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CR-SUBMANIFOLDS OF A NEARLY §-LORENTZIAN TRANS
SASAKIAN MANIFOLD

SHAMSUR RAHMAN!?, §

ABSTRACT. This paper considers the study of C'R-submanifold of a nearly d-Lorentzian
trans Sasakian manifold, generalizing the results of a nearly §-Lorentzian trans Sasakian
manifold and thus those of Sasakian manifolds. We also obtain some results on parallel
distribution relating to £-vertical CR-submanifold of a nearly §-Lorentzian trans Sasakian
manifold.
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1. INTRODUCTION

The notion of C' R-submanifolds of a Kaehler manifold was introduced by A. Bejancu in
[2]. Since then several papers on C R-submanifolds of Sasakian manifolds have been studied
by Kobayashi [8], Shahid et al. [9], Yano and Kon [6] and others. On the other hand,
there is a class of almost para-contact metric manifolds, namely Lorentzian para-Sasakian
manifolds. In 1989, K. Matsumoto [4] introduced the idea of Lorentzian para-Sasakian
manifold. Then I. Mihai and R. Rosca [3] introduced the same notion independently and
they obtained several results on this manifolds. Lorentzian para-Sasakian manifolds have
also been studied by K. Matsumoto and I. Mihai [5], U.C. De and et al. [10] and others. In
the present paper we study C R-submanifolds and C'R-structure of a C'R-submanifold of
nearly §-Lorentzian trans Sasakian manifold. C'R-submanifolds have good interaction with
other parts of mathematics and substantial applications to (pseudo)-conformal mapping
and relativity ([1], [7]).

2. PRELIMINARIES

A (2n+ 1) dimensional manifold M, is said to be §-almost contact metric manifold if it
admits a 1-1 tensor fiels ¢, a structure field &, a 1-form 7 ans an indefinite metric g such
that

P*X = X +n(X)E, n) = -1 (1)
g(gag) = _57 77(X) = 69(X7 g) (2)
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for all vector fields X and Y on M, where 6 is such that 62 = 1 so that § = 1. The above
structure (¢,&,7,9,6) on M is called the § Lorentzian structure on M. If 6 = 1 and this
is the usual Lorentzian structure on M, the vector field ¢ is the time like [19], that is M
cotains a time like vector field.

From the above equations, one can deduce that

¢ =0, n(e(X))=0
A §-Lorentzian manifold with structure (¢,&,7,9,0) is said to be d-Lorentzian trans
Sasakian manifold M of type (a, ) if it satisfies the condition

(Vx9)Y = afg(X,Y)§ — on(Y)X} + f{g(¢X,Y) — on(Y)p X} (4)
for any vector fields X and Y on M. If § = 1, then the §-Lorentzian trans Sasakian is the
usual Lorentzian trans Sasakian manifold of type («, 3).d-Lorentzian trans Sasakian man-
ifold of type (0,0), (0, 3), («,0) are the Lorentzian cosympletic, Lorentzian [-Kenmotsu
and Lorentzian a-Sasakian manifolds respectively. In particular if « = 1,8 = 0 and
a =0, =1, then §-Lorentzian trans Sasakian manifold reduces to §-Lorentzian Sasakian
and J-Lorentzian Kenmotsu manifolds respectively. On a §-Lorentzian trans Sasakian
manifold M, we have

V€ = —0apX — B3¢°X (5)
Further, §-almost contact metric manifold M on (¢, £, 7, g,d) is called nearly - Lorentzian
trans-Sasakian manifold if

(Vx@)Y + (Vyd)X = af2g(X,Y)§ — an(Y)X — on(X)Y'}

+6{29(¢X, Y )€ — on(Y)pX — dn(X)eY}. (6)

Now, let M be a submanifold immersed in M. The Riemannian metric induced on

M is denoted by the same symbol g. Let TM and T-M be the Lie algebras of vector

fields tangential to M and normal to M respectively and V be the induced Levi-Civita
connection on M. Then the Gauss and Weingarten formulas are given by

