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G-CALCULUS

K. BORUAH1, B. HAZARIKA1∗, §

Abstract. Based on M. Grossman in [13] and Grossman an Katz [12], in this paper
we prove geometric Rolle’s theorem, Taylor’s theorem, Mean value theorem. Also, we
discuss about the properties and applications of bigeometric calculus.
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1. Introduction

Non-Newtonian calculus also called as multiplicative calculus, introduced by Grossman
and Katz [12]. The operations of multiplicative calculus are called as multiplicative deriva-
tive and multiplicative integral. We refer to Grossman and Katz [12], Stanley [20], Camp-
bell [10], Grossman [13, 14], Jane Grossman [15, 16] for different types of Non-Newtonian
calculus and its applications. Bashirov et al. [3] gaven the complete mathematical de-
scription of multiplicative calculus. An extension of multiplicative calculus to functions
of complex variables found in [1, 2, 21, 22, 23]. The generalized Runge-Kutta method

with respect to non-Newtonian calculus studied by Kadak and Özlük [17]. Çakmak and
Başar [7] constructed the field C∗ of ∗-complex numbers. Çakmak and Başar [8], the
line and double integrals in the sense of ∗-calculus are given. Moreover, in the sense of
∗-calculus, the fundamental theorems of calculus for line integrals and double integrals are
stated with some applications. Çakmak and Başar [9], characterized matrix transforma-
tions in sequence spaces based on multiplicative calculus. Riza and Aktöre [18] discussed
Runge-Kutta method in term of geometric multiplicative calculus.

Bigeometric-calculus is one of the family of non-Newton calculus. It provides differ-
entiation and integration tools based on multiplication instead of addition. Generally, in
growth related problems, price elasticity, numerical approximations problems Bigeometric-
calculus can be advocated instead of a traditional Newtonian one. We refer [4, 6] to know
basics of α− generator and geometric arithmetic (R(G),⊕,	,�,�).

Türkmen and Başar [22] defined the sets of geometric integers, geometric real numbers
and geometric complex numbers Z(G),R(G) and C(G), respectively, as follows:

Z(G) = {ex : x ∈ Z}, R(G) = {ex : x ∈ R} = R+\{0},
C(G) = {ez : z ∈ C} = C\{0}.
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If we take extended real number line, then R(G) = [0,∞].

Remark 1.1. (R(G),⊕,�) is a field with geometric zero 1 and geometric identity e. But
(C(G),⊕,�) is not a field, however, geometric binary operation � is not associative in

C(G). For, we take x = e1/4, y = e4 and z = e(1+iπ/2) = ie. Then (x � y) � z = e � z =
z = ie but x� (y � z) = x� e4 = e.

Geometric positive real numbers and negative real numbers are defined respectively as

R+(G) = {x ∈ R(G) : x > 1} and R−(G) = {x ∈ R(G) : x < 1}.

1.1. Useful relations between geometric and ordinary arithmetic operations.
For all x, y ∈ R(G)

• x⊕ y = xy
• x	 y = x/y
• x� y = xln y = ylnx

• x� y or x
y G = x

1
ln y , y 6= 1

• x2G = x� x = xlnx

• xpG = xlnp−1 x

•
√
x
G

= e(lnx)
1
2

• x−1G = e
1

ln x

• x� e = x and x⊕ 1 = x
• en � x = xn

•

|x|G =


x, if x > 1

1, if x = 1
1
x , if 0 < x < 1

•
√
x2G

G
= |x|G

• |ey|G = e|y|

• |x� y|G = |x|G � |y|G

• |x⊕ y|G ≤ |x|G ⊕ |y|G

• |x� y|G = |x|G � |y|G

• |x	 y|G ≥ |x|G 	 |y|G
• 0G 	 1G � (x	 y) = y 	 x.

2. Main Results

2.1. Geometric Real Number Line. Consecutive geometric integers are geometrically
equidistant as en+1 	 en = en+1−n = e. Since (R(G),⊕,�) is a complete field with geo-
metric identity e and geometric zero 1, so, we can consider a new number line with respect
to geometric arithmetic which will be called geometric real number line.

