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NON-SELF MAPPINGS UNDER COMMON LIMIT RANGE PROPERTY IN

SYMMETRIC SPACES AND FIXED POINTS

SUMIT CHANDOK1, DEEPAK KUMAR2, §

Abstract. In this paper, some sufficient conditions are provided for the existence of fixed points

for two pairs of non-self mappings satisfying CLR property without the condition of continuity on

mappings in the framework of symmetric spaces. Several interesting corollaries are also deduced.
Some examples are also provided which illustrate the usability of the results obtained.
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1. Introduction

The classical Banach’s contraction principle given by S. Banach proved to be an effective tool
which assures the existence and uniqueness of fixed points in complete metric spaces. Besides offer-
ing a constructive procedure to compute the fixed points of the underlying mappings this principle
has played a major role in the development of nonlinear analysis. A vast amount of mathematical
activites has been carried out in various branches of mathematics and in economics, life sciences,
physical sciences, engineering, computer science, and others by using Banach’s contraction principle
by the several authors. Fixed point theorems for various types of nonlinear contractive mappings
in different abstract spaces have been scrutinized extensively by various researchers (see [1]-[17]
and the references cited therein). Sometimes one may come across situations where the full force of
metric requirements are not used in the proofs of certain metrical fixed point theorems. Motivated
by this fact, several authors obtained fixed point and common fixed point results in symmetric and
semi-metric space.

In this paper, we establish some theorems of common fixed point for two pairs of non-self weakly
compatible mappings using CLR (common limit range) property satisfying a generalized rational
type contractive condition in the setting of symmetric spaces. To discuss the importance of the
results obtained some illustrative examples have been discussed at the last.

2. Preliminaries

In this section, definitions and notations are defined which are required to establish the results.

Definition 2.1. A symmetric function d1 defined on a nonempty set X as d1 : X ×X → [0,∞)
satisfies the following conditions:

(1) d1(s1, t1) = 0 if and only if s1 = t1, for s1, t1 ∈ X;
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(2) d1(s1, t1) = d1(t1, s1), for s1, t1 ∈ X.

A symmetric space (X, d1) is a toplogical space whose topology is induced by symmetric d1.
The main difference between a metric and a symmetric space is of triangle inequality. Since a
symmetric space may not be Hausdorff, therefore to prove fixed point theorems we required some
additional axioms. which are discussed in [1, 3, 4, 5, 6, 17].

From now on (X, d1) stands for a symmetric space, whereas X denotes an arbitrary non-empty
set. Then

(W3) [17] for given {tn}, s and t in X, limn→∞ d1(tn, s) = 0 and limn→∞ d1(tn, t) = 0 imply
s = t;

(W4) [17] for given {tn}, {sn} and s in X, limn→∞ d1(tn, s) = 0 and limn→∞ d1(tn, sn) = 0 imply
limn→∞ d1(sn, s) = 0;

(HE) [1] for given {tn}, {sn} and s in X, limn→∞ d1(tn, s) = 0 and limn→∞ d1(sn, s) = 0 imply
limn→∞ d1(tn, sn) = 0;

(1C) [5] a symmetric d1 is said to be 1-continuous if limn→∞ d1(tn, s) = 0 implies limn→∞ d1(tn, s) =
d1(s, t) where {tn} is a sequence in X and s, t ∈ X;

(CC) [5] a symmetric d1 is said to be continuous if limn→∞ d1(tn, s) = 0 and limn→∞ d1(sn, t) = 0
implies limn→∞ d1(tn, sn) = d1(s, t) where {tn}, {sn} are sequences in X and s, t ∈ X.

Here , it can be seen that (1C) ⇒ (W3) and (W4) ⇒ (W3) but the converse implications i.e
(W2) ⇒ (1C) and (W3) ⇒ (W4) are not true. In general, all other possible implications amongst
(W3), (1C) and (HE) are not true. However, (CC) implies (W3), (W4), (HE) and (1C). For detail,
we refer to an interesting note written by Cho et al.[4] which contains few illustrative examples.
Employing these axioms, several authors have proved some common fixed point theorems in the
framework of semi-metric and symmetric spaces (see, e.g.,[1, 3, 4, 5, 6, 17]).

It is noted that if (X, d1) is a cone metric space over a normal cone and d2 = ||d1|| then (X, d2)
is a symmetric space which satisfies axioms (CC) but not in general a metric space (see [10] ).
Some results on fixed point were obtained in the framework of cone symmetric spaces.[15].

Definition 2.2. Let (X, d1) be symmetric space. The mappings P and Q: X → X are said to be

(1) commuting if PQt = QPt for all t ∈ X;
(2) compatible [11] if limn→∞ d1(PQtn, QPtn) = 0 for each sequence {tn} in X such that

limn→∞ Ptn = limn→∞Qtn;
(3) non-compatible [14] if a sequence {tn} exists in X such that limn→∞ Ptn = limn→∞Qtn,

but limn→∞ d1(PQtn, QPtn) is either nonzero or nonexistent;
(4) weakly compatible [12] if P and Q commute at their coincidence points, that is , PQt =

QPt whenever Pt = Qt, for some t ∈ X.

