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STREAMLINE UPWIND/PETROV GALERKIN SOLUTION OF

OPTIMAL CONTROL PROBLEMS GOVERNED BY TIME

DEPENDENT DIFFUSION-CONVECTION-REACTION EQUATIONS

T. AKMAN1, B. KARASÖZEN2, Z. KANAR-SEYMEN2, §

Abstract. The streamline upwind/Petrov Galerkin (SUPG) finite element method is
studied for distributed optimal control problems governed by unsteady diffusion-convection-
reaction equations with control constraints. We derive stability and convergence esti-
mates for fully-discrete state, adjoint and control and discuss the choice of the stabiliza-
tion parameter by applying backward Euler method in time. We show that by balancing
the error terms in the convection dominated regime, optimal convergence rates can be
obtained. The numerical results confirm the theoretically observed convergence rates.

Keywords: optimal control problems, unsteady diffusion-convection-reaction equations,
finite element elements, a priori error estimates.
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1. Introduction

Optimal control problems (OCPs) governed by diffusion-convection-reaction equations
arise in environmental control problems, like air and water pollution, optimal control of
fluid flow, steel formation and in many other industrial applications. It is well known
that the standard Galerkin finite element discretization causes nonphysical oscillations in
the solution when convection dominates. Stable and accurate numerical solutions can be
achieved by various effective stabilization techniques such as the streamline upwind/Petrov
Galerkin (SUPG) finite element method [6], the local projection stabilization [3], the edge
stabilization [11] and the symmetric stabilization [4].

In the recent years, most of the research is concentrated on parabolic OCPs. There are
few publications dealing with the OCPs governed by non-stationary diffusion-convection-
reaction equations. For example, the local discontinuous Galerkin (dG) approximation and
the characteristic finite element solution of the control constraint OCP are discussed in [10,
17], respectively. The symmetric interior penalty Galerkin method with backward Euler
time discretization is studied in [1]. SUPG discretization of a time-dependent diffusion-
convection-reaction equation and a priori error analysis are given in [12].
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The choice of the stabilization parameter for time-dependent diffusion-convection-reaction
equation is discussed in [12] for SUPG discretization in space, backward Euler and Crank-
Nicolson method in time. When the stabilization parameter is chosen proportional to the
mesh size h, i.e. τ = O(h), for all cells, the discrete solution converges for the time-
continuous case. When discretization is performed first in time, then the stabilization
parameter can be chosen proportional to the time step k. However, this leads to large
spurious oscillations. When the time and space grids are comparable, i.e. k ∼ h, then
the stabilization parameter can be chosen as for the steady-state case, whereas the spatial
and temporal errors have to be balanced.

Our work is motivated by the study [12] where the SUPG-backward Euler discretization
is studied for a single parabolic partial differential equation (PDE). We have discretized
the OCP using SUPG in space and backward Euler method in time by extending the error
analysis for evolutionary convection-diffusion-reaction equations provided in [12] to OCPs
governed by time-dependent convection-diffusion-reaction equations. According to [9, 10],
the characteristic finite element method combined with backward Euler discretization leads
to the first order of convergence with the choice of h = k. Here, we choose the stabilization
parameter depending on the length of the time step to balance the error terms for the
convection-dominated regime. It turns out that the SUPG improves the convergence rates
up to the order O(h4/3) with k ∼= h4/3 and the oscillations in the solutions disappear. The
theoretically observed convergence rates are confirmed by the numerical results.

The rest of the paper is organized as follows. In Section 2, we define the model problem
and derive the optimality system. In Section 3, we present the SUPG finite element method
and state the semi-discrete optimality system. In Section 4, stability and convergence
estimates for the fully discrete optimality system are presented and the choice of the
stabilization parameter is discussed. In Section 5, numerical results are presented for
different choices of stabilization parameters. The paper ends with some conclusions.

2. The Optimal Control Problem

We adopt the standard notations for Sobolev spaces on computational domains and their
norms. Ω and ΩU are bounded convex polygonal domains in R2 with Lipschitz boundaries
∂Ω and ∂ΩU , respectively. We consider the following distributed optimal control problem
governed by the unsteady diffusion-convection-reaction equation with control constraints

minimize
u∈Uad⊆L2(0,T ;L2(ΩU ))

J(y, u) :=
1

2

∫ T

0

(
‖y − yd‖2L2(Ω) + α ‖u‖2L2(ΩU )

)
dt, (1a)

subject to ∂ty − ε∆y + β · ∇y + σy = f +Bu, (x, t) ∈ Ω× (0, T ], (1b)

y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], (1c)

y(x, 0) = y0(x), x ∈ Ω, (1d)

Uad =
{
u ∈ L2(0, T ;L2(ΩU ) : ua ≤ u ≤ ub a.e. in ΩU × (0, T ]

}
, (2)

