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EXISTENCE OF SYMMETRIC POSITIVE SOLUTIONS FOR

LIDSTONE TYPE INTEGRAL BOUNDARY VALUE PROBLEMS

N. SREEDHAR1, K. R. PRASAD2, S. BALAKRISHNA3, §

Abstract. This paper establishes the existence of even number of symmetric positive
solutions for the even order differential equation

(−1)nu(2n)(t) = f(t, u(t)), t ∈ (0, 1),

satisfying Lidstone type integral boundary conditions of the form

u(2i)(0) = u(2i)(1) =

∫ 1

0

ai+1(x)u(2i)(x)dx, for 0 ≤ i ≤ n− 1,

where n ≥ 1, by applying Avery–Henderson fixed point theorem.

Key words: Green’s function, integral boundary conditions, cone, positive solution, fixed
point theorem.
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1. Introduction

In many branches of applied mathematics, the goal is to formulate the mathematical
model of the real world problems by analyzing the given situations. Most of these models
involve the rate of change of the dependent variable, which will form differential equations.
The theory of differential equations offers a broad mathematical basis to understand the
problems of modern society, which are complex and interdisciplinary by nature.

The existence of positive solutions [1] of the boundary value problems (BVPs) have
created a great deal of interest due to wide applicability in both theory and applications.
Davis and Henderson [6], Wong and Agarwal [16], Davis, Henderson and Wong [7], Ehme
and Henderson [8], Bai and Ge [3] and Zhang and Liu [19] considered Lidstone type BVPs
associated with ordinary differential equations and established the existence of positive
solutions to the boundary value problems by using various methods.

Recently, there is an increasing interest shown in establishing the existence of positive
solutions for boundary value problems (BVPs) with integral boundary conditions, see
[4, 5, 9, 10, 11, 12, 15, 20, 21, 22]. Recent results indicate that considerable achievement
has been made in the existence of positive solutions of the boundary value problems.
However they did not further provide characteristics of positive solutions such as symmetry.

1 Department of Mathematics, GITAM (Deemed to be University), Visakhapatnam, 530 045, India.
e-mail: sreedharnamburi@rediffmail.com; ORCID: https://orcid.org/0000-0002-3916-3689.

2 Department of Applied Mathematics, Andhra University, Visakhapatnam, 530 003, India.
e-mail: rajendra92@rediffmail.com; ORCID: https://orcid.org/0000-0001-8162-1391.

3 Department of Mathematics, VIEW, Visakhapatnam, 530 049, India.
e-mail: balakrishna.sunkara@gmail.com; ORCID: https://orcid.org/0000-0001-5938-8175.
§ Manuscript received December 11, 2016; accepted: February 16, 2017.

TWMS Journal of Applied and Engineering Mathematics, Vol.8, No.1a c© Işık University, Department
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Symmetry has been widely used in science, engineering and technology. The reason is
that the symmetry has not only its theoretical value in studying the metric manifolds and
symmetric graph and so forth, but also its practical value, for example, we can apply this
characteristic to study graph structures and chemistry structures. However, the existence
of symmetric positive solutions for BVPs with integral boundary conditions are still very
few, see [13, 14, 17, 18].

Motivated by the papers mentioned above, we extend the results to 2nth order boundary
value problem with integral boundary conditions of the form

(−1)nu(2n)(t) = f(t, u(t)), t ∈ (0, 1), (1)

u(2i)(0) = u(2i)(1) =

∫ 1

0
ai+1(x)u(2i)(x)dx, for 0 ≤ i ≤ n− 1, (2)

where n ≥ 1, and establish the existence of even number symmetric positive solutions by
applying Avery–Henderson fixed point theorem.

We assume the following conditions hold throughout this paper:

(A1) f : [0, 1] × [0,∞) → [0,∞) is continuous and f(t, u) is symmetric on [0, 1] for all
u ∈ [0,∞), i.e., f(1− t, u) = f(t, u) for all t ∈ [0, 1] and u ∈ [0,∞),

(A2) aj ∈ L1[0, 1], aj(x) > 0 and dj =
∫ 1
0 aj(x)dx ∈ (0, 1) for 1 ≤ j ≤ n.