VxY =VxY +h(X,Y), (7)
VxN =-AnNX + VN (8)

for any X, YeT'M and NeT*M, where V- is the connection on the normal bundle T+M,
h is the second fundamental form and Ay is the Weingarten map associated with N as

9(ANX,Y) = g(h(X,Y), N). 9)
For any zeM and XeT,M, we write
X =PX +QX, (10)
where PXeD, QXeD* and T,M = D|J D*. Similarly for N normal to M, we have
N = BN + CN, (11)

where BN (respectively, CN) is the tangential component (respectively, normal compo-
nent) of ¢pN.

Now, let M be a submanifold immersed in M. The Riemannian metric induced on
M is denoted by the same symbol g. Let TM and T-M be the Lie algebras of vector
fields tangential to M and normal to M respectively and V be the induced Levi-Civita
connection on M. Then the Gauss and Weingarten formulas are given by

VxY =VxY +h(X,Y), (12)
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VxN = -AnNX + VN (13)
for any X, YeT'M and NeT*M, where V- is the connection on the normal bundle T+M,
h is the second fundamental form and Ay is the Weingarten map associated with N as

For any xeM and X €T, M, we write

X =PX +QX, (15)
where PXeD, QXeD+ and T,M = D|J D*. Similarly for N normal to M, we have
¢N = BN + CN, (16)

where BN (respectively, CN) is the tangential component (respectively, normal compo-
nent) of ¢N.

Definition 2.1. An m-dimensional Riemannian submanifold M of M is called a CR-
submanifold of M if there exists a differentiable distribution D : x — D, on M satisfying
the following conditions:

(i) D is invariant under ¢, that is, D, C D, for each xeM,

(ii) The complementary orthogonal distribution D+ : x — D} C T,M of D is anti-
mvariant, that is, ngDj - TJ;LM for each xeM . If diij = 0 (respectively, dimD, = 0),
then the CR-submanifold is called an invariant (respectively, anti-invariant) submani-
fold. The distribution D (respectively, D*) is called the horizontal (respectively, verti-
cal) distribution. Also the pair (D, D%) is called &-horizontal (respectively, &-vertical) if
£peD, (respectively, ExeDy ) for xzeM .

3. SOME BASIC LEMMAS

Lemma 3.1. Let M be a CR-submanifold of a nearly §-Lorentzian trans Sasakian mani-
fold M. Then we have

P(Vx¢PY) + P(Vy¢PX) — P(Apoy X) — P(AgoxY)
=2ag(X,Y)P¢ — adn(Y)PX — adn(X)PY — 3én(Y)pPX

—Bon(X)pPY + ¢PVxY + ¢PVy X + 26g(¢PX,Y ) PE (17)
Q(VxoPY) + Q(Vy¢PX) — Q(Agqy X) — Q(ApgxY) = 2Bh(X,Y)
+2ag9(X,Y)QE — aon(Y)QX — adn(X)QY + 269(¢QX,Y)QE (18)
h(X,pPY) + h(Y,$pPX) + V%oQY + ViQX = ¢QVy X
+oQVxY +2Ch(X,Y) — Bon(Y)pQX — Bon(X)eQY (19)

for any X, YeT M.
Proof. Using (8), (9) and (11) we get
(Vx9)Y +¢(VxY) + ¢h(X,Y) = PVx(¢PY) + QVx(6PY)
~PAsov X — QAsov X + h(X,¢PY) + Vx(4QY).