For well-posedness of the optimal control problem (1) we refer to [1, 9, 10].
We use the Hilbert space X := {ϕ ∈ L2(0, T ;V ); ϕt ∈ L2(0, T ;V ∗)}, where V = H1

0 (Ω)
be Hilbert spaces and V ∗ denotes the dual space of V .
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The variational formulation corresponding to (1) is given by

minimize
u∈Uad

J(y, u) :=
1

2

∫ T

0

(
‖y − yd‖2L2(Ω) + α‖u‖2L2(ΩU )

)
dt, (3a)

subject to (∂ty, v) + a(y, v) + b(u, v) = (f, v) ∀v ∈ V, t ∈ (0, T ], (3b)

y(x, 0) = y0,

a(y, v) =

∫
Ω

(ε∇y∇v + β · ∇yv + σyv)dx, b(u, v) = −
∫

Ω
Buvdx, (f, v) =

∫
Ω
fvdx.

It is well known that the triple (y, u, p) is the unique solution of (3) if and only if there is
an adjoint p(x, t) such that (y, p, u) satisfies the following optimality system [1, 2]:

(∂ty, v) + a(y, v) + b(u, v) = (f, v), ∀v ∈ V, y(x, 0) = y0, (4a)

−(∂tp, ψ) + a(ψ, p) = −(y − yd, ψ), ∀ψ ∈ V, p(x, T ) = 0, (4b)∫ T

0
(αu−B∗p, w − u)U dt ≥ 0, ∀w ∈ Uad, (4c)

where B∗ denotes the adjoint of B.

3. Streamline Upwind/Petrov Galerkin(SUPG) Finite Element Method for
Optimal Control Problem

Let {Th} be a triangulation of Ω such that Ω = ∪K∈Th
K, Ki ∩Kj = ∅ for Ki,Kj ∈ Th,

i 6= j. The diameter of an element K and the length of an edge E are denoted by hK
and hE , respectively. In addition, the maximum value of element diameter is denoted by
h = max

K∈Th

hK . We note that the subindex U denotes the associated triangularization for

the control. In general, the sizes of the elements in {(Th)U}h are smaller than those in
{Th}h, so we assume that hU/h ≤ C throughout this paper [9, Sec.3].

We use piecewise continuous linear finite element space to define the discrete spaces of
the state, the adjoint and the control

Vh =
{
v ∈ H1

0 (Ω) : v |K∈ P1(K) ∀K ∈ Th

}
,

Uh =
{
u ∈ L2(ΩU ) : u |KU

∈ P1(KU ) ∀KU ∈ (Th)U
}
.

Finite element approximations of the state, the adjoint and the control are given as

yh(x, t) =

m−1∑
i=1

yh,i(t)ϕi(x), ph(x, t) =

m−1∑
i=1

ph,i(t)ϕi(x), uh(x, t) =

mu∑
i=0

uh,i(t)φi(x),

yh(t) = (yh,1(t), . . . , yh,m−1(t))T , ph(t) = (ph,1(t), . . . , ph,m−1(t))T , uh(t) = (uh,0(t), . . . , uh,mu(t))T .

The semi-discrete approximation of the optimal control problem (3) is defined as follows:

minimize
uh∈Uad

h

∫ T

0

(1

2

∑
K∈Th

‖yh − yd,h‖2L2(K) +
α

2

∑
KU∈TU

h

‖uh‖2L2(KU )

)
dt, (5a)

subject to (∂tyh, vh) +
∑
K∈Th

τ(∂tyh, β · ∇vh)K + ash(yh, vh) + bsh(uh, vh) = (f, vh)sh, (5b)

(y0
h, ϕ) = (yh(0, x), ϕ) and (yh, uh) ∈ Vh × Uad

h ,
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ash(y, vh) = a(y, vh) +
∑
K∈Th

τ(−ε∆y + β · ∇y + σy, β · ∇vh)K , (6a)

bsh(u, vh) = b(u, vh)−
∑
K∈Th

τ(Bu, β · ∇vh)K , (6b)

(f, vh)sh = (f, vh) +
∑
K∈Th

τ(f, β · ∇vh)K . (6c)

The stabilization parameter τ is chosen depending on a priori error estimates in Sec-
tion 4. We use discretize-then-optimize approach to solve the OCP. We derive the fully-
discrete optimality system by differentiating the discrete Lagrangian with respect to the
state, adjoint and control variables. The semi-discrete optimality system is discretized in
time with the backward Euler method and resulting fully discrete optimality system is
solved using all all at once approach [15] with the MINRES. The fully discrete optimality
system is given as:

minimize
un
h∈U

ad
h

k
2

∑
K∈Th

‖ynh − ynd,h‖2L2(K) + α
k

2

∑
KU∈Tu

h

‖unh‖2L2(KU )

 (7)

