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ON THE MOMENTS FOR ERGODIC DISTRIBUTION OF AN

INVENTORY MODEL OF TYPE (s, S) WITH REGULARLY VARYING

DEMANDS HAVING INFINITE VARIANCE

A. BEKTAŞ KAMIŞLIK1, T. KESEMEN2, T. KHANIYEV3, §

Abstract. In this study a stochastic process X(t) which represents a semi Markovian
inventory model of type (s,S) has been considered in the presence of regularly varying
tailed demand quantities. The main purpose of the current study is to investigate the
asymptotic behavior of the moments of ergodic distribution of the process X(t) when the
demands have any arbitrary distribution function from the regularly varying subclass
of heavy tailed distributions with infinite variance. In order to obtain renewal function
generated by the regularly varying random variables, we used a special asymptotic ex-
pansion provided by Geluk [14]. As a first step we investigate the current problem with
the whole class of regularly varying distributions with tail parameter 1 < α < 2 rather
than a single distribution. We obtained a general formula for the asymptotic expressions
of nth order moments (n = 1, 2, 3, . . .) of ergodic distribution of the process X(t). Subse-
quently we consider this system with Pareto distributed demand random variables and
apply obtained results in this special case.

Keywords: Semi Markovian Inventory Model, Renewal Reward Process, Regular Varia-
tion, Moments, Asymptotic Expansion.

AMS Subject Classification: 60K05, 60K15

1. Introduction

Heavy tailed distributions attracts growing attention in recent years because they have a
wide application area in many disciplines such as, telecommunications, computer systems,
risk, insurance and stock control. One of the common application areas of heavy tailed
distributions is inventory models. Specifically there are plenty of studies which provide
empirical examples for existence of regularly varying demands in inventory models (see
[8], [13]). The main purpose of the current study is to investigate the impact of regularly
varying demands with infinite variance on the stochastic process X(t) which represents a
semi-Markovian inventory model of type (s,S). Now let us give some essential notations
and the explanation of the model as follows:
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The Model:
Suppose a company want to create the optimal inventory policy. Assume that s is

the stock control level, S is the maximum stock level and X(t) represents stock level in a
depot at time t. Moreover z is the initial stock level in this company’s depot at time t = 0,
hence X(0) = X0 = z ∈ [s, S] , 0 ≤ s < S < ∞. In addition suppose that {ηn} , n ≥ 1
which describe the random amount of demands are coming to the system at random times
T1, T2, . . . , Tn, . . .. Here Tn =

∑n
i=1 ξi, where {ξn} , n ≥ 1 represents inter arrival times

between two successive demands. Hence the stock level X(t) decreases by η1, η2, . . . ηn, . . .
at random times T1, T2, . . . Tn, . . . until X(t) falls below s, at random time τ1. In this
instance the stock level changes as follows:

X(T1) ≡ X1 = z − η1, X(T2) ≡ X2 = z − (η1 + η2) , . . . , X(Tn) ≡ Xn = z −
n∑
i=1

ηi.

where, ηn represents the amount of nth demand, n = 1, 2, 3 . . .. τ1 is the first time, that
the stock level falls below the control level s. After the stock level falls below s, it is
immediately refilled up to the level ζ1, and the first period is completed. Second period
starts with a new initial stock level ζ1 and continues in a similar manner to the first
period. Note that {ηn, ζn, ξn}, n = 1, 2, . . . is a sequence of i.i.d. random variables here.
This model is referred in the literature as ”Semi Markovian Inventory Model of Type
(s,S)”.

Investigation of semi Markovian inventory model of type (s,S) is a classical research
area. So many characteristics of these models have been investigated in the literature (see
[1], [2], [16], [3], [17], [18]). When analyzing an inventory model of type (s,S), the most
common approach is assuming that the demand random variables are light tailed with
finite variance.

Main departure point of this paper that distinguishes it from all previous literature
is we consider mentioned stochastic process with heavy tailed demand random variables
with infinite variance. More specifically we used regularly varying subclass of heavy tailed
distributions with tail parameter 1 < α < 2.