Interchanging X and Y in the above equation and adding each other, using (5) and (12)
et P(Vx¢PY) + P(Vy¢PX) — PAyoy X — PAsoxY + Q(VxoPY)

+Q(VyoPX) — QAsov X — QApoxY + h(X,¢oPY) + h(Y,9pPX)

+V%QY + VeoQX = 2Bh(X,Y) + 2Ch(X,Y) + 20g9(X,Y)P¢

+2ag9(X,Y)QE — ain(Y)PX — ain(Y)QX — adn(X)PY — adn(X)QY
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+289(pPX,Y ) P& +289(6QX,Y)QE — Bon(Y)pPX — Bon(Y)pQX — Bén(X)pPY
—B6n(X)dQY + ¢PVxY + ¢QVxY + ¢PVy X + ¢QVy X (20)

Now equating horizontal, vertical and normal components in (15), we get the desired
result.
O

Lemma 3.2. Let M be a CR-submanifold of a nearly §-Lorentzian trans Sasakian mani-
fold M. Then we have

2(Vx9)Y = VxoY — VyoX + h(X,0Y) — h(Y,6X) — ¢[X, Y] + a{2g(X, Y )¢

—on(Y)X — on(X)Y} + B{29(¢ X, Y)§ — on(Y)9X — on(X)oY'} (21)
2(Vyd)X = a{29(X,Y)§ — on(Y)X — on(X)Y} + B{29(¢X, V)€ — on(Y)p X
—on(X)oY} — VxoY + VyoX — h(X,0Y) + h(Y,90X) + ¢[X,Y]. (22)
Proof. From Gauss formula (7), we have
Vx¢Y = Vy¢pX = VxoY + (X, 9Y) — VydpX — h(Y, ¢X). (23)
Also we have
Vx¢Y = VyoX = (Vxo)Y — (Vyd) X + ¢[X,Y]. (24)
From (18) and (19), we get
(Vx9)Y = (Vy¢)X = VxoY + (X, 9Y) — Vy¢X — h(Y,¢X) — ¢[X,Y]. (25)

Also for nearly d-Lorentzian trans Sasakian manifold, we have
(Vx@)Y + (Vy¢)X = a{29(X,Y)E = on(Y)X — on(X)Y'}
+8{29(¢ X, Y)§ — on(Y)9X — dn(X)Y} (26)
Adding (20) and (21), we get
2(Vx9)Y = VxoY — VyoX + h(X,9Y) — (Y, $X) — ¢[X, Y] + a{29(X,Y)¢
—on(Y)X —n(X)Y} + B{29(¢X,Y)€§ — on(Y)pX — on(X)¢Y}
Subtracting (20) from (21) we get
2(Vy¢)X = a{29(X,Y)§ — on(Y)X — on(X)Y'} + B{29(6X, V)€ — on(Y)p X
—on(X)9Y'} = Vx oY + VyoX — h(X, ¢Y) + h(Y, pX) + ¢[X, Y]
Hence Lemma is proved. g

Lemma 3.3. Let M be a CR-submanifold of a nearly §-Lorentzian trans Sasakian mani-
fold M. Then we have

2(Vy9)(Z) = Apy Z — AyzY — V3Y + VyoZ — o[Y, Z] + a{29(Y, Z)¢
—on(2)Y —on(Y)Z} + B{29(¢Y, Z2)§ — on(Z)dY — on(Y)¢Z},
2(Vzo)(Y) = a{29(Y, 2)¢ = n(Z2)Y — on(Y)Z} + B{29(¢Y, Z)€ — on(Z)pY
—(Y)pZ} — Agy Z + AgzY + V7Y — Vv dZ + ¢|Y, Z]
for any Y, ZeD+.
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Proof. From Weingarten formula (8), we have

VzY —VydZ = AyzY — Ay Z + V5¢Y — VioZ. (27)
Also, we have B - - ~
VzoY = Vy¢Z = (Vyd)(Z) — (Vz9)(Y) + ¢[Y, Z]. (28)
From (22) and (23), we get
(Vy§)Z = (V29)Y = ApyZ — ApzY + Vy¢Z — V7Y — ¢[Y, Z]. (29)

