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INVARIANT FILTERING RESULTS

FOR WIDE BAND NOISE DRIVEN SIGNAL SYSTEMS

A. E. BASHIROV1, K. ABUASSBA2, §

Abstract. Filtering of wide band noise driven systems accounts the following problem.
Given an autocovariance function, there are infinitely many wide band noise processes,
which have this autocovariance function. Each of them produces its own best estimate.
The problem is a selection of the best one of these best estimates. A similar problem
arises in control theory as a selection of optimal one of the optimal controls. In this paper
we investigate this problem for a wide class of wide band noises. It is proved that in the
case of independent wide band and white noises corrupting, respectively, the signal and
observations, the best estimates and the optimal controls in the linear filtering and LQG
problems are independent of the respective wide band noises. We present a complete set
of formulae for the best estimate and, respectively, for the optimal control in terms of
the system parameters and autocovariance function of the wide band noise disturbing
the signal system.
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1. Introduction

Estimation and stochastic control theories employ the white noise model of disturbing
noise processes. In such a way the most powerful estimation result, the Kalman filter,
originated from Kalman [1] and Kalman and Bucy [2] and widely discussed in Bensoussan
[3], Curtain and Prichard [4] etc., has been discovered for linear systems corrupted by
independent or correlated white noises. The same can be said about optimal control law
in LQG (linear quadratic Gaussian) control problem originated from Wonham [5] as well.

Although the results for systems with a white noise model of disturbing noises find
wide applications in engineering (see, for example, Grassides and Junkins [6]), the real
noises behave differently than the white noises. This was observed by engineers long ago.
Fleming and Rishel [7] noticed that the real noises behave as a wide band noise in which
white noises are an ideal case.

Perhaps, a well-developed stochastic calculus, that originates from the works of Ito [8, 9]
and provides principles of working with white noises, is a reason for the wide use of white
noise driven systems in estimation and control theory. The noises of non-white nature
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have already been considered in different works as well. Bucy and Joseph [10] introduced
a coloured noise. In a series of works by Kushner [11], Kushner and Runggaldier [12, 13],
Kushner and Ramachandran [14], Liptser et al [15] wide band noise driven systems are
investigated by a method of approximation. Hu [16] and Wang et al [17] studied wide
band noises in speech signals. In Bashirov et al [18, 19, 20, 21] an integral representation
for wide band noises was initiated.

An important feature of wide band noises is that in applications they are observed by
autocovariance functions though different wide band noises may have the same autoco-
variance function. Denote by W (Λ) the collection of all wide band noises which have the
autocovariance function Λ. Normally, different wide band noises from W (Λ) should result
different best estimates and different optimal controls in estimation and stochastic control
problems. This creates a question: To what wide band noise from W (Λ) should it be
followed?

It may also happen that the filtering and control results are dependent on Λ but in-
dependent on ϕ ∈ W (Λ). It is natural to call such results as invariant results. Invariant
results have more applicable form than non-invariant results because they construct op-
timal filters on the basis of autocovariance functions. Previously, some invariant results
were obtained in Bashirov et al [22, 23, 24, 25, 26, 27, 28]. The first paper is related to sto-
chastic maximum principle. The next four papers to controllability of stochastic systems
under wide band noises. The sixth paper discusses invariant results for wide band noise
driven observation systems. The last paper presents invariant solutions for wide band
noise driven signal systems. Being short conference presentations, it does not contain the
proofs. In this paper we present complete proofs of these invariant results.

We prefer to write the arguments of functions in the subscripts, for example, ft instead of
f(t). This allows to make shorter big expressions. Rn denotes an n-dimensional Euclidean
space and Rn×k the space of (n× k)-matrices. As always, R = R1. The norm and scalar
product in all considered spaces are denoted by ‖·‖ and 〈·, ·〉, being clear from the context.
I and 0 are the identity and zero matrices or operators independently on their dimensions.
A∗ is the adjoint of the linear closed operator A. In the case when A ∈ Rn×m, A∗ becomes
the transpose of A. For F ∈ Rn×n, we write F ≥ 0 (respectively, F > 0) if F ∗ = F and
〈Fx, x〉 ≥ 0 for all x ∈ Rn (respectively, 〈Fx, x〉 > 0 for all nonzero x ∈ Rn).