2.2. Geometric Co-ordinate System. We consider two mutually perpendicular geo-
metric real number lines which intersect each other at (1, 1) as shown in FIGURE 1 to
form geometric co-ordinate system.

2.3. Geometric Factorial. In [4], we defined geometric factorial notation !G as

n!G = en � en−1 � en−2 � · · · � e2 � e = en!.

2.4. Geometric Pythagorean Triplets. Three numbers x, y, z ∈ R(G) are said to be
formed a geometric Pythagorean triplet(GPT) if

x2G = y2G ⊕ z2G . (1)

Or, equivalently

xlnx = yln y.zln z or (lnx)2 = (ln y)2 + (ln z)2.

Thus, if {x, y, z} ⊂ R(G) is a GPT, then {lnx, ln y, ln z} forms an ordinary Pythagorean
triplet(OPT). Conversely, if {a, b, c} is a positive OPT, then {ea, eb, ec} forms a GPT.
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Figure 1. Geometric Co-ordinate System

Definition 2.1 (Geometric Right Triangle). In the geometric co-ordinate system, if geo-
metric lengths of the three sides of a triangle represent a GPT, then the triangle will be
called geometric right triangle.

It is to be noted that a GPT does not form a triangle in ordinary sense.

Definition 2.2. Area of geometric right triangle = ln
(√

base � altitude
)
.

2.5. Geometric Trigonometric Ratios. Let θ be an acute angle of a geometric right
triangle and length of the sides be h, p, b ∈ R(G) with usual meaning. Then we define

sing θ =
p

h
G = p

1
lnh cscg θ =

h

p
G = h

1
ln p

cosg θ =
b

h
G = b

1
lnh secg θ =

h

b
G = h

1
ln b

tang θ =
p

b
G = p

1
ln b cotg θ =

b

p
G = b

1
ln p

Figure 2. Geometric Right Triangle

2.6. Relation between geometric and ordinary trigonometry. Since n unit length
in ordinary coordinate system is equal to en unit in geometric coordinate system. So
properties of the geometric right triangle having sides h, p, b ∈ R(G) will be same to the
ordinary right triangle having sides h′ = ln(h), p′ = ln(p) and b′ = ln(b), respectively. An
example is given in FIGURE 2. Here, area of the both the triangles = 6 square unit,
∠A = 36.87◦,∠B = 53.13◦ and ∠C = 90◦.

It can be proved that sing θ = esin θ, cosg θ = ecos θ, tang θ = etan θ and sing θ
cosg θ G = tang θ.
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2.7. Geometric Trigonometric Identities. We can verify that

singA� cscgA = e, sing2G A⊕ cosg2G A = e

cosA� secA = e, tang2G A⊕ e = secg2G A

tangA� cotgA = e, cotg2G A⊕ e = cscg2G A.

sing(A+B) = singA� cosgB ⊕ cosgA� singB.

cosg(A+B) = cosgA� cosgB 	 singA� singB.

2.8. G-Limit. According to Grossman and Katz [12], geometric limit of a positive valued
function defined in a positive interval is same to the ordinary limit. Here, we define G-limit
of a function with the help of geometric arithmetic as follows:

A function f, which is positive in a given positive interval, is said to tend to the limit
l > 0 as x tends to a ∈ R, if, corresponding to any arbitrarily chosen number ε > 1,
however small(but greater than 1), there exists a positive number δ > 1, such that

1 < |f(x)	 l|G < ε

for all values of x for which 1 < |x	 a|G < δ. We write Glim
x→a

f(x) = l or f(x)
G−→ l. Here,

|x	 a|G < δ ⇒ a

δ
< x < aδ and |f(x)	 l|G < ε⇒ l

ε
< f(x) < lε.

A function f is said to tend to limit l as x tends to a from the left, if for each ε > 1
(however small), there exists δ > 1 such that |f(x)	 l|G < ε when a/δ < x < a. In symbols

Glim
x→a−

f(x) = l or f(a− 1) = l.

Similarly, a function f is said to tend to limit l as x tends to a from the right, if for each
ε > 1, there exists δ > 1 such that |f(x)	 l|G < ε when a < x < aδ. In symbols

Glim
x→a+

f(x) = l or f(a+ 1) = l.