This paper is organized as follows. In section 2.2, we derive Green’s function for the
homogeneous boundary value problem corresponding to (1)-(2) and obtain bounds for
the Green’s function. In section 2.3, we develop criteria for the existence of at least two
symmetric positive solutions of the BVP (1)-(2) by using Avery–Henderson fixed point
theorem. We also establish the existence of at least 2m symmetric positive solutions
to the BVP (1)-(2) for an arbitrary positive integer m. Finally, we give an example to
illustrate our results.

2. Preliminary Results

In this section, we construct the Green function for the homogeneous boundary value
problem corresponding to (1)-(2) and estimate the bounds for the Green’s function. We
prove certain lemmas which are needed in establishing further results of this paper.

First we compute the Green’s function Gj(t, s), 1 ≤ j ≤ n, for the second order homo-
geneous BVP,

−u′′(t) = 0, t ∈ (0, 1), (3)

u(0) = u(1) =

∫ 1

0
aj(x)u(x)dx, for 1 ≤ j ≤ n, (4)

and then obtain the bounds for this Green’s function. Using this Green’s function, the
Green’s function for the homogeneous boundary value problem corresponding to (1)-(2)
is constructed and bounds for the Green’s function are estimated.

Lemma 2.1. Suppose that dj =
∫ 1
0 aj(x)dx ∈ (0, 1), for 1 ≤ j ≤ n. If h(t) ∈ (C[0, 1],R+),

then the BVP,
u′′ + h(t) = 0, t ∈ (0, 1), (5)

satisfying (4) has a unique solution

u(t) =

∫ 1

0
Gj(t, s)h(s)ds, for 1 ≤ j ≤ n,

where

Gj(t, s) = G(t, s) +
1

(1− dj)

∫ 1

0
G(x, s)aj(x)dx, for 1 ≤ j ≤ n, (6)
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and

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

(7)

Proof. Integrating both sides of (5) from 0 to t, we have

u′(t) = −
∫ t

0
h(s)ds+B, (8)

where B = u′(0). Again integrating (8) from 0 to t, we get

u(t) = −
∫ t

0

(∫ x

0
h(s)ds

)
dx+Bt+A,

which gives that

u(t) = −
∫ t

0
(t− s)h(s)ds+Bt+A, (9)

where A = u(0). In particular, u(1) = −
∫ 1
0 (1 − s)h(s)ds + Bt + A. Using the boundary

conditions (4), we get

B =

∫ 1

0
(1− s)h(s)ds (10)

and

A =

∫ 1

0
aj(x)u(x)dx

=

∫ 1

0
aj(x)

[
−
∫ x

0
(x− s)h(s)ds+Bx+A

]
dx

=

∫ 1

0
aj(x)

[
−
∫ x

0
(x− s)h(s)ds+ x

∫ 1

0
(1− s)h(s)ds

]
dx+Adj

=

∫ 1

0
aj(x)

[
−
∫ x

0
(x− s)h(s)ds

+ x

(∫ x

0
(1− s)h(s)ds+

∫ 1

x
(1− s)h(s)ds)

)]
dx+Adj

=

∫ 1

0
aj(x)

[ ∫ x

0
s(1− x)h(s)ds+

∫ 1

x
x(1− s)h(s)ds

]
dx+Adj

=

∫ 1

0
aj(x)

[ ∫ 1

0
G(x, s)h(s)ds

]
dx+Adj

=

∫ 1

0

[ ∫ 1

0
G(x, s)aj(x)dx

]
h(s)ds+Adj ,

which implies that

A =
1

(1− dj)

∫ 1

0

[ ∫ 1

0
G(x, s)aj(x)dx

]
h(s)ds. (11)

From (9), (10) and (11), the solution of boundary value problem (5), (4) is

u(t) = −
∫ t

0
(t− s)h(s)ds+ t

∫ 1

0
(1− s)h(s)ds

+
1

(1− dj)

∫ 1

0

[ ∫ 1

0
G(x, s)aj(x)dx

]
h(s)ds
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= −
∫ t

0
(t− s)h(s)ds+ t

[ ∫ t

0

[
(1− s)h(s)ds

+

∫ 1

t
(1− s)h(s)ds

]
+

1

(1− dj)

∫ 1

0

[ ∫ 1

0
G(x, s)aj(x)dx

]
h(s)ds

=

∫ t

0
s(1− t)h(s)ds+

∫ 1

t
t(1− s)h(s)ds

+
1

(1− dj)