We assume that a complete probability space (Ω,F ,P) is given. E η is the expectation
of η and cov (ξ, η) is the covariance of ξ and η, noticing that cov η = cov (η, η). The
conditional expectation is denoted by E( · | · ). We say that a Wiener process w is standard
if it satisfies w0 = 0, Ewt = 0 and cov (wt, ws) = I min(t, s).

By L2(a, b;H) we denote the space of all square integrable H-valued functions on [a, b].
C(a, b;H) is the space of all H-valued continuous functions on [a, b]. W 1,2(a, b;H) denotes

the space of H-valued functions f on [a, b] which admit the representation ft = fa+
∫ t
a gs ds

with g ∈ L2(a, b;H). In particular, this implies that f is continuous, a.e. differentiable,
and f ′ = g a.e.

2. Wide band noises

A random process ϕ : [0,∞)× Ω→ Rn is said to be an n-dimensional wide band noise
or, simply, a wide band noise if

cov (ϕt+σ, ϕt) =

{
0, σ ≥ ε,
Λt,σ, 0 ≤ σ < ε,

where ε > 0 and Λ is an Rn×n-valued nonzero function. In the case when Eϕt = 0 and
Λt,σ ≡ Λσ the wide band noise ϕ is said to be stationary (in the wide sense).
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One can verify that the random process ϕ defined by

ϕt =

∫ t

max(0,t−ε)
Φt,s−t dws, t ≥ 0, (1)

where Φ is an Rn×k-valued relaxing function on [0,∞)× [−ε, 0] and w is a k-dimensional
standard Wiener process, is an n-dimensional wide band noise with

cov (ϕt+σ, ϕt) =

∫ t

max(0,t+σ−ε)
E(Φt+σ,s−t−σΦ∗t,s−t) ds

if 0 ≤ σ < ε. If Φ is nonrandom and depends only on its second argument, then

cov (ϕt+σ, ϕt) =

∫ 0

max(−t,σ−ε)
Φs−σΦ∗s ds (2)

if 0 ≤ σ < ε, that is, ϕ becomes stationary for t ≥ ε. Thus, the formula in (1) presents a
wide band noise as a distributed delay of a white noise. This issue is studied in Bashirov
et al [29, 30].

For a moment, consider a simplest case when ϕ is a one-dimensional wide band noise
being stationary since the instant ε and having the autocovariance function Λ : [0, ε]→ R.
Then, by (2), in order to be represented as

ϕt =

∫ t

max(0,t−ε)
Φs−t dws,

where w is also one-dimensional, the function Φ : [−ε, 0]→ R should satisfy the equation

Λσ =

∫ 0

σ−ε
Φs−σΦs ds.

This is a convolution equation. In Bashirov and Uǧural [31, 32], it is proved that if Λ is
a positive definite function and some very general conditions hold, then this equation has
an infinite number of solutions Φ ∈ L2(−ε, 0;R), noticing that the positive definiteness is
a defining property of autocovariance functions. This result seemingly extends to multidi-
mensional, non-stationary, and random cases. Therefore, given an autocovariance function
Λ, there are infinitely many relaxing functions Φ and, respectively, infinitely many wide
band noise processes in the form of (1) that have the same autocovariance function Λ.

Let us fix the autocovariance function Λ and denote the collection of all wide band
noise processes having the autocovariance function Λ by W (Λ). This is too wide class.
According to Section 2, we are interested in those ϕ ∈ W (Λ) which have an integral
representation. Depending on selections of Φ in (1), we can define the following subclasses
of W (Λ):

• Denote by WLF
2

(Λ) the collection of all ϕ ∈ W (Λ) such that ϕ has the repre-

sentation in (1) with Φ ∈ C(0,∞;L2([−ε, 0] × Ω;Rn×k)) such that for all t ≥ 0
and max(−t,−ε) ≤ θ ≤ 0, Φt,θ is Ft+θ-measurable, where {Ft} is a complete and
continuous filtration generated by w. Here the measurability condition surves the
existence of stochastic integral in (1). This class is suitable for a study of con-
trol and estimation problems for stochastic systems disturbed by wide band noises
that are dependent on state or control. In such a way, in Bashirov [22] a stochastic
maximum principle is proved for wide band noise driven nonlinear systems.
• Denote by WW 1,2(Λ) the collection of all ϕ ∈ W (Λ) such that ϕ has the rep-

resentation in (1) with Φ ∈ C(0,∞;W 1,2(−ε, 0;Rn×k)). One can also define its
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subclass W
W 1,2