Regular variation is one of the most important theories which come out in various
contexts of applied probability theory. For more details about regularly varying functions
and random variables we refer the reader to the textbooks ([5], [6], [10], [12], [20], [21]).
We gave a short summary in preliminaries section. The main purpose of this paper is to
investigate the asymptotic behavior of the model when the demand quantities are regularly
varying with infinite variance.

2. Preliminaries

Let us give the essential notations and explain this model mathematically before ana-
lyzing the main problem. The well known content is taken from [12], [5].

Definition 2.1. A distribution F on R is said to be (right) heavy tailed if∫ ∞
−∞

eλxF (dx) =∞ for all λ > 0.

For a detailed information see the books by [4], [10], [6], [20].
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Definition 2.2. (Regularly Varying Functions) A positive, measurable function f is called
regularly varying at ∞ with index α ∈ R, if for all λ > 0

lim
x−→∞

f (xλ)

f (x)
= λα.

If α = 0, then f is called slowly varying function. The family of regularly varying
functions with index α is denoted by RV (α).

Definition 2.3. (Regularly varying random variables) The non negative random vari-
able X and its distribution are called regularly varying with index α ≥ 0 if the right tail
distribution F̄ (x) ∈ RV (−α).

Remark: Any regularly varying distribution can be represented in following way:

P (X > x) = x−αL(x), where α > 0 and L(x) ∈ RV (0).

In the rest of this study we will refer following propositions (Proposition 2.1 and Propo-
sition 2.2) when integrating regularly varying functions.

Proposition 2.1. ((Karamata Theorem) Bingham et. al. [5]) Let L be slowly varying
function in [x0,∞) for some x0 ≥ 0. Then

(1) for α > −1, ∫ x

x0

tαL(t)dt ∼ (α+ 1)−1xα+1L(x).

(2) for α < −1, ∫ ∞
x

tαL(t)dt ∼ −(α+ 1)−1xα+1L(x).

Proposition 2.2. (Seneta, E. [21]) Let L be a slowly varying function on (0,∞), and
suppose that the integral ∫ β

0
f(t)L(tx)dt

is well defined for 0 < β <∞ and some given real function f . Then as x −→∞∫ β

0
f(t)L(tx)dt ∼ L(x)

∫ β

0
f(t)dt.

Proposition 2.3 and Proposition 2.4 allows us to make some operations on regularly
varying functions.

Proposition 2.3. (Bingham et. al. [5])

(1) If L varies slowly, so does (L(x))α for every α ∈ R.
(2) If L1, L2 varies slowly, so do L1L2, L1+L2. Moreover if L2(x) −→∞ as x −→∞,

then L1 (L2(x)) varies slowly.
(3) If L varies slowly and α > 0 then xαL(x) −→∞, x−αL(x) −→ 0.

Proposition 2.4. (Bingham et. al. [5])

(1) If f(x) ∈ RV (α) then (f(x))p ∈ RV (αp) for any p ∈ R.
(2) If fi ∈ RV (αi), i = 1, 2, and f2(x) −→∞ as x −→∞ then,

f1 (f2(x)) ∈ RV (α1α2).
(3) If fi ∈ RV (αi), i = 1, 2, then f1(x) + f2(x) ∈ RV (α), α = max(α1, α2).
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3. Mathematical Construction of The Process X(t)

Let (Ω,=, P ) be probability space and {(ξn, ηn, ζn)}, n ≥ 1 be a vector of i.i.d. random
variables defined on (Ω,=, P ). Here {ξn}, n ≥ 1 and {ηn}, n ≥ 1 are positive valued
random variables. The random variable ζn takes values in the interval [s, S] and ξn, ηn
and ζn are also independent from each other.

Let the distributions of ξn, ηn and ζn be denoted by Φ(t), F (x) and π(z) respectively
and these distributions defined as follows:

Φ(t) = P {ξ1 ≤ t} , F (x) = P {η1 ≤ x} , π(z) = P {ζ1 ≤ z} , t ≥ 0, x ≥ 0, z ∈ [s, S].