∫ 1

0

[ ∫ 1

0
G(x, s)aj(x)dx

]
h(s)ds

=

∫ 1

0
G(t, s)h(s)ds+

1

(1− dj)

∫ 1

0

[ ∫ 1

0
G(x, s)aj(x)dx

]
h(s)ds

=

∫ 1

0
Gj(t, s)h(s)ds.

�

Lemma 2.2. Assume that the conditions (A2) is satisfied. Then G(t, s) and Gj(t, s)
(1 ≤ j ≤ n) satisfies the following inequalities:

(i) G(t, s) > 0 and Gj(t, s) > 0, for all t, s ∈ (0, 1),
(ii) G(1− t, 1− s) = G(t, s) and G(s, s)G(t, t) ≤ G(t, s) ≤ G(s, s), for all t, s ∈ [0, 1],

(iii) ξjGj(s, s) ≤ Gj(t, s) ≤ Gj(s, s), for all t, s ∈ [0, 1],

where

ξj =
ηj

(1− dj + ηj)
∈ (0, 1), (12)

and

ηj =

∫ 1

0
G(x, x)aj(x)dx.

Proof. We can easily establish the inequalities (i) and (ii). For the inequality (iii), let

Ej(s) =
1

(1− dj)

∫ 1

0
G(x, s)aj(x)dx, for 1 ≤ j ≤ n.

From (ii), the second inequality of (iii) is obvious, we prove the first inequality
of (iii). Using the inequality G(s, s)G(t, t) ≤ G(t, s), then for t, s ∈ [0, 1], we have

Ej(s) ≥
1

(1− dj)

∫ 1

0
G(s, s)G(x, x)aj(x)dx

=
ηj

(1− dj)
G(s, s),

which implies that

(1− dj)Ej(s) ≥ ηjG(s, s).

So,
(1− dj + ηj)Ej(s) ≥ ηj [G(s, s) + Ej(s)]

= ηjGj(s, s).

Subsequently,

Ej(s) ≥
ηj

(1− dj + ηj)
Gj(s, s)

= ξjGj(s, s).
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Therefore,

Gj(t, s) = G(t, s) + Ej(s)

≥ Ej(s)
≥ ξjGj(s, s).

�

Lemma 2.3. Assume that the condition (A2) is satisfied. Let G1(t, s) = H1(t, s) and
recursively define

Hj(t, s) =

∫ 1

0
Hj−1(t, r)Gj(r, s)dr, for 2 ≤ j ≤ n. (13)

Then the Green’s function for the homogeneous boundary value problem corresponding to
(1)-(2) is Hn(t, s), where Gj(t, s)(1 ≤ j ≤ n) is given in (6).

Lemma 2.4. Assume that the condition (A2) is satisfied. If we define K =
∏n−1
j=1 Kj

and L =
∏n−1
j=1 ξjKj , then the Green’s function Hn(t, s) in (13) satisfies the following

inequalities:

(i) 0 ≤ Hn(t, s) ≤ KGn(s, s), for all t, s ∈ [0, 1], and
(ii) Hn(t, s) ≥ ξnLGn(s, s), for all t, s ∈ [0, 1],

where ξn is given in (12) and Kj =
∫ 1
0 Gj(s, s)ds, for 1 ≤ j ≤ n.

Lemma 2.5. Assume that the condition (A2) is satisfied. Then the Green’s function
Hj(t, s) (1 ≤ j ≤ n) satisfies the symmetric property,

Hj(t, s) = Hj(1− t, 1− s), for all t, s ∈ [0, 1]. (14)

Proof. By the definition of Hj(t, s), (2 ≤ j ≤ n),

Hj(t, s) =

∫ 1

0
Hj−1(t, r)Gj(r, s)dr

The proof is by induction. First, for j = 1, the equation (14) is obvious. Next, we assume
that the equation (14) is true for fixed j ≥ 2. Then from (13) and using the transformation
r1 = 1− r, we have

Hj+1(t, s) =

∫ 1

0
Hj(t, r)Gj+1(r, s)dr

=

∫ 1

0
Hj(1− t, 1− r)Gj+1(1− r, 1− s)dr

=

∫ 1

0
Hj(1− t, r1)Gj+1(r1, 1− s)dr1

= Hj+1(1− t, 1− s).
The proof is complete. �

3. Even Number of Positive Solutions

In this section, we establish the existence of at least two symmetric positive solutions for
the boundary value problem (1)-(2) by Avery–Henderson fixed point theorem . And then,
we establish the existence of at least 2m symmetric positive solutions to the boundary
value problem (1)-(2) for an arbitrary positive integer m.