2.9. G-Continuity. A function f is said to be G-continuous at x = a if

(i) f(a) i.e., the value of f(x) at x = a, is a definite number,

(ii) the G-limit of the function f(x) as x
G−→ a exists and is equal to f(a).

Alternatively, a function f is said to be G-continuous at x = a, if for arbitrarily chosen
ε > 1, however small, there exists a number δ > 1 such that |f(x)	 f(a)|G < ε for all
values of x for which, |x	 a|G < δ.

It is seen that a function f is G-continuous at x = a if limx→a
f(x)
f(a) = 1.

3. Basic Properties of G-Calculus

3.1. G-Derivative and its Interpretation. In [5] we defined the G-differentiation of
f(x) as

dGf

dxG
= fG(x) = Glim

h→1

f(x⊕ h)	 f(x)

h
G = lim

h→1

[
f(hx)

f(x)

] 1
lnh

for h ∈ R(G). (2)

The G-derivative of a positive valued function f at a point c belonging to a positive interval
can be defined as

fG(c) = Glim
x→c

f(x)	 f(c)

x	 c
G = lim

x→c

[
f(x)

f(c)

] 1
ln(xc )

. (3)
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Equation (3) is the bigeometric slope defined by Grossman in [13]. Depending on Grossman
[13], Grossman and Katz [14], different researchers have been developing the bigeometric
calculus taking arithmetic increment to the independent variable. But we are trying to
develop their work with the help of geometric increments. So, to remove the confusion
among the readers, instead of the phase “bigeometric calculus” the term “G-calculus” is
used throughout the paper.

From (3), it is clear that G-derivative exists if both f(x) and f(c) takes same sign and
at the same time x and c takes same sign.
x+h is arithmetic change and x⊕h = xh is geometric change to the independent variable

x. Now, as x changes to xh, value of the function changes from f(x) to f(x⊕ h) = f(xh).
Geometric changes to x and y are given by

∆x = x⊕ h	 x =
xh

x
= h and ∆y = f(x⊕ h)	 f(x) =

f(xh)

f(x)
.

In case of ordinary derivative ∆y
∆x = f(x+h)−f(x)

h gives the average additive change in f(x)
per unit change in x over the interval [x, x+ ∆x] = [x, x+ h]. Here in G-calculus,

∆y

∆x
G = (∆y)

1
ln(∆x) =

[
f(xh)

f(x)

] 1
lnh

gives the average geometric change in f(x) per unit geometric change in x over the interval
[x, xh]. Now taking the limit as ∆x(i.e. h) tends to 1, we get

dGy

dGx
= Glim

∆x→1

∆y

∆x
G = Glim

∆x→1
(∆y)

1
ln(∆x) = lim

h→1

[
f(xh)

f(x)

] 1
lnh

.

It is to be noted that G-derivative exists if f(x) 6= 0 and f(x), f(hx) are both positive or
both negative.
y = m � x ⊕ c i.e. y = c.xlnm represents a straight line with slope m in geometric

co-ordinate system as well as in log-log paper. Then, yG = m. i.e. G-derivative is the
slope of the geometric straight line.

Note: We’ll denote nth geometric derivative by f [n]. We call that left hand G-derivative
and right hand G-derivative exist at x = c if

lim
x→c−

(
f(c.h)

f(c)

) 1
ln(xc )

and lim
x→c+

(
f(c.h)

f(c)

) 1
ln(xc )

exist, respectively.

Theorem 3.1. If a function f is G-differentiable and is positive, then it is both G-
continuous and ordinary continuous.

Proposition 3.1. A continuous function f is not necessarily G-derivable.

Proof. Let us consider the function

f(x) = |x|G =


x, if x > 1

1, if x = 1
1
x , if 0 < x < 1.

Then, obviously it is continuous at x = 1. But it is not G-differentiable at x = 1 as
LfG(1) = e but RfG(1) = 1

e . �

Example 3.1. If f(x) = xnG , then fG(x) = en � x(n−1)G and f (nG) = en!.
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Remark 3.1. f(x) = xn is a polynomial of degree n in ordinary sense, but geometrically
it is a polynomial of degree one as xn = en � x. So, its G-derivative is constant.