Also for nearly 6-Lorentzian trans Sasakian manifold, we have

(Vyd)Z + (V29)Y = a{29(Y, 2)¢ — on(2)Y — on(Y)Z}

+6{29(¢Y, Z2)¢ — 0n(Z)9Y — n(Y)oZ}. (30)
Adding (24) and (25), we get
2Vy9)(Z) = Apy Z — ApzY — Vz0Y + V36 Z — 0[Y, Z] + a{29(Y, Z)¢
—on(2)Y —on(Y)Z} + B{29(¢Y, Z)§ — on(Z)¢Y — on(Y)$pZ}.
Subtracting (24) from (25) we get
2(Vz9)(Y) = af29(Y, 2)§ — on(2)Y — n(Y)Z} + B{29(9Y, 2)€ — on(Z)¢Y

—n(Y)0Z} — Apy Z + ApzY +Vz0Y — VyoZ + ¢[Y, Z]

for any Y, ZeD+ This proves our assertions. ]

Lemma 3.4. Let M be a CR-submanifold of a nearly §-Lorentzian trans Sasakian mani-
fold M. Then we have

2(Vx )Y = a{29(X,Y)§ — on(Y)X — on(X)Y} + B{29(¢X, Y )€ — on(Y) X
—(X)PY} — Agy X + VxoY — VyoX — h(Y, ¢X) — ¢[X, Y],
2(Vyd)X = a{29(X,Y)§ — an(Y)X — on(X)Y} + B{29(6X, V)€ — on(Y)dX
—6n(X)oY'} + Agy X — VoY + VyoX + h(Y,¢X) + ¢[X,Y]
for any XeD and YeD* .
Proof. By using Gauss and Weingarten equation for XeD and YeD' respectively, we get

VxoY — Vy¢X = —Agy X + VoY — VyopX — h(Y, ¢ X). (31)
Also, we have B B B B
VxoY = Vy¢X = (Vxd)Y — (Vyd) X + ¢[X,Y]. (32)
From (26) and (27), we get
(Vx@)Y = (Vyd)X = —Agy X + Vx oY — VyoX — h(Y, ¢X) — ¢[X,Y]. (33)

Also for nearly 0-Lorentzian trans Sasakian manifold, we have
(Vx@)Y + (Vy¢)X = a{29(X,Y)¢ = on(Y)X — on(X)Y'}
+6{29(6X,Y)§ — on(Y )X — on(X)pY'} (34)
Adding (28) and (29), we get
2(Vx9)Y = af29(X, V)¢ = on(Y)X — on(X)Y'} + B{29(0X,Y)E — on(Y)oX
—0n(X)9Y} — Agy X + Vx0Y — VyoX — h(Y,6X) — ¢[X,Y],
Subtracting (20) from (21) we get
2(Vyd)X = a{29(X,Y)§ — 0n(Y)X — on(X)Y} + B{29(6X, V)€ — on(Y)dX
—on(X)pY} + Apy X — VoY + VyoX + h(Y,¢X) + ¢[X,Y]
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Hence Lemma is proved. g

4. PARALLEL DISTRIBUTIONS

Definition 4.1. The horizontal (respectively, vertical) distribution D (respectively, D+ )
is said to be parallel [1] with respect to the connection on M if VxYeD (respectively,
VzWeDL) for any vector field X,YeD (respectively, W, ZeD™ ).

Proposition 4.1. Let M be a §-vertical C R-submanifold of a nearly d-Lorentzian trans
Sasakian manifold M. If the horizontal distribution D is parallel. Then we have

hX,9Y) = h(Y, pX) (35)
for all X,YeD.