Let B be a real Banach space. A nonempty closed convex set P ⊂ B is called a cone,
if it satisfies the following conditions:
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(i) y ∈ P, λ ≥ 0 implies λy ∈ P, and
(ii) y ∈ P and −y ∈ P implies y = 0.

Let ψ be a nonnegative continuous functional on a cone P of the real Banach space B.
Then for nonnegative real numbers a′ and b′, we define the sets

P (ψ, a′) = {y ∈ P : ψ(y) < a′}
and

Pb′ = {y ∈ P : ‖y‖ < b′}.
In obtaining multiple symmetric positive solutions of the boundary value problem (1)-(2),
the following Avery–Henderson functional fixed point theorem [2] will be the fundamental
tool.

Theorem 3.1. [2] Let P be a cone in a real Banach space B. Suppose α and γ are increas-
ing, nonnegative continuous functionals on P and θ is nonnegative continuous functional
on P with θ(0) = 0 such that, for some positive numbers c′ and k, γ(y) ≤ θ(y) ≤ α(y)

and ‖y‖ ≤ kγ(y), for all y ∈ P (γ, c′). Suppose that there exist positive numbers a′ and b′

with a′ < b′ < c′ such that θ(λy) ≤ λθ(y), for all 0 ≤ λ ≤ 1 and y ∈ ∂P (θ, b′). Further, let

T : P (γ, c′)→ P be a completely continuous operator such that

(B1) γ(Ty) > c′, for all y ∈ ∂P (γ, c′),
(B2) θ(Ty) < b′, for all y ∈ ∂P (θ, b′),
(B3) P (α, a′) 6= ∅ and α(Ty) > a′, for all y ∈ ∂P (α, a′).

Then T has at least two fixed points y1, y2 ∈ P (γ, c′) such that a′ < α(y1) with θ(y1) < b′

and b′ < θ(y2) with γ(y2) < c′.

Let

M =
n∏
j=1

ξj . (15)

Let B = {u : u ∈ C[0, 1]} be the Banach space equipped with the norm ‖u‖ = max
t∈[0,1]

|u(t)|.

Define the cone P ⊂ B by

P =
{
u ∈ B : u(t) ≥ 0, u(t) is symmetric on [0, 1] and min

t∈[0,1]
u(t) ≥M‖u‖

}
,

where M is given in (15).
Define the nonnegative increasing continuous functionals γ, θ and α on the cone P by

γ(u) = min
t∈[0,1]

u(t), θ(u) = max
t∈[0,1]

u(t) and α(u) = max
t∈[0,1]

u(t).

We observe that for any P ,
γ(u) ≤ θ(u) = α(u) (16)

and

‖u‖ ≤ 1

M
min
t∈[0,1]

u(t) =
1

M
γ(u) ≤ 1

M
α(u). (17)

Theorem 3.2. Assume that the conditions (A1)-(A2) are satisfied. Suppose that there
exist real numbers a′, b′ and c′ with 0 < a′ < b′ < c′ such that f satisfies the following
conditions:

(D1) f(t, u) > c′∏n
j=1 ξjKj

, for t ∈ [0, 1] and u ∈ [c′, c
′

M ],

(D2) f(t, u) < b′∏n
j=1Kj

, for t ∈ [0, 1] and u ∈ [0, b
′

M ],

(D3) f(t, u) > a′∏n
j=1 ξjKj

, for t ∈ [0, 1] and u ∈ [a′, a
′

M ].
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Then the boundary value problem (1)-(2) has at least two symmetric positive solutions.

Proof. Define the operator T : P → B by

Tu(t) =

∫ 1

0
Hn(t, s)f(s, u(s))ds. (18)

It is obvious that a fixed point of T is the solution of the boundary value problem (1)-(2).
We seek two fixed points u1, u2 ∈ P of T. First we show that T : P → P. Let u ∈ P.
Clearly, Tu(t) ≥ 0 on [0, 1]. Noticing that f(t, u) is symmetric on [0, 1], we have

Tu(1− t) =

∫ 1

0
Hn(1− t, s)f(s, u(s))ds

=

∫ 0

1
Hn(1− t, 1− s)f(1− s, u(1− s))d(1− s)

=

∫ 1

0
Hn(t, s)f(s, u(s))ds

= Tu(t).