We assume here that the random variables {ζn}, n ≥ 1 which represents the discrete
interference of chance have uniform distribution on the interval [s, S]. {ηn}, n ≥ 1 are
regularly varying random variables with infinite variance.

Now we can construct the process with all these information above.
As a first step we need to define the renewal sequences {Tn} and {Sn} as:

T0 = S0 = 0, Tn =
n∑
i=1

ξi, Sn =
n∑
i=1

ηi, n ≥ 1.

Now define a sequence of integer-valued random variables {Nn} , n ≥ 0 as follows:

N0 = 0, N1 = N (z − s) = inf {k ≥ 1 : z − Sk ≤ s} , z ∈ [s, S] .

Nn+1 = inf {k ≥ Nn + 1 : ζn − (Sk − SNn) < s} , n ≥ 1.

Let

τ0 = 0, τn = TNn =

Nn∑
i=1

ξi, n ≥ 1,

ν(t) = max {n ≥ 0 : Tn ≤ t} , t ≥ 0.

Under these assumptions the desired stochastic process X(t) constructed as follows:

X(t) = ζn −
(
ηNn+1 + . . .+ ην(t)

)
= ζn −

(
Sν(t) − SNn

)
, t ∈ [τn, τn+1) , n ≥ 0. (1)

The process X(t) represents the variation of a stock level in the depot. A realization of
this process is given as in Figure 1.

Figure 1. A realization of the process X(t)
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4. Ergodicity of the process and exact formulas for the nth order
moments of the ergodic distribution of the process X(t)

Ergodicity of the process X(t) has proven by Khaniyev and Atalay [17] under some weak
conditions. In addition to the mentioned conditions in the study by [17], we assumed here
that the demand random variables {ηi} , i ≥ 1 are regularly varying with index 1 < α < 2.

Proposition 4.1. Let the initial sequence of random variables {(ξn, ηn, ζn)}, n ≥ 1 satisfy
the following supplementary conditions:

(1) 0 < E (ξ1) <∞,
(2) 0 < E (η1) <∞,
(3) {ηi}, i ≥ 1 are non-arithmetic random variables.
(4) The distribution functions of {ηi}, i ≥ 1 are regularly varying with index 1 < α < 2.
(5) Markov chain {ζn}, n ≥ 1 has uniform distribution on the interval [s, S].

Then, the process X(t) is ergodic.

Following proposition is the main result of Proposition 4.1.

Proposition 4.2. Under the conditions of Proposition 4.1 the following relation is true
with probability 1 for each measurable bounded function f(x), (f : [s, S] −→ R) :

lim
t−→∞

1

t

∫ t

0
f (X (u)) du ≡ Sf =

∫ S
s

∫ S
s f(x) [U(z − s)− U(z − x)] dπ(z)dx∫ S

s U(z − s)dπ(z)
.

The ergodic distribution function of the process X(t) is denoted by QX(x) ande repre-
sented as:

QX(x) ≡ lim
t−→∞

P {X(t) ≤ x} x ∈ [s, S].

Proposition 4.3 provides the exact expression for the ergodic distribution function QX (x)
and obtained by replacing f(x) with indicator function in Proposition 4.2

Proposition 4.3. Let the conditions of Proposition 4.1 are satisfied. Then the ergodic
distribution function QX (x) of the process X(t) is given as:

QX (x) ≡ 1−
∫ S
x U (z − x) dπ(z)∫ S
s U (z − s) dπ(z)

, x ∈ [s, S] .

Corollary 4.1. Assume that the conditions of the Proposition 4.1 are satisfied. Then the
ergodic distribution function QX(x) of the process X(t) can be written as follows:

QX(x) = 1− E(U(ζ − x))

E(U(ζ − s))
, x ∈ [s, S]. (2)

Here the random variable ζ has a distribution π(z).