(ynh − yn−1
h , ϕ) + kash (ynh , ϕ) = k (fn +Bunh, ϕ) + k

 ∑
K∈Th

τ (fn +Bunh, β · ∇ϕ)K


−

 ∑
K∈Th

τ(ynh − yn−1
h , β · ∇ϕ)K

 , ∀ϕ ∈ Vh, n = 1, . . . , N + 1, (8a)

(ψ, pn−1
h − pnh) + kash

(
ψ, pn−1

h

)
= −k

(
(yn−1

h − yn−1
d,h ), ψ

)
− k

 ∑
K∈Th

τ(ψ, β · ∇(pn−1
h − pnh))K

 , ∀ψ ∈ Vh, n = N + 1, . . . , 2,

(8b)

(αunh −B∗pn−1
h − τβ · ∇B∗pn−1

h , wh − unh)U ≥ 0, ∀wh ∈ Uad
h , n = 1, . . . , N + 1. (8c)

4. A Priori Error Estimates

In this section, we shall derive the stability and convergence estimates for the fully-
discrete OCP. We start with the stability estimates following the approach in [12] for
time-dependent diffusion-convection-reaction equations. In this section, r denotes the
degree of local polynomials and ‖ · ‖r denotes the norm in Hr(Ω) with H0(Ω) = L2(Ω).
To prove the a priori error estimate of the fully-discrete scheme, we need the discrete
time-dependent norm for 1 ≤ q <∞ by [9],

‖v‖Lq(0,T ;L2(Ω)) =

(
N+1∑
n=1

k‖vn‖qL2(Ω)

)1/q

.
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4.1. Stability Estimates. We take a fixed time step k, and we denote the fully discrete
state, adjoint and control solution at time tn = nk by ynh , p

n
h and unh, respectively. More-

over, the exact solutions of the state, the adjoint and the control at time tn are defined as
yn, pn and un, respectively. We give first some useful inequalities which are needed.

The elliptic projection πh : V → Vh is defined by (∇(y − πhy),∇vh) = 0 for all vh ∈ Vh
and

(πhy)t = πh(yt) = πhyt. (9)

The following inverse inequality holds for each vh ∈ Vh with the assumption of a quasi
uniform mesh (see, e.g., [5]):

‖vh‖Wm,q(K) ≤ cinvh
l−m−d( 1

q′−
1
q

)

K ‖vh‖W l,q′ (K), (10)

where 0 ≤ l ≤ m ≤ 1, 1 ≤ q′ ≤ q ≤ ∞, hK is the mesh size diameter of K ∈ Th. We
note that we take the same step size hK = h for all mesh cell K. The interpolation error
estimate for y ∈ V ∩Hr+1 given in [5] is

‖y − πhy‖L2(Ω) + h‖y − πhy‖H1(Ω) ≤ Chr+1‖y‖Hr+1(Ω). (11)

We introduce an element integral averaging operator Π̃h from U to Uh such that

Π̃hv|KU
=

1

|KU |

∫
KU

v, ∀KU ∈ TU
h ,

where |KU | denotes the measure of KU [10, Sec.3].
There is a positive constant C independent of hU such that the following estimate holds

[5]: |v − Π̃hv|0,p,KU
≤ ChU |v|1,p,KU

, for v ∈W 1,p(ΩU ) and 1 ≤ p ≤ ∞.
The coercivity condition for the bilinear form ash(·, ·) given in [16, Lemma 10.3].

Lemma 4.1. Let µ0 be a positive constant satisfying σ− 1
2∇ · β ≥ µ0 holds. If the SUPG

parameter τ is chosen such that

τ ≤ µ0

2‖σ‖2L∞(K)

, (12)

then the bilinear form ash(·, ·) associated with SUPG method satisfies

ash(yh, yh) ≥ 1

2
‖yh‖2s, (13)

‖yh‖2s := ε‖∇yh‖2L2(Ω) +
∑
K∈Th

τ‖β · ∇yh‖2L2(K) + ‖µ1/2
0 yh‖2L2(Ω). (14)

Lemma 4.2. Let ynh be a solution of discrete OCP and (12) be fulfilled and τ ≤ 4k
5 ,

‖ynh‖2L2(Ω) +
3k

40

n∑
j=1

‖yjh‖
2
s ≤ ‖y0

h‖2L2(Ω) + 8k

(
1

µ0
+

4k

5

) n∑
j=1

(‖f j‖2L2(Ω) + ‖Bujh‖
2
L2(Ω)).

(15)

Proof. Let us take ϕ = ynh in (8a). By the coercivity estimate (13) and using the following
equality (

ynh − yn−1
h , ynh

)
=

1

2

(
‖ynh‖2L2(Ω) − ‖y

n−1
h ‖2L2(Ω)

)
+

1

2
‖ynh − yn−1

h ‖2L2(Ω),
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we obtain

1

2

(
‖ynh‖2L2(Ω) − ‖y

n−1
h ‖2L2(Ω)

)
+

1

2
‖ynh − yn−1

h ‖2L2(Ω) +
k

2
‖ynh‖2s

≤ |k (fn +Bunh, y
n
h)|︸ ︷︷ ︸

A1

+

∣∣∣∣∣∣k
 ∑
K∈Th

τ (fn +Bunh, β · ∇(ynh))K

∣∣∣∣∣∣︸ ︷︷ ︸
A2

+

∣∣∣∣∣∣
∑
K∈Th

τ(ynh − yn−1
h , β · ∇(ynh)K

∣∣∣∣∣∣︸ ︷︷ ︸
A3

.