0
(Λ) of all ϕ ∈ WW 1,2(Λ) with the integral representation in (1)

where Φt,−ε = 0. This class was employed in Bashirov [33].
• Denote by WL2(Λ) the collection of all ϕ ∈ W (Λ) such that ϕ has the represen-

tation in (1) with Φ ∈ C(0,∞;L2(−ε, 0;Rn×k)). This class is our concern in this
paper.
• Denote by Wδ(Λ) the collection of all ϕ ∈W (Λ) such that ϕ has the representation

in (1) with the relaxing function Φ in the form

Φt,θ =

m∑
i=1

Fiδθ+t−λi,t ,

where δ is Dirac’s delta-function, 0 ≤ ε1 < · · · < εm ≤ ε, λi satisfies the inequalities
t− εi ≤ λi,t ≤ t, and Fi ∈ Rn×k for all i = 1, . . . ,m. Then

ϕt =

∫ t

max(0,t−ε)

m∑
i=1

Fiδs−λi,t dws =

m∑
i=1

Fiw
′
max(0,λi,t)

.

Thus ϕ becomes a delayed (multiply and time-dependent) white noise. This kind
of relaxing functions has been studied in Bashirov et al [34, 35, 36, 37] by approx-

imation of them with relaxing functions from C(0,∞;W 1,2
0 (−ε, 0;Rn×k)).

3. Setting of basic filtering problem.

Just for simplicity, below we consider filtering and LQG problems for a partially ob-
servable stationary linear system in finite-dimensional Euclidean spaces, assuming that the
signal noise is wide band and the observation noise is white. A more general case when
the signal process takes values in a Hilbert space and the system is non-stationary can be
handled with minor changes. The wide band noise will be assumed to be non-stationary
in general because the main object of discussion in this paper is the wide band nature of
the signal noise. We will mainly concentrate on linear filtering problem. LQG problem
will be considered as an application of the filtering result.

Throughout this paper we assume:

(F): A ∈ Rn×n, C ∈ Rm×n, w and v are Rk- and Rm-valued standard Wiener pro-
cesses, ξ is an Rn-valued Gaussian random variable with E ξ = 0, (w, v) and ξ are
independent, w and v are correlated with cov (wt, vs) = Emin(t, s).

Note that w and v are assumed to be correlated just for generality. The contributions of
this paper to these problems are in the case E = 0, that is, when w and v are uncorrelated.
This is equivalent to their independence because of Gaussian nature of the noises.

Consider the partially observable linear system{
x′t = Axt + ϕt, x0 = ξ, t > 0,
dzt = Cxt dt+ dvt, z0 = 0, t > 0,

(3)

where x and z are vector-valued signal and observation systems. We also assume:

(W): ε > 0 and ϕ is an n-dimensional wide band noise with the autocovariance
function cov (ϕt+σ, ϕt) = Λt,σ for t ≥ 0 and 0 ≤ σ ≤ ε, so that it has the integral

representation in (1) for some Φ ∈ C(0,∞;L2(−ε, 0;Rn×k)), that is, ϕ ∈WL2(Λ).

The filtering problem for the system in (3) consists of finding equations for the best
estimate x̂t of xt based on the observations zs, 0 ≤ s ≤ t, that is, for the conditional
expectation x̂t = E(xt|zs, 0 ≤ s ≤ t).

Note that the signal system in (3) is given in terms of derivative while the observation
system in terms of differential. By this, we stress on the fact that unlike white noises,
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which are generalized derivatives of Wiener processes and do not exist in the ordinary
sense, wide band noises are well-defined random processes.

In condition (W), the continuity of Φ in the first variable is not an essential restriction.
It can be replaced by measurability and local boundedness. But in this paper being
L2(−ε, 0;Rn×k)-valued relaxing function is essential.

4. Filtering: correlated noises

In this section we obtain an optimal filter in the filtering problem for the system in (3)
assuming that the wide band noise ϕ is given by its relaxing function Φ.