In order to obtain asymptotic expansions for the moments of the ergodic distribution
of the process X(t), we need to know the exact formulas. Exact expressions are derived
by using (2) by Khaniyev et. al. [18]. In the rest of this paper nth order moments of the
ergodic distribution of the process X(t) will be denoted by E(Xn). Let us define

X̃(t) = X(t)− s; E(X̃n) = lim
t−→∞

E(X̃n(t)); ζ̃n = ζn − s, n = 1, 2, 3, . . . .

Following proposition by Khaniyev et. al. [18] states the exact expression for the moments

of ergodic distribution of the process X̃(t).
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Proposition 4.4. If nth order (n=1,2,3,. . . ) moments (E(X̃n)) of the ergodic distribution

of the process X̃(t) exists and finite, then it can be represented as follows:

E(X̃n) =
n

E(U(ζ̃))

∫ 2β

0
υn−1E(U(ζ̃ − υ))dυ. (3)

Here; ζ̃ = ζ − s, β ≡ S−s
2 , υ ∈ [0, 2β]. Moreover U(x) is the renewal function generated

by the sequence {ηn}, n = 1, 2, 3, . . ..

5. Asymptotic expansions for the nth order moments of the ergodic
distribution of the process X(t)

We assumed here, that the random variables {ηn} , n ≥ 1 are heavy tailed with infinite
variance. The main starting point of this current work is the study by Geluk [14] where he
provided an asymptotic expansion for the renewal function generated by regularly varying
distributions with infinite variance as follows:

Proposition 5.1. (Geluk (1992) [14]) Let F (.) be a c.d.f. on (0,∞) such that

F̄ (.) ≡ 1− F (.)

is regularly varying with exponent −α, 1 < α < 2. Then

U (t)− t

µ
− 1

µ2

∫ t

0

∫ ∞
s

F̄ (v) dvds = O
(
t4
(
F̄ (t)

)2
F̄
(
t2F̄ (t)

))
as t −→∞. (4)

Here it is assumed that η1, η2, ... is a sequence of i.i.d. real valued positive random variables
with d.f. F and U(t) = E(N(t)) is the renewal function associated with F(t).

Following Lemma is obtained by using Proposition 5.1.

Lemma 5.1. Let {ηi}, i ≥ 1 be a sequence of regularly varying random variables with
exponent −α, 1 < α < 2 i.e.:

F̄ (t) = P {η1 > t} = t−αL(t).

Then the renewal function generated by the random variables {ηi} , i ≥ 1 obtained as
follows:

U (t) =
t

µ1
+

1

µ1
G(t) +O

(
t(α−2)

2
L1(t)

)
, t −→∞.

Where µk = E
(
ηk1
)
, k = 1, 2, . . .. L1 (t) is slowly varying and defined as:

L1(t) = (L(t))2 L
(
t2−αL(t)

)
.

Note that 1 < α < 2 and L(t) is slowly varying function associated with the random
variable η1. Moreover

G(t) =
1

µ1

∫ t

0

∫ ∞
s

F̄ (υ)dυds.

Proof. Asymptotic expansion suggested by Geluk [14] generated by the regularly varying
random variables with 1 < α < 2 is given as follows:

U (t) =
t

µ1
+

1

µ1
G(t) +O

(
t4
(
F̄ (t)

)2
F̄
(
t2F̄ (t)

))
; t −→∞.

Since F̄ (t) ∈ RV (−α), then F̄ (t) = t−αL(t) where 1 < α < 2 and L(t) is slowly varying
at ∞. Moreover by Proposition 2.4 (2),

F̄ (t2−αL(t)) = (t2−α)−αL(t2−αL(t)).
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Hence

t4(F̄ (t))2F̄
(
t2F̄ (t)

)
= t4t−2α(L(t))2F̄

(
t2t−αL(t)

)
= t(α−2)

2
(L(t))2L

(
t2−αL(t)

)
.

Let define (L(t))2 L
(
t2−αL(t)

)
= L1(t).