(16)

We estimate A1, A2 by using the Cauchy-Schwarz and Young’s inequalities as in [12].

A1 ≤
4k

µ0
‖fn +Bunh‖2L2(Ω) +

k

16
‖µ1/2

0 ynh‖2L2(Ω),

A2 ≤ 4k
∑
K∈Th

τ‖fn +Bunh‖2L2(K) +
k

16

∑
K∈Th

τ‖β · ∇ynh‖2L2(K).

The term A3 can be estimated under the condition τ ≤ 4k
5 using the condition (14):

A3 ≤
5

8k

∑
K∈Th

τ‖ynh − yn−1
h ‖2L2(K) +

2k

5

∑
K∈Th

τ‖β · ∇ynh‖2L2(K)

≤ 1

2
‖ynh − yn−1

h ‖2L2(Ω) +
2k

5

∑
K∈Th

τ‖β · ∇ynh‖2L2(K).

A1 +A2 +A3 ≤
4k

µ0
‖fn +Bunh‖2L2(Ω) + 4k

∑
K∈Th

τ‖fn +Bunh‖2L2(K)

+
k

16
‖µ1/2

0 ynh‖2L2(Ω) +
k

16

∑
K∈Th

τ‖β · ∇ynh‖2L2(K)︸ ︷︷ ︸
≤ k

16
‖ynh‖2s

+
1

2
‖ynh − yn−1

h ‖2L2(Ω) +
2k

5

∑
K∈Th

τ‖β · ∇ynh‖2L2(K)︸ ︷︷ ︸
≤ 2k

5
‖ynh‖2s

.

and inserting all these estimates into (16) we obtain

‖ynh‖2L2(Ω)+
3k

40
‖ynh‖2s ≤ ‖yn−1

h ‖2L2(Ω)+
8k

µ0
(‖fn‖2L2(Ω)+‖Bu

n
h‖2L2(Ω))+8k

∑
K∈Th

τ‖fn+Bunh‖2L2(K).

We sum the resulting inequality over j = 1, 2, ..., n with the condition τ ≤ 4k
5 to arrive at

(15). �

Lemma 4.3. Let pnh be in (8b) and (12) be fulfilled and τ ≤ 4k
5 ,

‖pnh‖2L2(Ω) +
3k

40

n∑
j=1

‖pj−1
h ‖2s ≤ ‖pNh ‖2L2(Ω) + 8k

(
1

µ0
+

4k

5

) n∑
j=1

‖yjh − y
j
h,d‖

2
L2(Ω). (17)

Proof. We choose ψ = pn−1
h in (8b) and follow the proof of Lemma 4.2 to obtain the

desired result (17). �
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4.2. Convergence estimates. We derive convergence estimates for the fully-discrete
scheme. First, we shall use two auxiliary variables ynh(u), pnh(u) ∈ Vh×Vh , n = 1, 2, ..., N ,
associated with the control variable to derive a priori error estimate of the fully discrete
scheme as in [9]:

(ynh(u)− yn−1
h (u), ϕ) + kash (ynh(u), ϕ)

= k (fn +Bun, ϕ) + k

 ∑
K∈Th

τ (fn +Bun, β · ∇ϕ)K

−
 ∑
K∈Th

τ(ynh(u)− yn−1
h (u), β · ∇ϕ)K

 ,
(y0

h(u), ϕ) = (y0
h, ϕ), ∀ϕ ∈ Vh, (18a)

(ψ, pN+1
h (u)) + kash

(
ψ, pN+1

h (u)
)

= −k

 ∑
K∈Th

τ(ψ, β · ∇pN+1
h (u))K

− k ((yN+1
h (u)− yN+1

d,h (u)), ψ
)
, ∀ψ ∈ Vh,

(ψ, pn−1
h (u)− pnh(u)) + kash

(
ψ, pn−1

h (u)
)

= −k
(

(yn−1
h (u)− yn−1

d,h (u)), ψ
)
− k

 ∑
K∈Th

τ(ψ, β · ∇(pn−1
h (u)− pnh(u)))K

 , ∀ψ ∈ Vh,
(ψ, p0

h(u)) = (ψ, p1
h(u))− k

 ∑
K∈Th

τ(ψ, β · ∇p1
h(u))K

 , ∀ψ ∈ Vh. (18b)

The approximation solution (ynh , p
n
h) and the auxiliary solution (ynh(u), pnh(u)) connected

as θn = ynh − ynh(u), ζn = pnh − pnh(u).

