition of limit, there exists n1 ∈ N such that ndn
α ≤ 1 for all n ≥ n1, and

consequently,

dn ≤
1

n1/α
, for all n ≥ n1. (11)

Let m > n ≥ n1. Then, using the triangular inequality and (11), we have

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1)

=
m−1∑
k=n

dk ≤
m−1∑
k=n

1

k1/α

≤
∞∑
k=n

1

k1/α
,

and hence {xn} is a Cauchy sequence in X. From the completeness of (X, d), there exists
u ∈ X such that

lim
n→∞

xn = u.

Now, we show that u is a common fixed point of f and g. By considering (5), we deduce

d (x2n+1, gu) = d (fx2n, gu) ≤ d (x2n, u) .

Passing to limit as n→ +∞ in the above inequality, we obtain d(u, gu) = 0 and so u = gu.
That is, u is a fixed point of g. Taking into account the fact that u is a fixed point of f iff
u is a fixed point of g, we conclude that u is also a fixed point of f, that is, u = fu = gu.
The uniquness of common fixed point follows from (4), so we omit the details. �

Now, we are ready to present the main theorem of this section.

Theorem 2.1. Let (X, d) be a complete metric space, F ∈ F and A,B : X ×X → X. If
there exists σ > 0 such that

σ + F (d(A(x, y), B(u, v))) ≤ F (max {d(x, u), d(y, v)}), (12)

for all (x, y), (u, v) ∈ X ×X satisfying min {d(A(x, y), B(u, v)), d(x, u), d(y, v)} > 0. Then
A and B have a unique coupled common fixed point.
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Proof. Define δ : X2 ×X2 → [0,+∞) by

δ((x, y), (u, v)) = max{d(x, u), d(y, v)}, for all (x, y), (u, v) ∈ X ×X.
Then, (X ×X, δ) is a complete metric space, since (X, d) is complete. Consider operators
TA, TB : X ×X → X ×X defined by

TA(U) = (A(x, y), A(y, x)) ,

and
TB(U) = (B(x, y), B(y, x)) ,

where U = (x, y). Then, TA and TB satisfy all assumptions of Lemma 2.1. Indeed, taking
account of (F1) and (12), for all U = (x, y), V = (u, v) ∈ X ×X, we deduce

F (δ(TA(U), TB(V ))) = F (δ((A(x, y), A(y, x)), (B(u, v), B(v, u))))

= F (max{d(A(x, y), B(u, v)), d(A(y, x), B(v, u))})
= max{F (d(A(x, y), B(u, v))), F (d(A(y, x), B(v, u)))}
≤ max{F (max{d(x, u), d(y, v)}), F (max{d(y, v), d(x, u)})} − σ
= F (max{d(x, u), d(y, v)})− σ
= F (δ(U, V ))− σ.

Hence, we deduce that

σ + F (δ(TA(U), TB(V ))) ≤ F (δ(U, V )).

That is, TA and TB hold the inequality (4). Therefore, by Lemma 2.1, there exists a
unique U∗ = (x∗, y∗) ∈ X ×X such that TA(U∗) = TB(U∗) = U∗. This means that

A(x∗, y∗) = B(x∗, y∗) = x∗,

and

A(y∗, x∗) = B(y∗, x∗) = y∗.

This finishes the proof. �

3. An Application

Consider the following coupled systems of functional equations

α1 (x) = sup
y∈D
{g (x, y) + U (x, y, α1 (τ (x, y)) , β1 (τ (x, y)))}

β1 (x) = sup
y∈D
{g (x, y) + U (x, y, β1 (τ (x, y)) , α1 (τ (x, y)))}

(13)

and
α2 (x) = sup

y∈D
{g (x, y) + V (x, y, α2 (τ (x, y)) , β2 (τ (x, y)))}

β2 (x) = sup
y∈D
{g (x, y) + V (x, y, β2 (τ (x, y)) , α2 (τ (x, y)))}

(14)

appear in the study of dynamic programming (see [3,8,11,16]), where x ∈ S and S is a state
space, D is a decision space, τ : S×D → S, g : S×D → R and U, V : S×D×R×R→ R.