3.2. Relation between G-derivative and ordinary derivative. By definition, G-
derivative of a positive valued function f(x) is given by

fG(x) = Glim
h→1

f(x⊕ h)	 f(x)

h
G

= lim
h→1

[
f(hx)

f(x)

] 1
lnh

, which is in 1∞ indeterminate form.

Using logarithm, to transform it to 0
0 indeterminate form and then applying L’ Hospital

rule, we can make a relation between G-derivative and ordinary derivative as follows:

fG(x) = lim
h→1

e
ln
[
f(hx)
f(x)

] 1
lnh

= lim
h→1

e
ln f(hx)−ln f(x)

lnh = e
limh→1

hxf ′(hx)
f(hx) = e

xf ′(x)
f(x) . (4)

3.3. G-derivatives of some standard functions.

• G-derivative of a constant: If f(x) = c, then fG(x) = 1
• G-derivative of ordinary product of a constant and a function:

dG

dxG
(cf(x)) = e

x
cf ′(x)
cf(x) = e

x
f ′(x)
f(x) =

dG

dxG
(f(x)) .

• G-derivative of ordinary product of two functions:

dG

dxG
(f(x).g(x)) =

dG

dxG
(f(x)) .

dG

dxG
(g(x)) . (5)

• G-derivative of quotient of two functions:

dG

dxG

(
f(x)

g(x)

)
=

dG

dxG
(f(x))

dG

dxG
(g(x))

. (6)

• G-derivative of trigonometric functions:

dG

dxG
(sinx) = ex cotx,

dG

dxG
(cotx) = e−x secx cscx

dG

dxG
(cosx) = e−x tanx,

dG

dxG
(secx) = ex tanx

dG

dxG
(tanx) = ex secx cscx,

dG

dxG
(cscx) = e−x cotx.

Theorem 3.2. If f : (a, b) :−→ R(G) is G-differentiable, then

(i) f is increasing, if fG ≥ 1.
(ii) f is decreasing, if fG ≤ 1.

Proof. Let c be an interior point of the domain [a, b] of a function f and fG(c) exists

and be positive, i.e. fG(c) > 1. Then, fG(c) is the limit of
[
f(x)
f(c)

] 1
ln(x/c)

. Then for given

ε > 1, ∃δ > 1 such that

fG(c)

ε
<

[
f(x)

f(c)

] 1
ln(x/c)

< ε.fG(c) where x ∈]c/δ, cδ[.

If ε > 1 is so chosen that ε < fG(c), then
[
f(x)
f(c)

] 1
ln(x/c)

> fG(c)
ε > 1. Then

(i) f(x)
f(c) > 1, i.e. f(x) > f(c) if x ∈]c, cδ[,
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(ii) f(x)
f(c) < 1, i.e. f(x) < f(c) if x ∈]c/δ, c[.

Thus from (i) and (ii) f(x) is increasing at x = c. Hence the function is increasing at
x = c if fG(c) > 1. Similarly, it can be proved that the function is decreasing at x = c if
fG(c) < 1. �

Theorem 3.3 (Geometric Darboux’s Theorem). If a function f is G-derivable on a closed
interval [a, b] and fG(a), fG(b) are of opposite signs (i.e. one is > 1, other is < 1) then
there exists at least one point c between a and b such that fG(c) = 0.

Proof. Let fG(a) < 1 and fG(b) > 1. Since, G-derivative exists ⇒ ordinary derivative
exists, so, f ′(a) and f ′(b) exist. Now

fG(a) < 1⇒ f ′(a) < 0 and fG(b) > 1⇒ f ′(b) > 0.

From Newtonian calculus, there exists c ∈ [a, b] s.t. f ′(c) = 0. So fG(c) = e
c
f ′(c)
f(c) = 1. �

Theorem 3.4 (Geometric Intermediate value theorem for derivatives). If a function f is
G-derivable on a closed interval [a, b] and fG(a) 6= fG(b) and k be a number lying between
fG(a) and fG(b), then ∃ at least one point c ∈]a, b[ such that fG(c) = k.