By Proposition 2.3, (L(t))2 is slowly varying function. t2−αL(t) is regularly varying
with exponent (2− α) and L(t) is slowly varying (regularly varying with exponent zero).
Moreover by Proposition 2.3 (3), t2−αL(t) −→ ∞ as t −→ ∞. Hence by Proposition 2.4
(2), L(t2−αL(t)) is also regularly varying with exponent zero, which is a slowly varying
function. So by Proposition 2.3 (1), L1(t) = (L(t))2L

(
t2−αL(t)

)
is slowly varying function

where L(t) is slowly varying function associated with random variable η1. This completes
the proof.

�

Lemma 5.2. For any bounded function g : R −→ R the following asymptotic relation
holds when β ≡ S−s

2 −→∞ :∫ 2β−υ

0
x(α−2)

2

L1(x)g(x)dx = O
(
β(α−2)

2+1L1(β)
)
, υ ∈ [0, 2].

Here L1(β) = (L(β))2L
(
β2−αL(β)

)
is slowly varying function and L(β) is slowly varying

function associated with the random variable η1.

Proof. Since g(x) is given as a bounded function, there exists a constant K > 0 such that:∣∣∣∣∫ 2β−υ

0
x(α−2)

2

L1(x)g(x)dx

∣∣∣∣ ≤ K

∫ 2β−υ

0

∣∣∣x(α−2)2L1(x)
∣∣∣ dx

= K

∫ 2β−υ

0
x(α−2)

2

L1(x)dx

∼ K
(2β − υ)(α−2)

2+1

(α− 2)2 + 1
L1(2β − υ), υ ∈ [0, 2].

Note that we used Karamata Theorem in order to obtain following asymptotic relation:

K

∫ 2β−υ

0
x(α−2)

2

L1(x)dx ∼ K (2β − υ)(α−2)
2+1

(α− 2)2 + 1
L1(2β − υ).

Therefore ∫ 2β−υ

0
x(α−2)

2

L1(x)g(x)dx = O
(
β(α−2)

2+1L1(β)
)
.

�

Lemma 5.3. Under the conditions of Proposition 4.1 and Proposition 5.1 the following
asymptotic expansion holds as β ≡ S−s

2 −→∞ :

E(U(ζ̃ − υ)) =
1

2β

[
1

µ1

(2β − υ)2

2
+

1

µ1
G0 (2β − υ) +O

(
β(α−2)

2+1L1(β)
)]

. (5)

Here
L1(β) = (L(β))2L

(
β2−αL(β)

)
is slowly varying, υ ∈ [0, 2], 1 < α < 2, and

G0(x) =

∫ x

0
G(t)dt =

∫ x

0

[
1

µ1

∫ t

0

∫ ∞
s

F̄ (υ)dυds

]
dt, x −→∞. (6)
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Proof. We assumed here, the random variable ζn has uniform distribution on the interval
[s, S]. Hence the random variable ζ̃n = ζn − s has the same distribution on the interval
[0, 2β], β ≡ S−s

2 .

π̃(x) ≡ P
{
ζ̃1 ≤ x

}
= P {ζ1 − s ≤ x} = π (s+ x) .

Hence

E(U(ζ̃ − υ)) =

∫ 2β

υ
U(x− υ)dπ̃(x) =

1

2β

∫ 2β−υ

0
U(t)dt. (7)

It is clear that: ∫ 2β−υ

0

t

µ1
dt =

1

µ1

(2β − βυ)2

2
, υ ∈ [0, 2]. (8)

Moreover by using the definition of G0(x) and Karamata Theorem:

G0(x) =
1

µ1

∫ x

0

∫ t

0

∫ ∞
s

υ−αL(υ)dυdsdt ∼ − 1

µ1

1

(1− α)

1

(2− α)

1

(3− α)
x3−αL(x). (9)

Here L(x) is slowly varying function associated with the random variable η1. Result is
obtained by using Lemma 5.2, (8) and asymptotic relation (9). �

Corollary 5.1. Under the conditions of Lemma 5.3 the following asymptotic expansion
holds as β −→∞ :

E(U(ζ̃)) =
1

2β

[
1

µ1

(2β)2

2
+
G0(2β)

µ1
+O

(
β(α−2)

2+1L1(β)
)]
. (10)

Lemma 5.4. For any bounded function h : R −→ R the following asymptotic relation
holds when β −→∞ :∫ 2β

0
υn−1β(α−2)

2+1h (υ)L1(β)dυ = O
(
βn+(α−2)2+1L1(β)

)
, υ ∈ [0, 2].