Proof. Using parallelism of horizontal distribution D, we have

Vxo¢YeD, VypXeD (36)
for any X,YeD. Thus using the fact that X = QY =0 for YeD, (13) gives
B(X,Y) = g(X,Y)Q¢ (37)
for any X,YeD. Also, since
oh(X,Y) = Bh(X,Y) + Ch(X,Y), (38)
then
Ph(X,Y) = g(X,Y)QE + Ch(X,Y) (39)
for any X,YeD. Next from (14), we have
B(X,6Y) + h(Y,6X) = 2Ch(X,Y) = 26h(X,Y) — 29(X,Y)Q¢ (40)
for any X,YeD. Putting X = ¢XeD in (35), we get
WoX,9Y) + h(Y, ¢°X) = 20h(¢X,Y) — 29(4X,Y)Q¢ (41)
or
h(¢X,9Y) + h(Y, X) = 20h(¢X,Y) — 29(¢X,Y)Q¢. (42)
Similarly, putting Y = ¢YeD in (35), we get
h(@Y, ¢X) + h(X,Y) = 20h(X, ¢Y) — 29(X, 9Y)Q¢. (43)
Hence from (37) and (38), we have
Ph(X,9Y) — oh(Y, ¢X) = g(X, ¢Y)QE — g(¢X,Y)QE. (44)
Operating ¢ on both sides of (39) and using ¢& = 0, we get
X, 9Y) = h(Y, pX) (45)
for all X,YeD.
]

Now, for the distribution D, we prove the following proposition.

Proposition 4.2. Let M be a &-vertical CR-submanifold of a nearly §-Lorentzian trans
Sasakian manifold M. If the distribution D+ is parallel with respect to the connection on
M. Then we have

AsyZ + AyzYeD*H (46)

for any Y, ZeD+.
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Proof. Let Y, ZeD+. Then using Gauss and Weingarten formula, we obtain
—ApzY +V$0Z — Ay Z + V56Y = ¢Vy Z + ¢h(Y, Z) + ¢V 7Y

+Oh(Z,Y) +29(Y, 2) +n(Y)Z +n(2)Y + 4(Y)n(Z)§ (47)
for any Y, ZeD+. Taking inner product with XeD in (42), we get

If the distribution D+ is parallel, then Vy ZeD+ and VY eD* for any Y, ZeD+ .
So from (43) we get

g(A¢yZ, X) + g(Ad)ZK X) =0 or g(A¢yZ + A¢ZY,X) =0, (49)

which is equivalent to
ApyZ + AgzYeD* (50)

for any Y, ZeD' and this completes the proof.
O

Definition 4.2. A CR-submanifold is said to be mized totally geodesic if h(X,Z) =0 for
all XeD and YeD> .

The following lemma is an easy consequence of (9).

Lemma 4.1. Let M be a CR-submanifold of a nearly §-Lorentzian trans Sasakian mani-
fold M. Then M is mized totally geodesic if and only if AnXeD for all XeD.

Definition 4.3. A normal vector field N # 0 is called D-parallel normal section ifo(N =
0 for all XeD.

Proposition 4.3. Let M be a mized totally geodesic §-vertical C R-submanifold of a nearly
§-Lorentzian trans Sasakian manifold M. Then the normal section NepD+ is D-parallel
if and only if Vx¢NeD for all XeD.

Proof. Let Ne¢)D+. Then from (13) we have

Q(Vy¢X) =0 (51)

for any XeD,YeD> . In particular, we have Q(Vy X) = 0. By using it in (3.3), we get
VxoQY = ¢QVxY or VyN =—¢QVxoN. (52)
Thus, if the normal section N # 0 is D-parallel, then using Definition 4 and (4.18), we get
PQ(VxoN) =0, (53)
which is equivalent to Vx@NeD for all XeD. The converse part easily follows from (47).
This completes the proof of the proposition. O

5. INTEGRABILITY CONDITIONS OF DISTRIBUTIONS

First we calculate the Nijenhuis tensor Ny(X,Y’) on a nearly J-Lorentzian trans Sasakian
manifold M. For this, first we prove the following lemma.