Definition 2.3. [9] Two families {Pi}mi=1 and {Qk}nk=1 of self mappings are said to pairwise
commuting if

(1) PiPj = PjPi for all i, j ∈ {1, 2, ...,m};
(2) QkQl = QlQk for all k, l ∈ {1, 2, ..., n};
(3) PiQk = QkPi for all i ∈ {1, 2, ...,m} and k ∈ {1, 2, ..., n}.

Some definitions for non-self mappings are given below;

Definition 2.4. Let Y be an arbitrary set, (X, d) be a symmetric space and let P,Q,R, S be
mappings from Y into X. Then

(1) the pair (P,R) is said to satisfy (E.A) property [2] if there exists a sequence {tn} in Y
such that limn→∞ Ptn = limn→∞Rtn = z1, for some z1 ∈ X;

(2) the pairs (P,R) and (Q,S) are said to share the common (E.A) property [13], if there exists
two sequences {tn} and {sn} in Y such that limn→∞ Ptn = limn→∞Rtn = limn→∞Qsn =
limn→∞ Ssn = z1, for some z1 ∈ X;

(3) the pairs (P,R) is said to have (CLRR)) property [16] if there exists a sequence {tn} in Y
such that limn→∞ Ptn = limn→∞Rtn = z, for some z1 ∈ R(Y );
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(4) the pairs (P,R) and (Q,S) are said to share (CLRRS) property [7] if there exit two
sequences {tn} and {sn} in Y such that limn→∞ Ptn = limn→∞Rtn = limn→∞Qsn =
limn→∞ Ssn = z1, for some z1 ∈ R(Y ) ∩ S(Y ).

Remark 2.1. Note that

(1) If we set P = Q and R = S, then condition (4) reduces to condition (3).
(2) Evidently, (CLRRS) property implies the common (E.A) property but converse is not true.

3. Main Results

To begin our main section, we have some notations which will be required in the sequel to
establish the results.

Let Ψ be the collection of all functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:

(i) ψ is continuous as well as monotonically nondecreasing function on [0,∞);
(ii) ψ(t1) = 0 if and only if t1 = 0.

Let Θ be the collection of all functions α : [0,∞)→ [0,∞) satisfying the following conditions:

(i) α is continuous as well as monotonically non decreasing on [0,∞) ;
(ii) α(t1) = 0 if and only if t1 = 0 and α(t1) ≤ t1 for all t1 > 0.

Let Φ be the collection of all functions ϕ : [0,∞)→ [0,∞) satisfying the following conditions:

(i) ϕ is continuous on [0,∞);
(ii) ϕ(t1) = 0 if and only if t1 = 0.

we begin with the following lemma.

Lemma 3.1. Let (X, d1) be symmetric space where d1 satisfies the condition (CC) while Y be an
arbitrary non- empty set with P,Q,R, S : Y → X. Suppose that the following hypotheses hold:

(1) the pair (P,R) satisfies the (CLRR) property [respectively the pair (Q,S) satisfies the
(CLRS) property];

(2) P (Y ) ⊂ S(Y ) [respectively Q(Y ) ⊂ R(Y )];
(3) S(Y ) [respectively, R(Y )] is a closed subset of X;
(4) {Qyn} converges for every sequence {yn} in Y such that {Syn} converges [repectively
{Pxn} converges for every sequence {xn} in Y such that {Rxn} converges];

(5) for all t ≥ 0, ψ(t)−ϕ(t) ≥ 0 and ψ(t)−ϕ(t) = 0⇒ t = 0, for some ψ ∈ Ψ, ϕ ∈ Φ, α ∈ Θ,
(6) the mappings P , Q, R and S satisfy, for some ψ ∈ Ψ, ϕ ∈ Φ, α ∈ Θ,

ψ(d1(Px,Qy)) ≤ α(M(x, y))− β(ϕ(d1(Px,Rx)), ϕ(d1(Px, Sy))) (3.1)

where

M(x, y) = max

{
ϕ(d1(Px,Qy)), ϕ(d1(Px,Rx)), ϕ(d1(Qy, Sy)), ϕ(

d1(Px, Sy) + d1(Rx,Qy)

2
),(3.2)

ϕ(
1 + d1(Px,Rx)

1 + d1(Px,Qy)
d1(Qy, Sy)), ϕ(

1 + d1(Qy, Sy)

1 + d1(Px,Qy)
d1(Px,Rx)), ϕ(

1 + d1(Px, Sy) + d1(Rx,Qy)

1 + d1(Px,Rx) + d1(Qy, Sy)
d1(Px,Rx))

}
and β : [0,∞)2 → [0,∞) is a continuous mapping such that β(x, y) = 0 if and only if
x = 0, y = 0 for all x, y ∈ X.

Then the pair (P,R) and (Q,S) share the (CLRRS) property.