Lemma 4.4. Let (yh, ph) and (yh(u), ph(u)) be the solutions of (8a)-(8b) and (18a-18b),
respectively. Then, there exists a constant C independent of h and k such that the following
estimate holds

‖yh − yh(u)‖L∞(I;L2(Ω)) + ‖ph − ph(u)‖L∞(I;L2(Ω)) ≤ C‖u− uh‖L2(I;L2(ΩU )). (19)

Proof. As in [9] we subtract (8a) from (18a), and we obtain the following equation

(θn − θn−1, ϕ) + kash (θn, ϕ)

= k (Bunh −Bun, ϕ) + k

 ∑
K∈Th

τ (Bunh −Bun, β · ∇ϕ)K

− ∑
K∈Th

τ(θn − θn−1, β · ∇ϕ)K .

(20)

As in the proof of the Lemma 4.2, we choose ϕ = θn as a test function. By following
the steps in the proof of Lemma 4.2, we get

‖θn‖2L2(Ω)+
3k

40

n∑
j=1

‖θj‖2s ≤ C
n∑

j=1

k(‖θj‖2L2(Ω)+‖θ
j−1‖2L2(Ω))+C

n∑
j=1

k‖uj−ujh‖
2
L2(ΩU ). (21)

By arranging the inequality (21), we obtain

(1− Ck)‖θn‖2L2(Ω) ≤ Ck‖θ
0‖2L2(Ω) + 2Ck

n−1∑
j=1

‖θj‖2L2(Ω) + C

n∑
j=1

k‖uj − ujh‖
2
L2(ΩU ). (22)

For 1− Ck > 0, we apply the discrete Gronwall’s Lemma to obtain

‖yh − yh(u)‖L∞(I;L2(Ω)) ≤ C‖u− uh‖L2(I;L2(ΩU ). (23)
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Similarly, we derive the following inequality subtractin (8b) from (18b)

‖ζ‖L∞(I;L2(Ω)) ≤ C‖yh − yh(u)‖L2(I;L2(Ω)). (24)

Therefore, Lemma 4.4 is proved through (23)-(24). �

In order to find an upper bound to the difference between the optimal u and the fully-
discrete control unh, we divide the domain ΩU as the active and inactive regions of the
control u:

Ω∗U (t) = {∪KU
: KU ⊂ ΩU , ua < u(·, t)|KU

< ub},
Ωc
U (t) = {∪KU

: KU ⊂ ΩU , u(·, t)|KU
= ua or u(·, t)|KU

= ub},

Ωb
U (t) = ΩU\(Ω∗U (t) ∪ Ωc

U (t)).

It is assumed that the intersection of the three sets is empty, i.e., Ωi
U ∩ Ωj

U = ∅ for i 6= j

and ΩU = Ω∗U (t) ∪ Ωc
U (t) ∪ Ωb

U (t). Ωb
U (t) consists of elements which lie close to the free

boundary between the active and the inactive sets for each time interval. We also assume

meas(Ωb
U (t)) ≤ ChU ∀ t ∈ [0, T ] (25)

for the regularity of u and TU
h . This assumption is valid if the boundary of the level set

Ωc
U (t) consists of a finite number of rectifiable curves [14]. In addition, we set Ω∗(t) =
{x ∈ ΩU : ua < u(x, t) < ub}, which includes Ω∗U (t) ⊂ Ω∗(t) [10].

Lemma 4.5. Let (y, p, u) and (yh, ph, uh) be the solutions of (4) and discrete OCP, respec-
tively. We assume that u ∈ L2(I;W 1,∞(ΩU )), u|Ω∗ ∈ L2(I;H2(Ω∗)), p ∈ L2(I;W 1,∞(Ω)),
we have

‖u− uh‖L2(I;L2(ΩU )) ≤ Ck
∥∥∥∥∂p∂t

∥∥∥∥
L2(I;L2(Ω))

+ C(1 + τh−1)‖ph(u)− p‖L2(I;L2(Ω))

+ Ch
3/2
U ‖u‖L2(I;L2(ΩU )) + τh

3/2
U h−1‖p‖L2(I;L2(Ω)). (26)

Proof. Following [17] and using the variational inequality (8c), we define

(J ′h(u), v − u)U =
N+1∑
n=1

k(αun −B∗pn−1
h (u)− τβ · ∇B∗pn−1

h (u), vn − un)U ,

where pn−1
h (u) is the solution of (18b). With Pn−1 = pn−1

h (v)− pn−1
h (u), we consider

(J ′h(v)− J ′h(u), v − u)U

= α‖v − u‖2L2(I;L2(ΩU )) −
N+1∑
n=1

k(B∗Pn−1 + τβ · ∇B∗Pn−1, vn − un)U . (27)