Lemma 5.1. Let M be a CR-submanifold of a nearly §-Lorentzian trans Sasakian mani-
fold M, then

(Voxd)Y = af29(¢X,Y)E — an(Y)pX } + B{29(X,Y)E — on(Y)X

+(2 = 0)n(X)n(YV)E} = n(X)Vy €+ o(Vy¢)(X) + n(Vy X)§ (54)
for any X, YeI'M.
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Proof. From the definition of nearly J-Lorentzian trans Sasakian manifold M, we have
(Voxd)Y = a{29(¢X.Y)E — on(Y)oX} + B{29(X, V)€ — on(Y)X
+2 =X )n(Y)EL — (Vyo)oX (55)
Also, we have
(Vy$)¢X = Vy¢?X — (Vy¢X) = Vy ¢’ X — ¢(VyoX) + ¢(¢Vy X)
—9(¢Vy X) = Vy X + n(X)Vy& — ¢(Vy¢pX — ¢Vy X) — ¢(¢Vy X)
(Vy@)oX =n(X)Vy§ — ¢(Vyo)(X) — n(VyX)¢ (56)
Using (51) in (52), we get
(Vox9)Y = af2g(¢X, V)¢ — an(Y)pX} + B{29(X,Y)§ — on(Y)X
+H2 = n(X)n(Y)E} = n(X)Vy €+ (Vy ) (X) +n(VyX)E (57)

for any X,YeT M, which completes the proof of the lemma. On a nearly d-Lorentzian
trans Sasakian manifold M, Nijenhuis tensor is given by

Ny(X,Y) = (Vox @)Y + ¢(Vy9)X — (Vgy o)X — ¢(Vx9)Y (58)

for any X,YeT M.
From (49) and (53), we get

No(X,Y) = —adn(Y)pX — Bon(Y)X —n(X)Vy€ + 20(Vy ¢)(X) + n(Vy X)§
—adn(X)oY + Bon(X)Y +n(Y)Vx§ —20(Vxd)(Y) —n(VxY)s (59)
Thus using (3) in the above equation and after some calculations, we obtain
Ny(X,Y) = adn(Y)oX + adn(X)eY —n(X)Vy&+n(Y)VxE
+n(Vy X)€ = n(VxY)E +46(Vy )X + Bon(X)n(Y)é (60)
for any X,YeT' M. Now we prove the following proposition. ]

Proposition 5.1. Let M be a §-vertical CR-submanifold of a nearly d-Lorentzian trans
Sasakian manifold M. Then, the distribution D is integrable if the following conditions
are satisfied:
S(X,2)eD, h(X,$Z) = h(¢X,Z) (61)
for any X, ZeD.
Proof. The torsion tensor S(X,Y") of the almost contact structure (¢,&,n,g) is given by
S(X,Y) = Ng(X,Y) +2dn(X,Y){ = Ny(X,Y) + 29(¢ X, Y)¢ (62)
Thus, we have
for any X,YeT'M. Suppose that the distribution D is integrable.
So for X,YeD, Q[X,Y]=0and n([X,Y]) =0 as éeD*. If S(X,Y)eD, then from (56)
and (58) we have
29(6X,Y)E + n([X, Y])E + 4(@Vy X + oh(Y,0X) + QVy X + h(X,Y))[eD  (64)
or
29(0X,Y)QE + n([X, Y])QE + 4(oQVy ¢ X + oh(Y, ¢.X)
+QVy X +h(X,Y))=0 (65)
for any X,YeD. Replacing Y by ¢Z for ZeD in the above equation, we get

29(¢X, 0Z)Q¢ + HPQV 20X + ph(dZ, ¢ X)
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—|—QV¢ZX + h(X, ¢Z)) =0 (66)

Interchanging X and Z for X, ZeD in (62) and subtracting these relations, we obtain
Qo X, 92) + Q[X, ¢Z] + W(X, 9Z) — h(Z,9X) =0 (67)
for any X, ZeD and the assertion follows. O

Now, we prove the following proposition.