Let B(S) denote the set of all bounded real-valued functions on the nonempty set S
and, for any h ∈ B(S), define

‖h‖ = sup
x∈S
|h(x)|.
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It is well known that B(S) endowed with the sup metric

d(h, k) = sup
x∈S
|hx− kx|,

for all h, k ∈ B(S), is a complete metric space.
In this section, we discuss the existence of a unique common solution to the systems

of functional equations (13) and (14) that belongs to B(S)×B(S) by using the obtained
results in the previous section.

Theorem 3.1. Assume that the following conditions are satisfied:

(i) g : S ×D → R and U, V : S ×D × R× R→ R are bounded functions;
(ii) there exists σ > 0 such that for arbitrary points x ∈ S, y ∈ D and h, k, h1, k1 ∈ R,

|U (x, y, h, k)− V (x, y, h1, k1)| ≤ e−σ max {|h− h1| , |k − k1|} .

Then the equations (13) and (14) have a unique bounded common solution in B(S)×B(S).

Proof. Firstly, we consider the operators P and Q defined on B(S)×B(S) as

(P (u, v)) (x) = sup
y∈D
{g (x, y) + U (x, y, u (τ (x, y)) , v (τ (x, y)))} ,

(Q (u, v)) (x) = sup
y∈D
{g (x, y) + V (x, y, u (τ (x, y)) , v (τ (x, y)))} ,

(15)

for all (u, v) ∈ B(S)×B(S) and x ∈ S. Since functions g, U and V are bounded, then P
and Q are well-defined.

Now we will show that P and Q satisfy the condition (12) in Theorem 2.1 with the sup
metric d. Let (u1, v1) , (u2, v2) ∈ B(S)×B(S). Then, by (ii), we get

d(P (u1, v1), Q(u2, v2))

= sup
x∈S
|P (u1, v1) (x)−Q (u2, v2) (x)|

= sup
x∈S

∣∣∣∣∣ sup
y∈D
{g (x, y) + U (x, y, u1 (τ (x, y)) , v1 (τ (x, y)))}

−sup
y∈D
{g (x, y) + V (x, y, u2 (τ (x, y)) , v2 (τ (x, y)))}

∣∣∣∣∣
≤ sup

x∈S

{
sup
y∈D
| U (x, y, u1 (τ (x, y)) , v1 (τ (x, y)))

− V (x, y, u2(τ(x, y)), v2(τ(x, y)))|
}

≤ sup
x∈S

{
sup
y∈D

(
e−σ max{|u1 (τ (x, y))− u2 (τ (x, y)) |,

|v1 (τ (x, y))− v2 (τ (x, y)) |}
)}

≤ sup
x∈S
{e−σ max{‖u1 − u2‖ , ‖v1 − v2‖}

≤ e−σ max{d(u1, u2), d(v1, v2)}. (16)
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It yields that

d(P (u1, v1), Q(u2, v2)) ≤ e−σ max{d(u1, u2), d(v1, v2)}. (17)

By passing to logarithms and after routine calculations, we deduce that

σ + ln(d(P (u1, v1), Q(u2, v2))) ≤ ln(max{d(u1, u2), d(v1, v2)}), (18)

for each (u1, v1) , (u2, v2) ∈ B(S) × B(S). By setting F ∈ F by F (t) = ln t for all t > 0
and using (18), we infer

σ + F (d(P (u1, v1), Q(u2, v2))) ≤ F (max{d(u1, u2), d(v1, v2)}),
for all (u1, v1) , (u2, v2) ∈ B(S) × B(S). This means that the condition (12) of Theorem
2.1 holds and consequently, P and Q have a unique coupled common fixed point. That is,
the equations (13) and (14) have a unique bounded common solution in B(S)×B(S). �
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