Proof. Let g(x) = f(x)
xln k . Then gG(a) = fG(a)

k and gG(b) = fG(b)
k . Since fG(a) < k < fG(b),

so fG(a)
k and fG(b)

k can not be greater than 1 at the same time. Therefore, if gG(a) > 1
then gG(b) < 1. Hence, g(x) satisfies the conditions of Darboux’s theorem. Thus, there
exists at least one point c ∈]a, b[ such that gG(c) = 1, i.e. fG(c) = k. �

Theorem 3.5 (Geometric Rolle’s Theorem). If a function f defined on [a, b] is

(i) G-continuous on [a, b],
(ii) G-derivable on ]a, b[,
(iii) f(a) = f(b),

then there exists at least one number c between a and b such that fG(c) = 1.

Proof. Since G-continuous functions are ordinary continuous and f ′(x) exists if fG(x)
exists. So, f satisfies the conditions of G ordinary Rulle’s theorem. So, there exists

c ∈]a, b[ such that f ′(c) = 0. Hence fG(c) = e
cf ′(c)
f(c) = 1. �

Theorem 3.6 (Lagrange’s Mean Value Theorem). If a function f defined on [a, b] is

(i) G-continuous on [a, b],
(ii) G-derivable on ]a, b[,

then there exists at least one c ∈]a, b[ such that

fG(c) =

[
f(b)

f(a)

] 1

ln( ba )

Proof. Let us define a function
φ(x) = xln k.f(x)

where the constant k is so determined that φ(a) = φ(b).

φ(a) = φ(b)⇒ aln k.f(a) = bln k.f(b)⇒
[a
b

]ln k
=

f(b)

f(a).

Using natural logarithm to both sides we get

k =

[
f(b)

f(a)

] 1
ln(a

b
)

=

[
f(b)

f(a)

] −1

ln( ba )

.
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Now, φ(x), the product of two G-derivable and G-continuous functions, is itself

(i) G-continuous on [a, b],
(ii) G-derivable on ]a, b[, and
(iii) φ(a) = φ(b).

Therefore by Geometric Rolle’s theorem ∃c ∈]a, b[ such that φG(c) = 1. But

φG(x) =
dG

dxG
(xln k).

dG

dxG
(f(x)) = k.fG(x).

⇒ 1 = φG(c) = k.fG(c)⇒ fG(c) =
1

k
=

[
f(b)

f(a)

] 1

ln( ba )

.

�

Note: If we replace b by ah, where h > 1, then c ∈]a, b[ may be taken as a.hln θ for
1 < θ < e. Thus

fG(a.hln θ) =

[
f(ah)

f(a)

] 1

ln(aha )

⇒ f(ah) = f(a).
[
fG(a.hln θ)

]lnh
, where 1 < θ < e.

Now we deduce geometric Taylor’s expansion for f(ah) with the help of Geometric Rolle’s
Theorem. Firstly, we have to find G-derivative of two important functions as follows.

Lemma 3.1. If y =
[
f [n](x)

] lnn(ahx )

n! then yG =
[f [n+1](x)]

lnn(ahx )

n!

[f [n](x)]
ln(n−1)(ahx )

(n−1)!

Proof. Taking logarithm to both sides of y and differentiating, we get

⇒ y′

y
=

d
dx

(
f [n](x)

)
f [n](x)

.
lnn(ahx )

n!
+ ln f [n](x).

lnn−1)(ahx )

(n− 1)!
.
−ah
x2

ah
x

⇒ e
x y
′
y = e

x
f ′[n](x)

f [n](x)
.
lnn(ahx )

n! .e
x ln f [n](x).

ln(n−1)(ahx )

(n−1)!
.−1
x

⇒ yG =
[
f [n+1](x)

] lnn(ahx )

n!
.
[
f [n](x)

]− ln(n−1)(ahx )

(n−1)!
=

[
f [n+1](x)

] lnn(ahx )

n![
f [n](x)

] ln(n−1)(ahx )

(n−1)!

.

�

Lemma 3.2. If y = klnp(ah
x

) where k is a constant and p is a positive integer, then

yG = k−p ln(p−1)(ah
x

).