Proof. Suppose that (CLRR) property for the pair (P,R) holds. So, there exists a sequence of
{xn} in Y such that limn→∞ Pxn = limn→∞Rxn = z, where z ∈ R(Y ). As S(Y ) is a closed
subset of X, P (Y ) ⊂ S(Y ) and for each {xn} ⊂ Y there corresponds a sequence {yn} ⊂ Y such
that Pxn = Syn. Therefore, limn→∞ Syn = limn→∞ Pxn = z, where z ∈ R(Y ) ∩ S(Y ). Thus,
we have limn→∞ d1(Pxn, z) = limn→∞ d1(Rxn, z) = limn→∞ d1(Syn, z) = 0 Therefore, we have
limn→∞ d1(Pxn, Rxn) = 0 and limn→∞ d1(Rxn, Syn) = 0.
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By (4), sequence {Qyn} converges. Now, we need to show that Qyn → z as n→∞. By (CC), we
get limn→∞ d1(Pxn, Qyn) = limn→∞ d1(z, limn→∞Qyn) , limn→∞ d1(Rxn, Qyn) = limn→∞ d1(z, limn→∞Qyn)
and limn→∞ d1(Qyn, Syn) = d1(limn→∞Qyn), z). By inserting x = xn and y = yn in equation
(3.1) we get

ψ(d1(Pxn, Qyn)) ≤ α(M(xn, yn))− β(ϕ(d1(Pxn, Rxn)), ϕ(d1(Pxn, Syn))), (3.3)

where

M(xn, yn) = max

{
ϕ(d1(Pxn, Qyn)), ϕ(d1(Pxn, Rxn), d1(Qyn, Syn)), ϕ(

d1(Pxn, Syn) + d1(Rxn, Qyn)

2
),

ϕ(
1 + d1(Pxn, Rxn)

1 + d1(Pxn, Qyn)
d1(Qyn, Syn)), ϕ(

1 + d1(Qyn, Syn)

1 + d1(Pxn, Qyn)
d1(Pxn, Rxn)),

ϕ(
1 + d1(Pxn, Syn) + d1(Rxn, Qyn)

1 + d1(Pxn, Rxn) + d1(Qyn, Syn)
d1(Pxn, Rxn))

}
Taking the limit n→∞ in equation (3.3), we have

ψ(d1(z, lim
n→∞

Qyn)) ≤ α( lim
n→∞

M(xn, yn))− β(ϕ(d1(z, z)), ϕ(d1(z, z))), (3.4)

where

limn→∞M(xn, yn)

= max

{
ϕ(d1(z, limn→∞Qyn)), ϕ(d1(z, z)), ϕ(d1(limn→∞Qyn, z)), ϕ(d1(z,z)+d1(z,limn→∞ Qyn)

2 ),

ϕ( 1+d1(z,z)
1+d1(z,limn→∞ Qyn)

d1(limn→∞Qyn, z)), ϕ( 1+d1(limn→∞ Qyn,z)
1+d1(z,limn→∞ Qyn)

d1(z, z)), ϕ( 1+d1(z,z)+d1(z,limn→∞ Qyn)
1+d1(z,z)+d1(limn→∞ Qyn,z)

d1(z, z))

}

= max

{
ϕ(d1(z, lim

n→∞
Qyn)), ϕ(0), ϕ(d1( lim

n→∞
Qyn, z)), ϕ(

d1(z, limn→∞Qyn)

2
),

ϕ(
1

1 + d1(z, limn→∞Qyn)
d1( lim

n→∞
Qyn, z)), ϕ(0), ϕ(0)

}

= ϕ(d1(z, lim
n→∞

Qyn))

Hence equation (3.4) implies

ψ(d1(z, lim
n→∞

Qyn)) ≤ α(ϕ(d1(z, lim
n→∞

Qyn))− β(ϕ(0), ϕ(0)),

ψ(d1(z, lim
n→∞

Qyn)) ≤ α(ϕ(d1(z, lim
n→∞

Qyn)),

Using property of Θ, we get

ψ(d1(z, lim
n→∞

Qyn)) ≤ ϕ(d1(z, lim
n→∞

Qyn))

ψ(d1(z, lim
n→∞

Qyn))− ϕ(d1(z, lim
n→∞

Qyn)) ≤ 0

Using condition (5), we have

ψ(d1(z, lim
n→∞

Qyn))− ϕ(d1(z, lim
n→∞

Qyn)) ≥ 0

hence

ψ(d1(z, lim
n→∞

Qyn))− ϕ(d1(z, lim
n→∞

Qyn)) = 0

Again by using condition (5), we have d1(z, limn→∞Qyn) = 0, Hence limn→∞Qyn = z which
shows that the pair (P,R) and (Q,S) share the (CLRRS) property. �
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Theorem 3.2. Let (X, d1) be a symmetric space where the symmetric d1 satisfies the condition
(HE) and (1C) and Y be a non-empty set with P,Q,R, S : Y → X. Suppose that the conditions
(5) and (6) of Lemma 3.1 holds. If the pair (P,R) and (Q,S) share the (CLRRS) property, then
(P,R) and (Q,S) have a coincidence point each. Moreover if Y = X both the pair (P,R) and
(Q,S) are weakly compatible then P,Q,R and S have a unique common fixed point.