Theorem 4.1. Under the conditions (F) and (W), the best estimate process x̂ in the
filtering problem for the system in (3) is uniquely determined as a solution of the system
of equations 

dx̂t = (Ax̂t + ψt,0) dt+ PtC
∗(dzt − Cx̂t dt),(

∂
∂t + ∂

∂θ

)
ψt,θ dt = (Qt,θC

∗ + Φt−θ,θE)(dzt − Cx̂t dt),
x̂0 = 0, ψ0,θ = ψt,−ε = 0, −ε ≤ θ ≤ 0, t > 0,

(4)

where P , Q and G are solutions of{
P ′t = APt + PtA

∗ +Qt,0 +Q∗t,0 − PtC∗CPt,
P0 = cov ξ, t > 0,

(5){ (
∂
∂t + ∂

∂θ

)
Qt,θ = Qt,θA

∗ +Gt,θ,0 − (Qt,θC
∗ + Φt−θ,θE)CPt,

Q0,θ = Qt,−ε = 0, −ε ≤ θ ≤ 0, t > 0,
(6)

and{ (
∂
∂t + ∂

∂θ + ∂
∂τ

)
Gt,θ,τ = Φt−θ,θΦ

∗
t−τ,τ − (Qt,θC

∗ + Φt−θ,θE)(CQ∗t,τ + E∗Φ∗t−τ,τ ),
G0,θ,τ = Gt,−ε,τ = Gt,θ,−ε = 0, −ε ≤ θ ≤ 0, −ε ≤ τ ≤ 0, t > 0.

(7)

Moreover, the mean square error is equal to

et = E‖x̂t − xt‖2 = trPt.

Proof. The idea of the proof is as follows. Define the L2(−ε, 0;Rn)-valued random process
φ by

[φt]θ =

∫ t

max(0,t−ε−θ)
Ψs,s−t+θ dws, −ε ≤ θ ≤ 0, t ≥ 0, (8)

where

Ψt,θ = Φt−θ,θ, −ε ≤ θ ≤ 0, t ≥ 0. (9)

One can verify the equality

Γφt = [φt]0 = ϕt, (10)

for ϕ defined by (1), where Γ is a linear operator from W 1,2(−ε, 0;Rn) to Rn, assigning
to h ∈W 1,2(−ε, 0;Rn) its value h0. Let −d/dθ be a differential operator on L2(−ε, 0;Rn)
with the domain

D(−d/dθ) = {h ∈W 1,2(−ε, 0;Rn) : h−ε = 0},
noticing that (−d/dθ)∗ = d/dθ and

D(d/dθ) = {h ∈W 1,2(−ε, 0;Rn) : h0 = 0}.

One can verify that φ is a mild solution of the linear stochastic differential equation

dφt = (−d/dθ)φt dt+ Ψt dwt, φ0 = 0, t > 0. (11)
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Equations (9)–(11) lead to the reduction of the linear system in (3), driven by the wide
band noise ϕ, to a linear system, driven by a white noise, with an enlarged Rn×L2(−ε, 0;Rn)-
valued signal process. Indeed, letting

x̃t =

[
xt
φt

]
, ξ̃ =

[
ξ
0

]
,

and

Ã =

[
A Γ
0 −d/dθ

]
, Φ̃t =

[
0

Ψt

]
, C̃ =

[
C 0

]
,

we obtain that {
dx̃t = Ãx̃t dt+ Φ̃t dwt, x̃0 = ξ̃, t > 0,

dzt = C̃x̃t dt+ dvt, z0 = 0, t > 0.
(12)

Obviously, the first component of ˆ̃xt = E(x̃t|zs, 0 ≤ s ≤ t) is the best estimate x̂t for the

system in (3). Therefore, it remains to find the equations for ˆ̃x. This will be done by
methods of functional analysis.