Proposition 5.2. Let M be a CR-submanifold of a nearly 6-Lorentzian trans Sasakian
manifold M. Then

3(Apy Z — AyzY ) = ¢P[Y, Z] 4+ 2a+ 0)n(Y)Z — 2a+0)n(2)Y
+B2+6)n(Y)pPZ — B2+ 0)n(Z)pPY —2B69(PZ,Y)P§ (68)
for any Y, ZeD+.
Proof. For Y, ZeD* and XeT(M), we get
29(AgzY, X) = 29(h(X, V), 62) = g(h(X,Y),62) + g(h(X,Y),62)
=9(VxY,0Z)+g(VyX,$Z) = g(VxY + Vy X, ¢Z)
= —g(¢(VxY +VyX),Z) = —g(Vx oY + Vy¢X
—(Vx@)Y = (Vy¢)X,Z) = —g(Vx9Y, Z) — g(Vy¢X, Z)
+gla{2g(X,Y)§ — on(Y)X — on(X)Y'} + 289(¢ X, Y)E
—0B{n(Y)oX +n(X)oY}, Z] = g(Asy Z, X) + g(Vy Z, 6 X)
+2a9(X,Y)g(§, Z) — aén(Y)g(X, Z) — adg(§, X)g(Y, Z) + 2B9(6X,Y)g(§, Z)
—6An(Y)g(¢pX, Z) = 689(X,€)g(¢Y, Z) = g(Agy Z, X)) — g(¢(Vy Z), X)
+2a9(n(2)Y, X) — adg(n(Y)Z,X) — adg(g(Y, Z)¢, X)

The above equation is true for all XeT (M), therefore, transvecting the vector field X both
sides, we obtain

2457Y = Apy Z — Ny Z 4+ 2an(Z)Y — adn(Y)Z — adg(Y, Z)E
+26n0(2)¢Y — Bon(Y)oZ — Bog(¢Y, Z)§ (70)
for any Y, ZeD". Interchanging the vector fields Y and Z, we get
2AsvZ = ApzY — ¢V zY 4+ 2an(Y)Z — adn(2)Y — adg(Z,Y)E
+260(Y)oZ — Bén(Z)dY — Bog(¢Z,Y)¢ (71)
Subtracting (66) and (67), we get
3(A¢yZ — A¢ZY) = (Z)P[Y, Z] + (2& + 5)7](Y)Z — (20( + 5)77(Z)Y
+B@2+06nY)pPZ — B2+ 0)n(Z)pPY —2669(PZ,Y)PE (72)

for any Y, ZeD~, which completes the proof.
O

Theorem 5.1. Let M be a CR-submanifold of a nearly o-Lorentzian trans Sasakian man-
ifold M. Then, the distribution D+ is integrable if and only if

Ad)yZ - A¢ZY = (2a + 5)77(Y)Z - (2(1 + (5)7](Z)Y (73)
for any Y, ZeD+.
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Proof. First suppose that the distribution D is integrable. Then [Y,Z]eD* for any
Y, ZeD*. Since P is a projection operator on D, so P[Y,Z] = 0. Thus from (64) we get
(69). Conversely, we suppose that (69) holds. Then using (64), we have ¢P[Y, Z] = 0 for
any Y, ZeD+. Since rank ¢ = 2n. Therefore, either P[Y,Z] = 0 or P[Y,Z] = k. But
P[Y, Z] = k& is not possible as P is a projection operator on D. Thus, P[Y, Z] = 0, which
is equivalent to [Y, Z]eD* for anyY, ZeD* and hence D= is integrable. O

Corollary 5.1. Let M be a &-horizontal CR-submanifold of a nearly §-Lorentzian trans
Sasakian manifold M. Then, the distribution D+ is integrable if and only if

A¢yZ — A¢ZY =0 (74)
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