T.AKMAN, B.KARASÖZEN, Z.SEYMEN-KANAR: SUPG SOLUTION OF OCP ... 229

We find an upper bound for the last term of (27) with Y n−1 = yn−1
h (v) − yn−1

h (u) using
(8a-8b)

N+1∑
n=1

k(Pn−1 + τβ · ∇Pn−1, Bvn −Bun)

=
N+1∑
n=1

k

(
(Y n − Y n−1, Pn−1) + kash(Y n, Pn−1) +

∑
K∈Th

τ(Y n − Y n−1, β · ∇Pn−1)K

)

=
N+1∑
n=1

k

(
(Pn−1 − Pn, Y n) + kash(Y n, Pn−1) +

∑
K∈Th

τ(Y n − Y n−1, β · ∇Pn−1)K

)

=
N+1∑
n=1

k

(
−(Y n, Y n)− τ(Pn−1 − Pn, β · ∇Y n) +

∑
K∈Th

τ(Y n − Y n−1, β · ∇Pn−1)K

)

= −
N+1∑
n=1

k(Y n, Y n)− ‖Y ‖2L2(I;L2(Ω)) ≤ 0. (28)

Let Πhu
n ∈ Uh be the standard Lagrange interpolation of u at time tn such that Πhun(x) =

un(x) for all vertices x. Then, Πhun belongs to Uad
h at time tn. Then, by (27-28), we have

α‖u− uh‖2L2(I;L2(ΩU )) ≤ (J ′h(u)− J ′h(uh), u− uh)U

=
N+1∑
n=1

k(αun −B∗pn−1
h (u)− τβ · ∇B∗pn−1

h (u), un − unh)U

−
N+1∑
n=1

k(αunh −B∗pn−1
h − τβ · ∇B∗pn−1

h , un − unh)U .

We add and substract the term
N+1∑
n=1

k(B∗pn, un − unh)U to the first term. For the second

term, we rewrite un − unh as un −Πhu
n + Πhu

n − unh. Then, we obtain

α‖u− uh‖2L2(I;L2(ΩU )) =
N+1∑
n=1

k(αun −B∗pn, un − unh)U +
N+1∑
n=1

k(B∗pn −B∗pn−1
h (u), un − unh)U

+
N+1∑
n=1

k(αunh −B∗pn−1
h − τβ · ∇B∗pn−1

h ,Πhu
n − un)U

+
N+1∑
n=1

k(αunh −B∗pn−1
h − τβ · ∇B∗pn−1

h , unh −Πhu
n)U

−
N+1∑
n=1

k(τβ · ∇B∗pn−1
h (u), un − unh)U .

We observe that the first term and the fourth term of above equation ≤ 0 due to (4c) and
(8c), respectively. Then, we obtain

α‖u− uh‖2L2(I;L2(ΩU )) ≤
N+1∑
n=1

k(B∗pn −B∗pn−1
h (u), un − unh)U

+

N+1∑
n=1

k(αunh −B∗pn−1
h − τβ · ∇B∗pn−1

h ,Πhu
n − un)U −

N+1∑
n=1

k(τβ · ∇B∗pn−1
h (u), un − unh)U .
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Now, for the first term of the equation, we add and substract the term
N+1∑
n=1

k(B∗pn−1, un−

unh)U . Then, we add and substract the term
N+1∑
n=1

k(τβ · ∇B∗pn−1
h , un − unh)U and arrange

the resulting sum to derive the following inequality

α‖u− uh‖2L2(I;L2(ΩU )) ≤
N+1∑
n=1

k(B∗pn−1 −B∗pn−1
h (u), un − unh)U +

N+1∑
n=1

k(B∗pn −B∗pn−1, un − unh)U

+
N+1∑
n=1

k(αunh −B∗pn−1
h ,Πhu

n − un)U −
N+1∑
n=1

k(τβ · ∇B∗pn−1
h (u)− τβ · ∇B∗pn−1

h , un − unh)U

+
N+1∑
n=1

k(τβ · ∇B∗pn−1
h , unh −Πhu

n)U

The following estimates are derived by using Young’s inequality as in [17].

T1 ≤ C1

N+1∑
n=1

k‖pn−1 − pn−1
h (u)‖2L2(Ω) + C2

N+1∑
n=1

k‖un − unh‖2L2(ΩU )

≤ C1‖p− ph(u)‖2L2(0,T ;L2(Ω)) + C2‖u− uh‖2L2(0,T ;L2(ΩU )), (29)

T2 ≤ C1

N+1∑
n=1

k‖pn − pn−1‖2L2(Ω) + C2

N+1∑
n=1

k‖un − unh‖2L2(ΩU )

≤ C1k
2

∥∥∥∥∂p∂t
∥∥∥∥2

L2(0,T ;L2(Ω))

+ C2‖u− uh‖2L2(0,T ;L2(ΩU )), (30)