In (12), Ã is a densely defined closed linear operator on Rn × L2(−ε, 0;Rn) with

D(Ã) = Rn ×D(−d/dθ),
generating a strongly continuous semigroup. According to linear filtering theory in Hilbert
spaces (see, for example, Curtain and Prichard [4]), the best estimate process ˆ̃x is a unique
mild solution of the equation{

dˆ̃xt = Ãˆ̃xt dt+ (P̃tC̃
∗ + Φ̃tE)(dzt − C̃ ˆ̃xt dt),

ˆ̃x0 = 0, t > 0,
(13)

where P̃ is a scalar product solution of the operator Riccati equation{
P̃ ′t = ÃP̃t + P̃tÃ

∗ + Φ̃tΦ̃
∗
t − (P̃tC̃

∗ + Φ̃tE)(C̃P̃t + E∗Φ̃∗t ),

P̃0 = cov ξ̃, t > 0,
(14)

and
E‖x̃t − ˆ̃xt‖2 = tr P̃t. (15)

Here, the values of P̃ are self-adjoint Hilbert–Schmidt operators on the Hilbert space
Rn × L2(−ε, 0;Rn). Therefore, we can decompose P̃t as

P̃t =

[
Pt Q̃∗t
Q̃t G̃t

]
,

assuming that Q̃t and G̃t are linear integral operators from Rn and L2(−ε, 0;Rn) to
L2(−ε, 0;Rn), respectively. Let Qt,θ and Gt,θ,τ be respective kernels, that is,

[Q̃tx]θ = Qt,θx, −ε ≤ θ ≤ 0, t ≥ 0, x ∈ Rn,
and

[G̃th]θ =

∫ 0

−ε
Gt,θ,τhτ dτ, −ε ≤ θ ≤ 0, t ≥ 0, h ∈ L2(−ε, 0;Rn).

We will deduce the equations for P , Q and G from (14) in the following way.
At first, note that

Ã∗ =

[
A∗ 0
Γ∗ d/dθ

]
,

where Γ∗ is understood as∫ 0

−ε
〈Γ∗x, hθ〉 dθ = 〈x, h0〉, x ∈ Rn, h ∈ D(−d/dθ).
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Take arbitrary (x, g), (y, h) ∈ Rn ×D(d/dθ), noticing that g0 = h0 = 0. Writing (14) for

the component G̃ of P̃ , we obtain

G̃′t = (−d/dθ)G̃t + G̃t(d/dθ) + ΨtΨ
∗
t − (Q̃tC

∗ + ΨtE)(CQ̃∗t + E∗Ψ∗t ),

or in scalar product

〈G̃′tg, h〉 =〈G̃tg, (d/dθ)h〉+ 〈G̃t(d/dθ)g, h〉+ 〈ΨtΨ
∗
t g, h〉

− 〈(Q̃tC∗ + ΨtE)(CQ̃∗t + E∗Ψ∗t )g, h〉.

Here, the terms can be evaluated in the following way:

〈G̃′tg, h〉 =

∫ 0

−ε

∫ 0

−ε

〈
∂

∂t
Gt,θ,τgτ , hθ

〉
dτdθ,

〈G̃tg, (d/dθ)h〉 =

∫ 0

−ε

∫ 0

−ε
〈Gt,θ,τgτ , h′θ〉 dτdθ

=−
∫ 0

−ε
〈Gt,−ε,τgτ , h−ε〉 dτ −

∫ 0

−ε

∫ 0

−ε

〈
∂

∂θ
Gt,θ,τgτ , hθ

〉
dτdθ,

〈G̃t(d/dθ)g, h〉 =

∫ 0

−ε

∫ 0

−ε
〈Gt,θ,τg′τ , hθ〉 dτdθ

=−
∫ 0

−ε
〈Gt,θ,−εg−ε, hθ〉 dθ −

∫ 0

−ε

∫ 0

−ε

〈
∂

∂τ
Gt,θ,τgτ , hθ

〉
dτdθ,

〈ΨtΨ
∗
t g, h〉 =

∫ 0

−ε

∫ 0

−ε
〈Φt−θ,θΦ

∗
t−τ,τgτ , hθ〉 dτdθ,

〈W̃tW̃
∗
t g, h〉 =

∫ 0

−ε

∫ 0

−ε
〈Wt,θW

∗
t,τgτ , hθ〉 dτdθ,

where for brevity we denote

W̃t = Q̃tC
∗ + ΨtE and Wt,θ = Qt,θC

∗ + Φt−θ,θE.

Hence,

0 =

∫ 0

−ε

∫ 0

−ε

〈(
∂

∂t
+

∂

∂θ
+

∂

∂τ

)
Gt,θ,τgθ, hτ

〉
dτdθ

+

∫ 0

−ε

∫ 0

−ε
〈(Wt,θW

∗
t,τ − Φt−θ,θΦ

∗
t−τ,τ )gθ, hτ 〉 dτdθ

+

∫ 0

−ε
〈Gt,−ε,τgτ , h−ε〉 dτ +

∫ 0

−ε
〈Gt,θ,−εg−ε, hθ〉 dθ.