Proof. Since the pair (P,R) and (Q,S) share (CLRRS) property. Therefore there exist two se-
quences {xn} and {yn} in Y such that limn→∞ Pxn = limn→∞Rxn = limn→∞ Syn = limn→∞Qyn =
z, where z ∈ R(Y ) ∩ S(Y ). Since z ∈ R(Y ), there exists a pair u ∈ Y such that Ru = z. Putting
x = u and y = yn in equation (3.1) we get

ψ(d1(Pu,Qyn)) ≤ α(M(u, yn))− β(ϕ(d1(Pu,Ru)), ϕ(d1(Pu, Syn))) (3.5)

where

M(u, yn) = max

{
ϕ(d1(Pu,Qyn)), ϕ(d1(Pu,Ru)), ϕ(d1(Qyn, Syn)), ϕ(

d1(Pu, Syn) + d1(Ru,Qyn)

2
),

ϕ(
1 + d1(Pu,Ru)

1 + d1(Pu,Qyn)
d1(Qyn, Syn)), ϕ(

1 + d1(Qyn, Syn)

1 + d1(Pu,Qyn)
d1(Pu,Ru)),

ϕ(
1 + d1(Pu, Syn) + d1(Ru,Qyn)

1 + d1(Pu,Ru) + d1(Qyn, Syn)
d1(Pu,Ru))

}
Letting n → ∞ (taking the limit) in equation (3.5) and using the properties (1C) and (HE), we
have

ψ(d1(Pu, z)) ≤ α( lim
n→∞

M(u, yn))− β( lim
n→∞

(ϕ(d1(Pu,Ru)), ϕ(d1(Pu, Syn)))), (3.6)

where

lim
n→∞

M(u, yn) = max

{
ϕ(d1(Pu, z)), ϕ(d1(Pu, z)), ϕ(d1(z, z)), ϕ(

d1(Pu, z) + d1(z, z)

2
),

ϕ(
1 + d1(Pu, z)

1 + d1(Pu, z)
d1(z, z)), ϕ(

1 + d1(z, z)

1 + d1(Pu, z)
d1(Pu, z)), ϕ(

1 + d1(Pu, z) + d1(z, z)

1 + d1(Pu, z) + d1(z, z)
d1(Pu, z))

}

= max

{
ϕ(d1(Pu, z)), ϕ(d1(Pu, z)), ϕ(0), ϕ(

d1(Pu, z)

2
), ϕ(0), ϕ(

1

1 + d1(Pu, z)
d1(Pu, z)), ϕ(d1(Pu, z))

}

= ϕ(d1(Pu, z))

From equation (3.6), we obtain

ψ(d1(Pu, z)) ≤ α(ϕ(d1(Pu, z)))− β(ϕ(d1(Pu, z)), ϕ(d1(Pu, z)))

ψ(d1(Pu, z)) ≤ α(ϕ(d1(Pu, z)))

Using property of Θ, we get

ψ(d1(Pu, z)) ≤ ϕ(d1(Pu, z))

ψ(d1(Pu, z))− ϕ(d1(Pu, z)) ≤ 0

Using condition 5 of lemma, we have

ψ(d1(Pu, z))− ϕ(d1(Pu, z)) ≥ 0

Therefore

ψ(d1(Pu, z))− ϕ(d1(Pu, z)) = 0

and hence it follows easily that Pu = z. Therefore Pu = Ru = z, which shows that u is a
coincidence point of the pair (P,R).
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As z ∈ S(Y ), there exists a point v ∈ Y such that Sv = z. Putting x = u and y = v in equation
(3.1), we have

ψ(d1(z,Qv)) = ψ(d1(Pu,Qv)) ≤ α(M(u, v))− β(ϕ(d1(z, z)), ϕ(d1(z, z))), (3.7)

where

M(u, v) = max

{
ϕ(d1(Pu,Qv)), ϕ(d1(Pu,Ru)), ϕ(d1(Qv, Sv)), ϕ(

d1(Pu, Sv) + d1(Ru,Qv)

2
),

ϕ(
1 + d1(Pu,Ru)

1 + d1(Pu,Qv)
d1(Qv, Sv)), ϕ(

1 + d1(Qv, Sv)

1 + d1(Pu,Qv)
d1(Pu,Ru)), ϕ(

1 + d1(Pu, Sv) + d1(Ru,Qv)

1 + d1(Pu,Ru) + d1(Qv, Sv)
d1(Pu,Ru))

}

= max

{
ϕ(d1(z,Qv)), ϕ(d1(z, z)), ϕ(d1(Qv, z)), ϕ(

d1(z, z) + d1(z,Qv)

2
),

ϕ(
1 + d1(z, z)

1 + d1(z,Qv)
d1(Qv, z)), ϕ(

1 + d1(Qv, z)

1 + d1(z,Qv)
d1(z, z))ϕ(

1 + d1(z, z) + d1(z,Qv)

1 + d1(z, z) + d1(Qv, z)
d1(z, z))

}

= max

{
ϕ(d1(z,Qv)), ϕ(0), ϕ(d1(Qv, z)), ϕ(

d1(z,Qv)

2
), ϕ(

1

1 + d1(z,Qv)
d1(Qv, z)), ϕ(0), ϕ(0)

}

= ϕ(d1(z,Qv))

Hence the equation (3.7) implies

ψ(d1(z,Qv)) ≤ α(ϕ(d1(z,Qv)))− β(ϕ(0), ϕ(0)),

ψ(d1(z,Qv)) ≤ α(ϕ(d1(z,Qv)))

Using property of Θ, we get

ψ(d1(z,Qv)) ≤ ϕ(d1(z,Qv))