T4 ≤ τ2‖β‖2C(δ)
N+1∑
n=1

k‖∇(pn−1 − pn−1
h (u))‖2L2(Ω) + Cδ

N+1∑
n=1

k‖un − unh‖2L2(ΩU )

≤ τ2h−2‖β‖2C(δ)‖p− ph(u)‖2L2(I;L2(Ω)) + Cδ‖u− uh‖2L2(I;L2(ΩU )). (31)

In order to bound T3, T5, let us mention the following interpolation error estimate given in
[17, 10]. Assuming Πhu

n is the standard Lagrangian interpolation satisfying Πhu
n(x) =

u(x, tn) for any vertex x. With Πhu
n belonging to Uad

h , we obtain

‖un −Πhu
n‖L2(Ω∗U (tn)) ≤ Ch2

U‖un‖H2(Ω∗U (tn)), ‖un −Πhu
n‖W 0,∞(Ωb

U (tn)) ≤ ChU‖u
n‖W 1,∞(Ωb

U (tn)),

for u ∈ L2(I;W 1,∞(ΩU )) and u(t)|Ω∗ ∈ H2(Ω∗(t)). Hence,

‖u−Πhu‖2L2(I;L2(ΩU ))

=

N+1∑
n=1

k

(∫
Ω∗U (tn)

(un −Πhu
n)2 +

∫
Ωc

U (tn)
(un −Πhu

n)2 +

∫
Ωb

U (tn)
(un −Πhu

n)2

)

≤ Ch4
U

N+1∑
n=1

k‖u‖2H2(Ω∗U (tn)) + 0 + Ch2
U

N+1∑
n=1

k‖u‖2
W 1,∞(Ωb

U (tn))
meas (Ωb

U (tn))

≤ Ch3
U (‖u‖2L2(I;H2(Ω∗(t))) + ‖u‖2L2(I;W 1,∞(ΩU ))) ≤ Ch

3
U . (32)

The term T5 is bounded as in [10, Lemma 4.5] where an integral average operator Π̃h

is used. In addition, Young’s inequality and inverse inequality are used to eliminate the
gradient operator.
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T5 =
N+1∑
n=1

k(τβ · (∇B∗pn−1 − Π̃h(∇B∗pn−1)), unh −Πhu
n)U

≤ C
N+1∑
n=1

kτ2‖β‖2‖∇pn−1 − Π̃h∇pn−1‖2L2(I,L2(Ω)) + C
N+1∑
n=1

k‖unh −Πhu
n‖2L2(I,L2(Ωu))

≤ Ch3
U (τ2h−2‖β‖2‖p‖2L2(I;L2(Ω)) + ‖u‖2L2(I;L2(ΩU ))). (33)

We proceed with T3 by adding and subtracting the appropriate terms

T3 =

N+1∑
n=1

k(αun −B∗pn,Πhu
n − un)U +

N+1∑
n=1

k(α(unh − un),Πhu
n − un)U

+

N+1∑
n=1

k(B∗pn−1 −B∗pn−1
h (u),Πhu

n − un)U +

Nv∑
n=1

k(B∗pn−1
h (u)−B∗pn−1

h ,Πhu
n − un)U

+

N+1∑
n=1

k(B∗pn −B∗pn−1,Πhu
n − un)U =

5∑
i=1

Si. (34)

By the inequality in (4c), we have αun − B∗pn = 0 on Ω∗U (t). In addition, there exists

x0 ∈ KU ∈ Ωb
U with ua < u(x0, t) < ub satisfying (αun − B∗pn)(x0) = 0. Then, we adapt

the following estimate motivated by [17]

‖αun −B∗pn‖W 0,∞(Ωb
U (t)) = ‖αun −B∗pn − (αun −B∗pn)(x0)‖W 0,∞(Ωb

U (t))

≤ ChU‖αun −B∗pn‖W 1,∞(Ωb
U (t)).

Then, the first term S1 in the sum (34) is rewritten as

N+1∑
n=1

k(αun −B∗pn,Πhu
n − un)U

=
N+1∑
n=1

k

∫
Ω∗U (tn)

(αun −B∗pn,Πhu
n − un) +

N+1∑
n=1

k

∫
Ωc

U (tn)

(αun −B∗pn,Πhu
n − un)

+
N+1∑
n=1

k

∫
Ωb

U (tn)

(αun −B∗pn,Πhu
n − un)

≤
N+1∑
n=1

k‖αun −B∗pn‖W 0,∞(Ωb
U (tn))‖Πhu

n − un‖W 0,∞(Ωb
U (tn))meas(Ωb

U (tn))

≤ Ch3
U

(
‖u‖2L2(I;W 1,∞(ΩU )) + ‖p‖2L2(I;W 1,∞(Ω))

)
≤ Ch3

U . (35)

The remaining terms Si are bounded using similarly in [17] to find the estimate (26). �

Lemma 4.6. Let (y, p) and (yh(u), ph(u)) be the solutions of (4a-4b) and (18a-18b), re-
spectively. Assume that y, p ∈ L∞(I;H1

0 (Ω) ∩ H2(Ω)) ∩ H1(I;H2(Ω)) ∩ H2(I;L2(Ω)),
yd ∈ L2(I;L2(Ω)) and τ = O(k). Then,

‖y − yh(u)‖L∞(I;L2(Ω)) + ‖p− ph(u)‖L∞(I;L2(Ω)) ≤ C
(
h2 + k + τ1/2(h2 + h+ ε) + h2τ−1/2

)
(36)
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where C depends on some spatial and temporal derivatives of y, p, and yd.