Since g, h ∈ D(d/dθ), where D(d/dθ) is dense in L2(−ε, 0;Rn), we can extend the last
equality to all four-tuples (g−ε, g, h−ε, h) ∈ Rn×L2(−ε, 0;Rn)×Rn×L2(−ε, 0;Rn), treating
g−ε and h−ε independently on g and h. This implies that G satisfies (7) with the zero initial
and boundary conditions. Additionally, we also obtain that Gt, · ,θ, Gt,θ, · ∈ D(−d/dθ).

In the same way, from (14), we derive the equation for Q̃ as

Q̃′t = (−d/dθ)Q̃t + Q̃tA
∗ + G̃∗tΓ

∗ − (Q̃tC
∗ + ΨtE)CPt,

or in scalar product

〈Q̃′tx, h〉 = 〈Q̃tx, (d/dθ)h〉+ 〈Q̃tA∗x, h〉+ 〈Γ∗x, G̃th〉 − 〈(Q̃tC∗ + ΨtE)CPtx, h〉.
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Here,

〈Q̃′tx, h〉 =

∫ 0

−ε

〈
∂

∂t
Qt,θx, hθ

〉
dθ,

〈Q̃tx, (d/dθ)h〉 =

∫ 0

−ε
〈Qt,θx, h′θ〉 dθ

=− 〈Qt,−εx, h−ε〉 −
∫ 0

−ε

〈
∂

∂θ
Qt,θx, hθ

〉
dθ,

〈Q̃tA∗x, h〉 =

∫ 0

−ε
〈Qt,θA∗x, hθ〉 dθ,

〈Γ∗x, G̃th〉 = 〈x,ΓG̃th〉 =

∫ 0

−ε
〈x,Gt,0,τhτ 〉 dτ =

∫ 0

−ε
〈G∗t,0,θx, hθ〉 dθ

=

∫ 0

−ε
〈Gt,θ,0x, hθ〉 dθ,

〈W̃tCPtx, h〉 =

∫ 0

−ε
〈Wt,θCPtx, hθ〉 dθ.

Hence,

0 =

∫ 0

−ε

〈((
∂

∂t
+

∂

∂θ

)
Qt,θ −Qt,θA∗ −Gt,θ,0

)
x, hθ

〉
dθ

+

∫ 0

−ε
〈Wt,θCPtx, hθ〉 dθ + 〈Qt,−εx, h−ε〉.

In a similar way we can extend the last equality to all triples (x, h−ε, h) ∈ Rn × Rn ×
L2(−ε, 0;Rn), treating h−ε independently on h. This implies that Q satisfies (6) with the
zero initial and boundary conditions. Additionally, we obtain Qt, · , Q

∗
t, · ∈ D(−d/dθ).

Next, we concentrate on the equation for P . From Eq. (14), we deduce

P ′t = APt + PtA
∗ + Q̃∗tΓ

∗ + ΓQ̃t − PtC∗CPt,

or in scalar product

〈P ′tx, y〉 = 〈Ptx,A∗y〉+ 〈PtA∗x, y〉+ 〈Q̃∗tΓ∗x, y〉+ 〈Q̃tx,Γ∗y〉 − 〈PtC∗CPtx, y〉.

Here,

[Q̃tx]θ = Qt,θx, −ε ≤ θ ≤ 0,

implying

〈Q̃tx,Γ∗y〉 = 〈ΓQ̃tx, y〉 = 〈Qt,0x, y〉.
Similarly,

〈Q̃∗tΓ∗x, y〉 = 〈Q∗t,0x, y〉.
Then

〈(P ′t −APt − PtA∗ −Q∗t,0 −Qt,0 + PtC
∗CPt)x, y〉 = 0.