Proof. Taking logarithm on the both sides, and then differentiating we get the result. �

Theorem 3.7 (Geometric Taylor’s Theorem). A function f defined on [a, ah] is such that

(i) the (n− 1)th G-derivative of f, i.e. f [n−1] is G-continuous on [a, ah], and

(ii) the nth G-derivative, f [n] exists on [a, ah]

then there exists at least one number θ between 1 and e such that

f(ah) = f(a).
[
f [1](a)

]lnh
.
[
f [2](a)

] ln2 h
2!

.
[
f [3](a)

] ln3 h
3!

...

...
[
f [n−1](a)

] lnn−1 h
(n−1)!

.
[
f [n](a.hln θ)

] (1−ln θ)(n−p) lnn h
(n−1)!p

(7)
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Proof. Condition (i) in the statement implies that f [1], f [2], f [3], ..., f [n−1] exists and are
continuous on [a, ah]. Let us consider the function

φ(x) = f(x).
[
f [1](x)

]ln(ah
x

)
.
[
f [2](x)

] ln2(ahx )

2!
....
[
f [n−1](x)

] lnn−1(ahx )

(n−1)!
.Alnp(ah

x
) (8)

where A is a constant to be determined such that φ(ah) = φ(a).
But, putting x = ah and x = a in (8), respectively, we get

φ(ah) = f(ah), and

φ(a) = f(a).
[
f [1](a)

]lnh
.
[
f [2](a)

] ln2 h
2!

...
[
f [n−1](a)

] lnn−1 h
(n−1)!

.Alnp h.

∴ f(ah) = f(a).
[
f [1](a)

]lnh
.
[
f [2](a)

] ln2 h
2!

...
[
f [n−1](a)

] lnn−1 h
(n−1)!

.Alnp h. (9)

Now

(i) f, f [1], f [2], f [3], ..., f [n−1] all being continuous on [a, ah], the function φ(x) is con-
tinuous on [a, ah];

(ii) the functions f, f [1], f [2], f [3], ..., f [n−1] and lnr(ahx ) for all r being derivable in
]a, ah[, the function φ(x) is derivable in ]a, ah[;

(iii) φ(ah) = φ(a).

Hence, φ(x) satisfies all the conditions of Rolle’s Theorem and hence there exists one real
number θ ∈]1, e[ such that φG(a.hln θ) = 1.

Now, using Lemma 3.1 and Lemma 3.2

φG(x) = f [1](x).

[
f [2](x)

]ln(ah
x

)

f [1](x)
.

[
f [3](x)

] ln2(ahx )

2![
f [2](x)

]ln(ah
x

)
....

[
f [n](x)

] ln(n−1)(ahx )

(n−1)![
f [n−1](x)

] ln(n−2)(ahx )

(n−2)!

.A−p ln(p−1)(ah
x

)

which gives

A =
[
f [n](a.hln θ)

] (1−ln θ)(n−p) ln(n−p) h
(n−1)!p

.

Now substituting the value of A in (9), we get

f(ah) = f(a).
[
f [1](a)

]lnh
...
[
f [n−1](a)

] lnn−1 h
(n−1)!

.
[
f [n](a.hln θ)

] (1−ln θ)(n−p) lnn h
(n−1)!p

. (10)

�

3.4. Geometric Taylor’s Series. In (10), the term Rn =
[
f [n](a.hln θ)

] (1−ln θ)(n−p) lnn h
(n−1)!p

is called Taylor’s remainder after n terms. Since, 0 < 1 − ln θ < 1 as 1 < θ < e, so,
(1− ln θ)n−p → 0 as n→∞. Therefore, if f possesses G-derivative of every order in [a, ah]
then Rn → 1 as n→∞. Then Taylor’s expansion becomes

f(ah) = f(a).
[
f [1](a)

]lnh
...
[
f [n](a)

] lnn h
n!

... = Π∞n=0

[
f [n](a)

] lnn h
n!

. (11)

This expression can be written in terms of geometric operations as

f(a⊕ h) = f(a)⊕ h� f [1](a)⊕ h2G

2!G
G�f [2](a)⊕ ... =

∞

G

∑
n=0

hnG

n!G
G�f [n](a), (12)
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where hnG = hln(n−1) h. The equivalent expressions (11) and (12) will be called respectively
as Taylor’s product and Geometric Taylor’s series.