Here

L1(β) = (L(β))2L
(
β2−αL(β)

)
(11)

is slowly varying function and L(β) is slowly varying function associated with the random
variable η1.

Proof. Since h(x) is given as a bounded function, there exists a constant K > 0 such that∣∣∣∣∫ 2β

0
υn−1β(α−2)

2+1L1(β)h(υ)dυ

∣∣∣∣ ≤ Kβ(α−2)
2+1L1(β)

∫ 2β

0
υn−1dυ

=
K2n

n
βn+(α−2)2+1L1(β). (12)

n ≥ 1, 1 < α < 2, L1 (β) is defined as (11).

Result is straightforward from (12).
�

Lemma 5.5. Under the conditions of Lemma 5.3 following asymptotic relation holds as
β −→∞:

1

µ1

∫ 2β

0
υn−1G0 (2β − υ) dυ ∼ 1

µ21
L(2β)(2β)n+2−αB(n, 4− α).

Here B(x, y) is Beta function and defined as:
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B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt; Re(x) > 0, Re(y) > 0.

Moreover

υ ∈ [0, 2], 1 < α < 2, n ≥ 1.

Proof. From Lemma 5.3;

G0(x) ≡ − 1

µ1

1

(1− α)

1

(2− α)

1

(3− α)
x3−αL(x).

By using Proposition 2.2 and changing variables following asymptotic relation is obtained:

1

µ1

∫ 2β

0
υn−1G0 (2β − υ) dυ ∼ 1

µ21

1

(α− 1)(2− α)(3− α)

∫ 2β

0
υn−1(2β − υ)3−αL(2β − υ)dυ

=
1

µ21

(2β)4−α

(α− 1)(2− α)(3− α)

∫ 1

0
(2βt)n−1(1− t)3−αL(2β − 2βt)dt

∼ 1

µ21

(2β)n−α+3

(α− 1)(2− α)(3− α)
L(2β)

∫ 1

0
(1− u)n−1u3−αdu

=
1

µ21

(2β)n−α+3

(α− 1)(2− α)(3− α)
L(2β)B(n, 4− α). (13)

�

Following corollary is obtained by using Lemma (5.4) and Lemma (5.5).

Corollary 5.2. Let the conditions of Lemma (5.4) and Lemma (5.5) are satisfied. More-
over; define Jn(β) as:

Jn(β) =

∫ 2β

0
υn−1E(U(ζ̃ − υ))dυ.

Then the asymptotic expansion for Jn(β) is obtained as β ≡ S−s
2 −→∞ as follows:

Jn(β) =
1

2β

{
1

µ1

1

n(n+ 1)(n+ 2)
(2β)n+2 +

[
1

µ21

L(2β)B(n, 4− α)

(α− 1)(2− α)(3− α)

]
(2β)n+3−α

O
(
βn+(α−2)2+1L1(β)

)}
. (14)

Where 1 < α < 2, n ≥ 1, L(β) is slowly varying function associated with the random
variable ηn and L1(β) is defined as (11).

Theorem 5.1. Let the conditions of Proposition (4.1) and Proposition (5.1) are satisfied.
Then the following two term asymptotic expansion is obtained for the nth order moments,
n ≥ 1 of the ergodic distribution of the process X̃ (t) = X(t)− s as β ≡ S−s

2 −→∞:

E(X̃n) =
2n+1

(n+ 1)(n+ 2)
βn +

1

µ1

{[
(n3 + 3n2 + 2n)B(n, 4− α)− 2

]
(2n+2−α)c

(n+ 1)(n+ 2)
L (2β)

}
βn+1−α

+ O
(
βn+(α−2)2−1L1(β)

)
. (15)

Here B(x, y) is the Beta function and,

c =
1

(α− 1)(2− α)(3− α)
, 1 < α < 2, µ1 = E(η1), n ≥ 1.