Therefore, T is symmetric on [0, 1].
On the other hand, by Lemma 2.4, we obtain

Tu(t) =

∫ 1

0
Hn(t, s)f(s, u(s))ds

≤ K
∫ 1

0
Gn(s, s)f(s, u(s))ds

so that

‖Tu(t)‖ ≤ K
∫ 1

0
Gn(s, s)f(s, u(s))ds. (19)

Next, if u ∈ P, then from Lemma 2.4 and (19), we have

min
t∈[0,1]

Tu(t) = min
t∈[0,1]

∫ 1

0
Hn(t, s)f(s, u(s))ds

≥ ξnL
∫ 1

0
Gn(s, s)f(s, u(s))ds

≥ ξn
( n−1∏
j=1

ξj

)
‖Tu‖

= M‖Tu‖.

Hence Tu ∈ P and so T : P → P. Moreover, T is completely continuous. From (16)
and (17), for each u ∈ P, we have γ(u) ≤ θ(u) ≤ α(u) and ‖u‖ ≤ 1

M γ(u). Also, for any
0 ≤ λ ≤ 1 and u ∈ P, we have θ(λu) = max

t∈[0,1]
(λu)(t) = λ max

t∈[0,1]
u(t) = λθ(u). It is clear that

θ(0) = 0. We now show that the remaining conditions of the Theorem 3.1 are satisfied.
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Firstly, we shall verify that the condition (B1) of Theorem 3.1 is satisfied. Since u ∈
∂P (γ, c′), from (17) we have that c′ = min

t∈[0,1]
u(t) ≤ ‖u‖ ≤ c′

M , for t ∈ [0, 1]. Then,

γ(Tu) = min
t∈[0,1]

∫ 1

0
Hn(t, s)f(s, u(s))ds

≥ ξnL
∫ 1

0
Gn(s, s)f(s, u(s))ds

>
c′∏n

j=1 ξjKj
ξnL

∫ 1

0
Gn(s, s)ds

= c′,

using hypothesis (D1).
Now, we shall show that condition (B2) of Theorem 3.1 is satisfied. Since u ∈ ∂P (θ, b′),

from (17) we have that 0 ≤ u(t) ≤ ‖u‖ ≤ b′

M , for t ∈ [0, 1]. Thus,

θ(Tu) = max
t∈[0,1]

∫ 1

0
Hn(t, s)f(s, u(s))ds

≤ K
∫ 1

0
Gn(s, s)f(s, u(s))ds

<
b′∏n

j=1Kj
K

∫ 1

0
Gn(s, s)ds

= b′,

by hypothesis (D2).
Finally, using hypothesis (D3), we shall show that condition (B3) of Theorem 3.1 is

satisfied. Since 0 ∈ P and a′ > 0, P (α, a′) 6= ∅. Since u ∈ ∂P (α, a′), a′ = max
t∈[0,1]

u(t) ≤

‖u‖ ≤ a′

M , for t ∈ [0, 1]. Therefore,

α(Tu) = max
t∈[0,1]

∫ 1

0
Hn(t, s)f(s, u(s))ds

≥
∫ 1

0
Hn(t, s)f(s, u(s))ds

≥ ξnL
∫ 1

0
Gn(s, s)f(s, u(s))ds

>
a′∏n

j=1 ξjKj
ξnL

∫ 1

0
Gn(s, s)ds

= a′.

Thus, all the conditions of Theorem 3.1 are satisfied. So there exist at least two symmetric
positive solutions u1, u2 ∈ P (γ, c′) for the boundary value problem (1)−(2). This completes
the proof of the theorem.

�

Theorem 3.3. Let m be an arbitrary positive integer. Suppose there exist real numbers
ar(r = 1, 2, . . . ,m + 1) and bs(s = 1, 2, . . . ,m) with 0 < a1 < b1 < a2 < b2 < · · · < am <
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bm < am+1 such that f satisfies following conditions:

f(t, u) >
ar∏n

j=1 ξjKj
, for t ∈ [0, 1] and u ∈

[
ar,

ar
M

]
, r = 1, 2, . . . ,m+ 1. (20)

f(t, u) <
bs∏n

j=1Kj
, for t ∈ [0, 1] and u ∈

[
0,
bs
M

]
, s = 1, 2, . . . ,m. (21)

Then the boundary value problem (1)-(2) has at least 2m symmetric positive solutions in
P̄am+1 .