ψ(d1(z,Qv))− ϕ(d1(z,Qv)) ≤ 0,

Using condition 5 of lemma, we have

ψ(d1(z,Qv))− ϕ(d1(z,Qv)) ≥ 0,

Hence

ψ(d1(z,Qv))− ϕ(d1(z,Qv)) = 0,

and it follows easily that z = Qv. Thus Qv = Sv = z, which shows that v is a coincidence point
of the pair (Q,S).
Suppose now that Y = X. Since the pair (P,R) and (Q,S) are weakly compatible, Pu = Ru and
Qv = Sv, therefore Pz = PRu = RPu = Rz and Qz = QSv = SQv = Sz. Putting x = z and
y = v in equation (3.1), we have

ψ(d1(Pz, z)) = ψ(d1(Pz,Qv)) ≤ α(M(z, v))− β(ϕ(d1(Pz,Rz)), ϕ(d1(Pz, Sv))), (3.8)

where

M(z, v) = max

{
ϕ(d1(Pz,Qv)), ϕ(d1(Pz,Rz)), ϕ(d1(Qv, Sv)), ϕ(

d1(Pz, Sv) + d1(Rz,Qv)

2
),

ϕ(
1 + d1(Pz,Rz)

1 + d1(Pz,Qv)
d1(Qv, Sv)), ϕ(

1 + d1(Qv, Sv)

1 + d1(Pz,Qv)
d1(Pz,Rz)), ϕ(

1 + d1(Az, Tv) + d1(Sz,Bv)

1 + d1(Az, Sz) + d1(Bv, Tv)
d1(Az, Sz))

}
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= max

{
ϕ(d1(Pz, z)), ϕ(d1(Pz, Pz)), ϕ(d1(z, z)), ϕ(

d1(Pz, z) + d1(Pz, z)

2
),

ϕ(
1 + d1(Pz, Pz)

1 + d1(Pz, z)
d1(z, z)), ϕ(

1 + d1(z, z)

1 + d1(Pz, z)
d1(Pz, Pz)), ϕ(

1 + d1(Pz, z) + d1(Pz, z)

1 + d1(Pz, z) + d1(z, z)
d1(Pz, Pz))

}

= max

{
ϕ(d1(Pz, z)), ϕ(0), ϕ(0), ϕ(d1(Pz, z)), ϕ(0), ϕ(0), ϕ(0)

}

= ϕ(d1(Pz, z))

From equation (3.8), we get

ψ(d1(Pz, z)) ≤ α(ϕ(d1(Pz, z)))− β(ϕ(d1(Pz, Pz)), ϕ(d1(Pz, z)))

ψ(d1(Pz, z)) ≤ α(ϕ(d1(Pz, z)))− β(ϕ(0), ϕ(d1(Pz, z)))

ψ(d1(Pz, z)) ≤ α(ϕ(d1(Pz, z)))

Using property of Θ, we get

ψ(d1(Pz, z)) ≤ ϕ(d1(Pz, z))

ψ(d1(Pz, z))− ϕ(d1(Pz, z)) ≤ 0

Using condition 5 of lemma, we have

ψ(d1(Pz, z))− ϕ(d1(Pz, z)) ≥ 0

Hence,

ψ(d1(Pz, z))− ϕ(d1(Pz, z)) = 0

Using condition 5 of Lemma 3.1 it follows easily that z = Pz = Rz and therefore z is a common
fixed point of the pair (P,R). Putting x = u and y = z in equation (3.1), we have

ψ(d1(z,Qz)) = ψ(d1(Pu,Qz)) ≤ α(M(u, z))− β(ϕ(d1(Pu,Ru)), ϕ(d1(Pu, Sz))) (3.9)

where

M(u, z) = max

{
ϕ(d1(Pu,Qz)), ϕ(d1(Pu,Ru)), ϕ(d1(Qz, Sz)), ϕ(

d1(Pu, Sz) + d1(Ru,Qz)

2
),

ϕ(
1 + d1(Pu,Ru)

1 + d1(Pu,Qz)
d1(Qz, Sz)), ϕ(

1 + d1(Qz, Sz)

1 + d1(Pu,Qz)
d1(Pu,Ru)), ϕ(

1 + d1(Pu, Sz) + d1(Ru,Qz)

1 + d1(Pu,Ru) + d1(Qz, Sz)
d1(Pu,Ru))

}

= max

{
ϕ(d1(z,Qz)), ϕ(d1(z, z)), ϕ(d1(Qz,Qz)), ϕ(

d1(z,Qz) + d1(z,Qz)

2
),

ϕ(
1 + d1(z, z)

1 + d1(z,Qz)
d1(Qz,Qz)), ϕ(

1 + d1(Qz,Qz)

1 + d1(z,Qz)
d1(z, z)), ϕ(

1 + d1(z,Qz) + d1(z,Qz)

1 + d1(z, z) + d1(z, z)
d1(z, z))

}

= max

{
ϕ(d1(z,Qz)), ϕ(0), ϕ(0), ϕ(d1(z,Qz)), ϕ(0), ϕ(0), ϕ(0)

}

= ϕ(d1(z,Qz))

From equation (3.9) we get

ψ(d1(z,Qz)) ≤ α(ϕ(d1(z,Qz)))− β(ϕ(d1(z, z)), ϕ(d1(z,Qz)))