ON THE MOMENTS FOR ERGODIC DISTRIBUTION OF AN INVENTORY MODEL OF ... 327

Moreover L1(x) is a slowly varying function defined as (11).

Proof. Define J(0) = E
(
U
(
ζ̃
))

, then

E(X̃n) =
nJn(β)

J(0)

=

1

2β

{
1

µ1

(2β)n+2

(n+ 1)(n+ 2)
+

1

µ21

nL(2β)B(n, 4− α)

(α− 1)(2− α)(3− α)
(2β)n+3−α +O

(
βn+(α−2)2+1L1(β)

)}
1

2β

{
1

µ1

(2β)2

2
+

1

µ21

L(2β)

(α− 1)(2− α)(3− α)
(2β)3−α +O

(
β(α−2)

2+1L1(β)
)}

=

{
2n+1

(n+ 1)(n+ 2)
βn +

(
n2n+2−αL(2β)cB(n, 4− α)

µ1

)
βn+1−α +O

(
βn+(α−2)2−1L1(β)

)}
·
{

1−
(
L(2β)22−αc

µ1

)
β1−α +O

(
β(α−2)

2−1L1(β)
)}

=
2n+1

(n+ 1)(n+ 2)
βn +

1

µ1

{[
(n3 + 3n2 + 2n)B(n, 4− α)− 2

]
(2n+2−α)c

(n+ 1)(n+ 2)
L (2β)

}
βn+1−α

+ O
(
βn+(α−2)2−1L1(β)

)
, β −→∞. (16)

�

Asymptotic Expansion (16) is a general formula, and can be used conveniently in order
to obtain asymptotic expansion for the moments of the ergodic distribution of the consid-
ered process as long as demand random variables belongs to the regularly varying subclass
of heavy tailed distributions with infinite variance. Now let us use Asymptotic Expansion
(16) on an example by assuming that the demand random variables have regularly varying
Pareto distribution with 1 < α < 2 as follows:

Example 5.1. Let the conditions of Theorem 5.1 be satisfied. Moreover let {ηi} , i ≥ 1
be a sequence of i.i.d. and regularly varying Pareto distributed random variables with
parameters b > 0 and 1 < α < 2, i.e.:

F (x) = P {η1 ≤ x} = 1−
(
b

x

)α
.

Then the asymptotic expansion for the nth order moments of the ergodic distribution of
the process X̃(t) can be obtained as follows:

E(X̃n) =
2n+1

(n+ 1)(n+ 2)
βn +

1

µ1

{[
(n3 + 3n2 + 2n)B(n, 4− α)− 2

]
(2n+2−α)bαc

(n+ 1)(n+ 2)

}
βn+1−α

+ O
(
βn+(α−2)2−1

)
(17)

where

c =
1

(α− 1)(2− α)(3− α)
, 1 < α < 2, µ1 = E(η1), n ≥ 1, β ≡ (S − s)

2
−→∞,

and B(x, y) is Beta function.
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6. Summary and Conclusion

In this work the effect of heavy tailed distributions with infinite variance, were examined
on a semi Markovian inventory model of type (s,S). Under the consideration of regularly
varying demand quantities with infinite variance, asymptotic expansion for the nth order
moments of ergodic distribution of the considered process is obtained. Differently from
current literature results of this study are obtained by using different asymptotic expan-
sion for the renewal function U(x), based on the main results of the study by Geluk [14].
By using similar approach a semi Markovian inventory model of type (s,S) can be con-
sidered when demand random variables belongs to the different subclasses of heavy tailed
distributions. Moreover, other stochastic processes, that incorporate renewal theory such
as random walk process can be examined with heavy tailed components in the future.
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