Since x, y ∈ R are arbitrary, we obtain the equation in (5) for P .
Now we consider (13). It produces two equations

dx̂t = Ax̂t dt+ Γψt dt+ PtC
∗(dzt − Cx̂t dt)

and

dψt = (−d/dθ)ψt dt+ (Q̃tC
∗ + ΨtE)(dzt − Cx̂t dt),



AGAMIRZA E. BASHIROV, KANDA ABUASSBA: INVARIANT FILTERING RESULTS ... 79

where we let ψ = φ̂. It is not difficult to see that they produce the system in (4). Finally,
the formula for the error et of estimation follows from (15). This completes the proof. �

5. Filtering: independent noises

In the case of independent noises, i.e., E = 0, Theorem 4.1 produces an exceptional
result: the filter from Theorem 4.1 becomes independent on relaxing function Φ, depends
just on the autocovariance function Λ.

Theorem 5.1. Under the conditions (F), (W) and E = 0, the best estimate process x̂
in the filtering problem for the system in (3) is uniquely determined as a solution of the
system of equations

dx̂t = (Ax̂t + ψt,0) dt+ PtC
∗(dzt − Cx̂t dt),(

∂
∂t + ∂

∂θ

)
ψt,θ dt = Qt,θC

∗(dzt − Cx̂t dt),
x̂0 = 0, ψ0,θ = ψt,−ε = 0, −ε ≤ θ ≤ 0, t > 0,

(16)

where P , Q and R are solutions of{
P ′t = APt + PtA

∗ +Qt,0 +Q∗t,0 − PtC∗CPt,
P0 = cov ξ, t > 0,

(17){ (
∂
∂t + ∂

∂θ

)
Qt,θ = Qt,θA

∗ + Λt,−θ −Rt,θ,0 −Qt,θC∗CPt,
Q0,θ = Qt,−ε = 0, −ε ≤ θ ≤ 0, t > 0,

(18)

and { (
∂
∂t + ∂

∂θ + ∂
∂τ

)
Rt,θ,τ = Qt,θC

∗CQ∗t,τ ,
R0,θ,τ = Rt,−ε,τ = Rt,θ,−ε = 0, −ε ≤ θ ≤ 0, −ε ≤ τ ≤ 0, t > 0.

(19)

Proof. Letting E = 0 in (4)–(7), we obtain (16) and (17) exactly, but the equations for Q
and G become { (

∂
∂t + ∂

∂θ

)
Qt,θ = Qt,θA

∗ +Gt,θ,0 −Qt,θC∗CPt,
Q0,θ = Qt,−ε = 0, −ε ≤ θ ≤ 0, t > 0,

(20)

and { (
∂
∂t + ∂

∂θ + ∂
∂τ

)
Gt,θ,τ = Φt−θ,θΦ

∗
t−τ,τ −Qt,θC∗CQ∗t,τ ,

G0,θ,τ = Gt,−ε,τ = Gt,θ,−ε = 0, −ε ≤ θ ≤ 0, −ε ≤ τ ≤ 0, t > 0.
(21)

The solution of Eq. (21) has the representation

Gt,θ,τ =

∫ t

max(0,t−θ−ε,t−τ−ε)
(Φt−θ,s−t+θΦ

∗
t−τ,s−t+τ −Qs,s−t+θC∗CQ∗s,s−t+τ ) ds.

Then

Gt,θ,0 =

∫ t

max(0,t−θ−ε)
(Φt−θ,s−t+θΦ

∗
t,s−t −Qs,s−t+θC∗CQ∗s,s−t) ds.

Using Λt,−θ = cov (ϕt−θ, ϕt), one can derive

Λt,−θ =

∫ t

max(0,t−θ−ε)
Φt−θ,s−t+θΦ

∗
t,s−t ds.

This implies

Gt,θ,0 = Λt,−θ −
∫ t

max(0,t−θ−ε)
Qs,s−t+θC

∗CQ∗s,s−t ds.

Therefore, we can introduce a function R as a solution of (19) and write (20) in the form
of (18). This proves the theorem. �
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6. Application to LQG problem.

Application of Theorem 5.1 to LQG problem gives an immediate result. Add to the
signal system in (3) a control action and consider LQG problem of minimizing the cost
functional

J(u) = E

(
〈xT , HxT 〉+

∫ T

0
(〈xt,Mxt〉+ 〈ut, Nut〉) dt

)
(22)

over the partially observable system{
x′t = Axt +But + ϕt, x0 = ξ, t > 0,
dzt = Cxt dt+ dvt, z0 = 0, t > 0,

(23)

where additionally to the conditions of Theorem 5.1 we assume:

(C): T > 0, B ∈ Rn×l, H,M ∈ Rn×n, N ∈ Rl×l, H ≥ 0, M ≥ 0 and N > 0.