ψ(d1(z,Qz)) ≤ α(ϕ(d1(z,Qz)))
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Using property of Θ, we get

ψ(d1(z,Qz)) ≤ ϕ(d1(z,Qz))

ψ(d1(z,Qz))− ϕ(d1(z,Qz)) ≤ 0

Using condition 5 of lemma, we have

ψ(d1(z,Qz))− ϕ(d1(z,Qz)) ≥ 0

Hence,

ψ(d1(z,Qz))− ϕ(d1(z,Qz)) = 0

Using condition 5 of Lemma 3.1 it follows easily that z = Qz. Therefore Qz = Sz = z and we
can conclude that z is a common fixed point of P,Q,R and S. The uniqueness of a common fixed
point can be easily checked using the equation (3.1). �

Theorem 3.3. Let (X, d1) be symmetric space, where the symmetric d1 satisfies the condition
(CC), and Y be an arbitrary non-empty set with P,Q,R, S : Y → X. Suppose that the conditions
(1 − 6) of Lemma 3.1 hold. Then (P,R) and (Q,S) have coincidence point each. Moreover, if
Y = X and both the pairs (P,R) and (Q,S) are weakly compatible then P,Q,R and S have a
unique common fixed point.

Proof. In view of Lemma 3.1 , the pairs (P,R) and (Q,S) share the (CLRRS) property, there-
fore there exist two sequences {xn} and {yn} in Y such that limn→∞ Pxn = limn→∞Rxn =
limn→∞ Syn = limn→∞Qyn = z, where z ∈ R(Y )∩S(Y ). The rest proof can be done on the same
lines of Theorem 3.2. �

Theorem 3.4. Let (X, d1) be symmetric space, where the symmetirc d1 satisfies the conditions
(HE) and (1C), and let Y be an arbitrary non-empty set with P,Q,R, S : Y → X. Suppose that
the conditions (5) and (6) of Lemma 3.1 and the following hypotheses hold:

(1) the pairs (P,R) and (Q,S) satisfy the common property (E.A);
(2) R(Y ) and S(Y ) are closed subsets of X.

Then (P,R) and (Q,S) have coincidence point each. Moreover, if Y = X and both the pairs
(P,R) and (Q,S) are weakly compatible then P,Q,R and S have a unique common fixed point.

Proof. If the pairs (P,R) and (Q,S) share the common property (E.A), then there exist two se-
quences {xn} and {yn} in Y such that limn→∞ Pxn = limn→∞Rxn = limn→∞ Syn = limn→∞Qyn =
z, for some z ∈ X. Since R(Y ) is closed, limn→∞Rxn = z = Ru for some u ∈ Y. Also, since S(Y )
is closed, then limn→∞ Syn = z = Sν for some ν ∈ Y . The rest proof can be done on the same
lines of Theorem 3.2. �

Corollary 3.5. The conclusion of Theorem 3.4 remain same on replacing condition (2) by the
following:

(2
′
) P (Y ) ⊂ S(Y ) and Q(Y ) ⊂ R(Y ), where P (Y ) and Q(Y ) denote the closure of ranges of

the mappings P and Q.

Corollary 3.6. The conclusion of Theorem 3.4 remain same on replacing condition (2) by the
following:

(2
′′
) P (Y ) and Q(Y ) are closed subsets of X, and P (Y ) ⊂ S(Y ), Q(Y ) ⊂ R(Y ).

Corollary 3.7. Let (X, d1) be symmetric space where the symmetric d1 satisfies the conditions
(HE) and (1C), and Y be an arbitrary non- empty set with P,R : Y → X. Suppose that the given
hypotheses hold:
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(1) the pair (P,R) satisfies the (CLRR) property;

(2) for some ψ ∈ Ψ, ϕ ∈ Φ, α ∈ Θ and all x, y ∈ Y , satisfies

ψ(d1(Px, Py)) ≤ α(M(x, y))− β(ϕ(d1(Px,Rx)), ϕ(d1(Px,Ry))) (3.10)

where

M(x, y) = max

{
ϕ(d1(Px, Py)), ϕ(d1(Px,Rx)), ϕ(d1(Py,Ry)), ϕ(

d1(Px,Ry) + d1(Rx,Py)

2
),

ϕ(
1 + d1(Px,Rx)

1 + d1(Px, Py)
d1(Py,Ry)), ϕ(

1 + d1(Py,Ry)

1 + d1(Px, Py)
d1(Px,Rx)), ϕ(

1 + d1(Px,Ry) + d1(Rx,Py)

1 + d1(Px,Rx) + d1(Py,Ry)
d1(Px,Rx))

}
and β : [0,∞)2 → [0,∞) is a continuous mapping such that β(x, y) = 0 if and only if
x = 0, y = 0 for all x, y ∈ Y

Then the pair (P,R) has a coincidence point. Moreover, if Y = X and the pair (P,R) is weakly
compatible then P and R have a unique common fixed point.

Corollary 3.8. Let (X, d1) be symmetric space where the symmetric d1 satisfies the conditions
(HE) and (1C), and Y be an arbitrary non- empty set with P,Q, T,R, S : Y → X. Suppose that
the following hypotheses hold:

(1) the pairs (P,RT ) and (Q,S) satisfies the (CLR(RT )(S)) property.