If x ∈ [a, ah] then it also satisfies the conditions in the interval [a, x]. Then replacing
ah by x or h by x/a in (11), we get another form of Taylor’s product as follows:

f(x) = f(a).
[
f [1](a)

]ln(x
a

)
.
[
f [2](a)

] ln2(xa )

2!
...
[
f [n](a)

] lnn(xa )

n!
... = Π∞n=0

[
f [n](a)

] lnn(xa )

n!
.

(13)

4. Some applications of G-calculus

4.1. Expansion of some useful functions in Taylor’s product. (i). With the help
of geometric Taylor’s series, we can express different functions as a product. For example

ex = e.elnx.e
ln2 x

2! .e
ln3 x

3! ... = e1+lnx+ ln2 x
2!

+ ln3 x
3!

+...

(ii). G-calculus gives better graphical and numerical approximations of functions than
ordinary calculus. For, let f(x) = sin(x). In the FIGURE 3, we have given a comparison
of linear approximation and exponential approximation respectively at x = π

6 .
By ordinary Taylor’s series, first order linear approximation is given by

L(x) = f(
π

6
) + (x− π

6
)f ′(

π

6
) = sin(

π

6
) + (x− π

6
) cos(

π

6
) =

1

2
+ (x− π

6
)

√
3

2
.

By geometric Taylor’s series, first order exponential approximation is given by

E(x) = f(
π

6
).
[
f [1](

π

6
)
]ln
(

x
π/6

)
= sin(

π

6
).
[
e
π
6

cot(π
6

)
]ln( 6x

π )
=

1

2
.
[
e

π
2
√

3

]ln( 6x
π )
.

-1

0

1

2

-2 -1 0 1 2 3 4 5

sin(x) L(x) E(x)

Figure 3. Exponential Approximation

From the FIGURE 3, it is clear that geometric Taylor’s series gives better approximated
value of the function f(x) = sin(x) at x = π

6 than Taylor’s approximation given by Michael
Coco in [11] with the help of multiplicative derivative.

(iii). G-derivative gives total growth of a growth function. For, let y = a.bx, where
a =initial amount> 0, b = growth(or decay) factor, x =time and y =total amount after

time period x. Then, d
Gy
dxG

= bx, which is the total growth or total decay according to b > 1
or 0 < b < 1 respectively.



104 TWMS J. APP. ENG. MATH. V.8, N.1, 2018

(iv). It is easy to find ordinary derivative of complicated product or quotient functions

with the help of G-derivative. For let, f(x) = e−1/x2

xn sinx . Then

fG(x) =
dG

dxG
(e−1/x2

)
dG

dxG
(xn). d

G

dxG
(sinx)

=
e2/x2

en.ex cotx
= e

2
x2−n−x cotx

Therefore ordinary derivative is given by

f ′(x) =
f(x) ln (fG(x))

x
=

e−1/x2

xn+1 sinx

(
2

x2
− n− x cotx

)
.

(v). Price Elasticity: With the aid of G-derivative, we can find price elasticity to predict
the impact of price changes on unit sales and to guide the firms profit-maximizing pricing
decisions. According to [19, page no. 83], the price elasticity of demand is the ratio of
the percentage change in quantity and the percentage change in the goods price, all other
factors held constant. If x and y represents price and quantity respectively, then the price
elasticity Ep is given by

Ep =
% change in y

% change in x
=

∆y/y

∆x/x
= x

∆y
∆x

y

If price change is very small to the initially considered price, then making ∆x→ 0, we get

Ep = x
y′

y
= ln

(
e
xy′
y

)
= ln(y[1]).

Resiliency = e(elasticity) = eEp = y[1].

5. Conclusion

Bigeometric calculus is one of the most actively discussed Non-Newtonian Calculus hav-
ing variety of applications. Some of such applications and advantages are discussed in our
papers [4, 5]. Seeing its importance, here we discussed different properties of bigeometric
calculus using geometric increments to the independent variable. We have formulated
basic identities which can be expressed in terms of geometric arithmetic independently.
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[21] S. Tekin, F. Başar, Certain Sequence spaces over the non-Newtonian complex field, Abstr. Appl. Anal.

2013(2013). Article ID 739319, 11 pages.
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