Proof. We use induction on m. For m = 1, from (20), and (21), it is clear that T : P̄a2 →
Pa2 , then it follows from Avery–Henderson fixed point theorem that the boundary value
problem (1)-(2) has at least two symmetric positive solutions in P̄a2 . Let us assume that
this conclusion holds for m = l. In order to prove this conclusion holds for m = l + 1, we
suppose that there exist real numbers ar(r = 1, 2, . . . , l+2) and bs(s = 1, 2, . . . , l+1) with
0 < a1 < b1 < a2 < b2 < · · · < al+1 < bl+1 < al+2 such that

f(t, u) >
ar∏n

j=1 ξjKj
, for t ∈ [0, 1] and u ∈

[
ar,

ar
M

]
, r = 1, 2, . . . , l + 2. (22)

f(t, u) <
bs∏n

j=1Kj
, for t ∈ [0, 1] and u ∈

[
0,
bs
M

]
, s = 1, 2, . . . , l + 1. (23)

By assumption, the boundary value problem (1)-(2) has at least symmetric 2l positive
solutions ui(i = 1, 2, . . . , 2l) in P̄al+1

. At the same time, it follows from Theorem 3.2, (22),
and (23) that the boundary value problem (1)-(2) has at least two symmetric positive
solutions u1, u2 in P̄al+2

such that al+1 < α(u1) with θ(u1) < bl+1 and bl+1 < θ(u2) with
β(u2) < al+2. Obviously u1 and u2 are different from ui(i = 1, 2, . . . , 2l). Therefore, the
boundary value problem (1), (2) has at least 2l+ 2 symmetric positive solutions in P̄al+2

,
which shows that conclusion holds for m = l + 1. �

Example 3.1. Let us consider an example to illustrate our established results. Let n = 2
and consider the boundary value problem

u(4)(t) = f(t, u(t)), t ∈ (0, 1), (24)

satisfying

u(0) = u(1) =

∫ 1

0
a1(x)u(x)dx,

u′′(0) = u′′(1) =

∫ 1

0
a2(x)u′′(x)dx,

 (25)

where

f(t, u(t)) =


800(1+sinπt)(u+1)4

3(u2+999)
, for t ∈ [0, 1], u ∈ [0, 0.3],

228488(1+sinπt)
299727 , for t ∈ [0, 1], u ∈ [0.3, 9.03],

228488(1+sinπt)e13(u−9.03)

299727 , for t ∈ [0, 1], u ∈ [9.03,∞),

a1(x) = 1
2 and a2(x) = 1

8 .
By direct calculations, we have

d1 =
1

2
, η1 =

1

12
, ξ1 =

1

7
, K1 =

1

12
,

d2 =
1

8
, η2 =

1

48
, ξ2 =

1

43
, K2 =

5

28
and M =

1

301
.
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Clearly f is continuous on [0,∞) and symmetric on [0,1]. Choosing a′ = 0.00001, b′ =
0.03, c′ = 10, then 0 < a′ < b′ < c′ and f satisfies

(i) f(t, u(t)) > 202272 = c′∏2
j=1 ξjKj

, for t ∈ [0, 1] and u ∈ [10, 3010],

(ii) f(t, u(t)) < 2.016 = b′∏2
j=1Kj

, for t ∈ [0, 1] and u ∈ [0, 9.03],

(iii) f(t, u(t)) > 0.202272 = a′∏2
j=1 ξjKj

, for t ∈ [0, 1] and u ∈ [0.00001, 0.00301].

Thus, all the conditions of Theorem 3.2 are satisfied and hence, the boundary value problem
(24)-(25) has at least two symmetric positive solutions.

4. Conclusion

We derived sufficient conditions for the existence of at least two symmetric positive
solutions to 2nth order boundary value problem satisfying Lidstone type integral bound-
ary conditions by using Avery–Henderson fixed point theorem. We also established the
existence of at least 2m symmetric positive solutions to the boundary value problem for
an arbitrary positive integer m.

Acknowledgements: The authors thank the referees for their valuable suggestions
and comments.
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