(2) for some ψ ∈ Ψ, ϕ ∈ Φ, α ∈ Θ and all x, y ∈ Y , satisfies

ψ(d1(Px,Qy)) ≤ α(M(x, y))− β(ϕ(d1(Px,RTx)), ϕ(d1(Px, Sy))) (3.11)

where

M(x, y) = max

{
ϕ(d1(Px,Qy)), ϕ(d1(Px,RTx)), ϕ(d1(Qy, Sy)), ϕ(

d1(Px, Sy) + d1(RTx,Qy)

2
),

ϕ(
1 + d1(Px,RTx)

1 + d1(Px,Qy)
d1(Qy, Sy)), ϕ(

1 + d1(Qy, Sy)

1 + d1(Px,Qy)
d1(Px,RTx)), ϕ(

1 + d1(Ax, Ty) + d1(SRx,By)

1 + d1(Ax, SRx) + d1(By, Ty)
d1(Ax, SRx))

}
and β : [0,∞)2 → [0,∞) is a continuous mapping such that β(x, y) = 0 if and only if
x = 0, y = 0 for all x, y ∈ Y

Then the pairs (P,RT ) and (Q,S) have a coincidence point each. Moreover, if Y = X and both the
pairs (P,RT ) and (Q,S) commute pairwise, that is PR = RP , PT = TP , RT = TR, QS = SQ
then P,Q, T,R and S have a unique common point.

Corollary 3.9. Let P,Q,R and S be self mappings of a symmetric space (X, d1) satisfying the
conditions (HE) and (1C). Suppose that, for fixed positive integer m,n, p, q.

(1) the pair (Pm, Rp) and (Qn, Sq) share the (CLRRpSq ) property;

(2) for some ψ ∈ Ψ, ϕ ∈ Φ, α ∈ Θ and all x, y ∈ Y , satisfies

ψ(d1(Pmx,Qny)) ≤ α(M(x, y))− β(ϕ(d1(Pmx,Rpx)), ϕ(d1(Pmx, Sqy))) (3.12)
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where

M(x, y) = max

{
ϕ(d1(Pmx,Qny)), ϕ(d1(Pmx,Rpx)), ϕ(d1(Qny, Sqy)),

ϕ(
d1(Pmx, Sqy) + d1(Rpx,Qny)

2
), ϕ(

1 + d1(Pmx,Rpx)

1 + d1(Pmx,Qny)
d1(Qny, Sqy)), ϕ(

1 + d1(Qny, Sqy)

1 + d1(Pmx,Qny)
d1(Pmx,Rpx))

, ϕ(
1 + d1(Pmx, Sqy) + d1(Rpx,Qny)

1 + d1(Pmx,Rpx) + d1(Qny, Sqy)
d1(Pmx,Rpx))

}
and β : [0,∞)2 → [0,∞) is a continuous mapping such that β(x, y) = 0 if and only if
x = 0, y = 0 for all x, y ∈ Y

If PR = RP and QS = SQ then P,Q,R and S have a unique common fixed point.

Example 3.10. Let Y = [2, 11) ⊂ [1,∞) = X equipped with the symmetric d1(s, t) = (s− t)2 for
all s, t ∈ Y which also satisfies (1C) and (HE). Define the mappings P,Q,R, S : Y → X by

P (s) =

{
2 if s ∈ {2} ∪ (4, 11)

12 if s ∈ (2, 4]
, Q(s) =

{
2 if s ∈ {2} ∪ (4, 11)

14 if s ∈ (2, 4]

R(s) =


2 if s = 2

11 if s ∈ (2, 4]
3s+2
7 ifs ∈ (4, 11)

, S(s) =


2 if s = 2

11 if s ∈ (2, 4]

s− 2 if s ∈ (4, 11)

Then we have P (Y ) = {2, 9} * [2, 9) ∪ {11} = S(Y ) and Q(Y ) = {2, 5} * [2, 5) ∪ {11} = R(Y ).
Consider two sequences {sn} = {4 + 1

n}n∈N and {tn} = {2}n∈N . Then the pair (P,R) and (Q,S)
satisfies the (CLRRS) property. Indeed we have

lim
n→∞

Psn = lim
n→∞

Rsn = lim
n→∞

Qsn = lim
n→∞

Stn = 2

where 2 ∈ R(Y ) ∩ S(Y ); however, R(Y ) and S(Y ) are not closed subsets of X.
Now define φ ∈ Φ by φ(t1) = t1, ψ ∈ Φ by ψ(t1) = t1

2 , α ∈ Θ by α(t1) = t1 and β : [0,∞)2 → [0,∞)

by β(t1, s1) = t1+s1
16 . In order to verify the inequality (3.1), we distinguish the following possible

cases:

(1) If s = t = 2, then we get d1(Ps,Qt) = 0 and hence ψ(0) = 0 and (3.1) is trivially satisfied;

(2) If s = 2, t ∈ (2, 4], then we get d1(Ps,Qt) = 144 and hence ψ(d1(Ps,Qt)) = 72, M(s, t) =
144, α(M(s, t)) = 144, β(φ(d1(Ps,Rs), φ(d1(Ps, St)))) = 81

16 , therefore R.H.S of the in-

equality (3.1) is 2223
16 so L.H.S ≤ R.H.S;