Theorem 6.1. Under the conditions (F), (W), (C) and E = 0, the optimal control u∗ in
the LQG problem (22)–(23) is uniquely determined by

u∗t = −G−1B∗
(
Vtx̂
∗
t +

∫ min(T,t+ε)

t
Y∗s,tVsψt,t−s ds

)
, (24)

where x̂∗t is the best estimate of the state x∗t , defined by (22) and corresponding to the
optimal control u = u∗, ψ is the associated process, both satisfying

dx̂∗t = (Ax̂∗t + ψt,0 +Bu∗t ) dt+ PtC
∗(dz∗t − Cx̂∗t dt),(

∂
∂t + ∂

∂θ

)
ψt,θ dt = Qt,θC

∗(dz∗t − Cx̂∗t dt),
x̂∗0 = 0, ψ0,θ = ψt,−ε = 0, −ε ≤ θ ≤ 0, 0 < t ≤ T,

(25)

z∗ is the observation process, defined by (23) and corresponding to the optimal control
u = u∗, V is a solution of the Riccati equation{

V ′t + VtA+A∗Vt +M − VtBN−1B∗Vt = 0,
VT = H, 0 ≤ t < T,

(26)

P , Q and R are solutions of (17)–(19), and Y is a bounded perturbation of the transition
matrix eAt of A by −BN−1B∗Vt.

Proof. This theorem is proved in Bashirov [33], pp. 224–225, for relaxing functions Φ with
values in W 1,2(−ε, 0;Rn×k) and satisfying Φt,−ε = 0. Equations (20) and (21) were derived
for Q and G. Taking into consideration Theorem 5.1 and transformation of equations (20)–
(21) into (18)–(19), given in the proof of Theorem 5.1, we obtain this result valid in the
form of Theorem 6.1. �

Similar to Theorem 5.1, this theorem presents the optimal control law in the LQG
problem independently on ϕ ∈ WL2(Λ), just dependent on Λ. Another notable feature of
this theorem is that it does not fall into the frame of classical separation principle since
the observations zs, 0 ≤ s ≤ t, are dependent on xτ for t ≤ τ ≤ t+ε, that is, the system in
(23) is a noncausal system. Indeed, equation (24) falls into extended separation principle.

7. Conclusion

In this paper linear filtering and optimal control problems are handled in the case when
the signal is corrupted by a wide band noise, the observations by a white noise, and the
cost functional is quadratic. Three theorems are proved.

Theorems 5.1 and 6.1 define how the optimal filter and optimal control can be designed
on the basis of the system and cost functional parameters A, B, C, M , N , H and the
autocovariance function Λ of the wide band noise ϕ. They provide a complete set of
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equations for them. Just ordinary differential equations in the case of classic theory are
modified to systems of equations which include ordinary and partial differential equations.

To point out another implicit advantage from theorems of this paper, assume that a
study of some real process requires estimation of a linear system disturbed by wide band
or delayed white noise. To make the model simpler replace the noise by a white noise
without any delay, which is more or less close to the noise of the system. Then the error
of estimation by white noise Kalman filter will deviate from the real error, and one of the
reasons for this deviation is the replacement of the noise processes. Therefore, the error of
estimation of the filter from Theorems 5.1 and 6.1 is more adequate (precise) than the one
of classic Kalman filter. This does not means that the error from these theorems is always
smaller than the error of the classic Kalman filter. If it is smaller, this is a consequence
from the improvement of adequacy of the model. On the contrary, if it is greater, then
this can be explained as an inappropriate replacement of the wide band noise by white
noise. This issue should be of great importance for tracking of satellites, in particular,
for getting preciseness of GPS. In this way, it is remarkable numerical calculations from
Bashirov et al [35], where it was detected that a replacement of wide band noise (in the
form of pointwise delayed white noise) by a white noise produces a lost of preciseness
which is asymptotically (as time increases) nonrecoverable.
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[23] Bashirov, A. E., Etikan, H., Şemi, N., (2010), Partial controllability of stochastic linear systems,
International Journal of Control, 83, pp. 2564-2572.
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