(3) If s = 2, t ∈ (4, 11), d1(Ps,Qt) = 0 and hence ψ(d1(Ps,Qt)) = 0, M(s, t) = (4 − t)2,

α(M(s, t)) = (4 − t)2, β(φ(d1(Ps,Rs), φ(d1(Ps, St)))) = (4−t)2
16 , therefore R.H.S of the

inequality (3.1) is 15(4−t)2
16 so L.H.S ≤ R.H.S;

(4) If s ∈ (2, 4], t = 2,then d1(Ps,Qt) = 100 and hence ψ(d1(Ps,Qt)) = 50, M(s, t) = 100,
α(M(s, t)) = 100, β(φ(d1(Ps,Rs), φ(d1(Ps, St)))) = 101

16 , therefore R.H.S of the inequality

(3.1) is 1499
16 so L.H.S ≤ R.H.S;

(5) If s, t ∈ (2, 4], then d1(Ps,Qt) = 4 and hence ψ(d1(Ps,Qt)) = 2, M(s, t) = 9, α(M(s, t)) =
9, β(φ(d1(Ps,Rs), φ(d1(Ps, St)))) = 1

8 , therefore R.H.S of the inequality (3.1) is 71
8 so

L.H.S ≤ R.H.S;
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(6) If s ∈ (2, 4], t ∈ (4, 11),then d1(Ps,Qt) = 100 and hence ψ(d1(Ps,Qt)) = 50, M(s, t) = 100

and β(φ(d1(Ps,Rs), φ(d1(Ps, St)))) = 1+(14−t)2
16 , therefore the R.H.S of the inequality (3.1)

is 1599−(4−s)2
16 so L.H.S ≤ R.H.S;

(7) If s ∈ (4, 11), t = 2 then, d1(Ps,Qt) = 0 and hence ψ(d1(Ps,Qt)) = 0, M(s, t) = (12−3s)2
49 ,

α(M(s, t)) = (12−3s)2
49 , β(φ(d1(Ps,Rs), φ(d1(Ps, St)))) = (12−3s)2

98 , therefore R.H.S of the

inequality (3.1) is (12−3s)2
98 so L.H.S ≤ R.H.S;

(8) If s ∈ (4, 11), t ∈ (2, 4] then, d1(Ps,Qt) = 144 and hence ψ(d1(Ps,Qt)) = 72, M(s, t) =

144 and β(φ(d1(Ps,Rs), φ(d1(Ps, St)))) = (12−3s)2+3969
784 , thereforeR.H.S of the inequality

(3.1) is 108927−(12−3s)2
784 so L.H.S ≤ R.H.S;

(9) If s, t ∈ (4, 11) then, d1(Ps,Qt) = 0 and hence ψ(d1(Ps,Qt)) = 0, M(s, t) = (49+(12−3s)2)(4−s)2
49

and β(φ(d1(Ps,Rs), φ(d1(Ps, St)))) = (12−3s)2+49(4−s)2
98 , therefore, in all the cases inequal-

ity (3.1) holds;

Thus, the above example satisfies all the conditions of Theorem 3.2, except for Y = X, but a unique
common fixed point of the pair (P,R) and (Q,S) is 2. Here, one may check that all the involved
mappings are discontinuous at their unique fixed point ′2′.

Example 3.11. In the setting of Example 3.10, replace the mappings R and T by the following,
beside retaining the rest:

R(t) = S(t) =


2 if t = 2

16 if t ∈ (2, 4]
9t+6
7 ift ∈ (4, 11)

Then we have P (Y ) = {2, 12} ⊂ [2, 16] = S(Y ) and Q(Y ) = {2, 14} ⊂ [2, 16] = R(Y ); Now R(Y )
and S(Y ) are closed subsets of X. Thus, all the conditions of Theorem 3.3 are satisfied, except
Y = X; however the unique common fixed point of the pairs (P,R) and (Q,S) is 2.

Example 3.12. In the setting of Example 3.10, replace the mappings R and S by the following,
beside retaining the rest:

R(t) = S(t) =


2 if t = 2

16 if t ∈ (2, 4]
8t+17

7 ift ∈ (4, 11)

Then we have P (Y ) = {2, 12} ⊂ [2, 15)∪{16} = S(Y ) and Q(Y ) = {2, 14} ⊂ [2, 15)∪{16} = R(Y ).

Now, R(Y ) and S(Y ) are not closed subsets of X, but the conditions (2
′
) and (2

′′
) of Corollaries

3.5 and 3.6 are satisfied, except Y = X; however the unique common fixed point of the pairs (P,R)
and (Q,S) is 2.
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[10] M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed Point

Theory Appl. (2010), Article ID 978121 15 pages.
[11] G. Jungck, Compatible mappings and common fixed points. Int. J. Math. Math. Sci. 9(4)(1986), 771-779.

[12] G. Jungck, B.E. Rhodes, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math.
29(3)(1998), 227-238.

[13] Y. Liu, J. Wu, Z. Li, Common fixed points of single-valued and multivalued maps, Int. J. Math. Math. Sci.

19(2005), 3045-3055.
[14] R.P. Pant, Noncompatible mappings and common fixed points, Soochow J. Math. 26(1)(2000), 29-35.
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