Proof. Let us start by subtracting (4a) from (18a) to obtain an error equation

(
yn − yn−1

k
, ϕ) + a(yn, ϕ)−

(
ynh(u)− yn−1

h (u)

k
, ϕ

)
− ash(ynh(u), ϕ)

+

 ∑
K∈Th

τ (fn + un, β · ∇ϕ)K

− ∑
K∈Th

τ

(
ynh(u)− yn−1

h (u)

k
,∇ϕ

)
K

= 0. (37)

As in [12], we decompose the error yn − ynh(u) as

ynh(u)− yn = (ynh(u)− πnhy) + (πnhy − yn) = enh + ηnh . (38)

The term ηnh can be estimated with (11) by taking the degree of local polynomials r = 1.
We need then only to derive an estimate for enh. We rewrite (37) by using (38) as follows

(enh − en−1
h , ϕ) + kash(enh, ϕ)

= k

ynt − πnhyt +

(
πnhyt −

πnhy − π
n−1
h y

k

)
︸ ︷︷ ︸

Y1

, ϕ

+ k

σ (yn − πnhy) + β · ∇(yn − πnhy)︸ ︷︷ ︸
Y2

, ϕ


+ k

∑
K∈Th

τ(Y1 + Y2 + ε∆(πnhy − yn)︸ ︷︷ ︸
Y3

, β · ∇ϕ)K −
∑
K∈Th

τ(enh − en−1
h , β · ∇ϕ)K . (39)

The error equation (39) is similar to discrete OCP problem . Thus, we can apply the
techniques used in the proof of Lemma 4.2 to (39) by choosing ϕ = enh with e0

h = 0 to
arrive at

‖enh‖2L2(Ω) +
3k

40

n∑
j=1

‖ejh‖
2
s ≤ Ck

 n∑
j=1

(‖Y j
1 ‖

2
L2(Ω) + ‖Y j

2 ‖
2
L2(Ω) + ‖Y j

3 ‖
2
L2(Ω))

 . (40)

By inserting the bounds for the right-hand side given in [12] to (40) and combining with
the well-known estimate (11), we finish the proof for the state equation. For the adjoint
equation, we subtract (4b) from (18b) and proceed as in the proof of (36) and use the
stability estimate of adjoint equation Lemma 4.3 to obtain

‖p− ph(u)‖L∞(I;L2(Ω)) ≤ C‖y − yh(u)‖L2(I;L2(Ω)). (41)

By combining the estimates for state and adjoint, we derive (36). �

We present the main result of this study by combining Lemma 4.4, 4.5, 4.6.

Theorem 4.1. Let (y, p, u) and (yh, ph, uh) be the solutions of (4) and (8), respectively.
With τ = O(k), we have

‖y − yh‖L∞(I;L2(Ω)) + ‖p− ph‖L∞(I;L2(Ω)) + ‖u− uh‖L2(I;L2(ΩU ))

≤ C
(

(1 + τh−1)(h2 + k + τ1/2(h2 + h+ ε) + h2τ−1/2) + k + τh
3/2
U h−1 + h

3/2
U

)
, (42)

where C depends on some spatial and temporal derivatives of y, p, yd and u.
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By Theorem 4.1, we derive a priori error estimates for the SUPG method applied to the
distributed OCPs. There are different approaches in the a priori error analysis according
to the stabilization parameter proportional to the length of the time step or mesh size.
We choose the optimal scaling of the mesh size h and time step size k so that the error
bounds of these estimates are balanced to obtain L∞ error estimates for the state and
adjoint, L2 error estimates for the control. Numerical results in the next section confirm
the predicted a priori error estimates.

5. Numerical Results

In this section, we present numerical results for the unsteady control constrained optimal
control problems governed by the convection diffusion equation. We consider two examples
from [9, 10] which are solved by using the characteristic finite element method in space
with backward Euler method in time. The control constraints are given as u ≥ 0.

We have only one asymptotic order of convergence by setting the stabilization param-
eter proportional to time step k, i.e., τ = O(k) and scaling k ∼= h4/3. Thus, we balance

the terms O(k) and O(h2τ−1/2) = O(h2k−1/2) to obtain the optimal L2 error due to (42).

Hence, the backward Euler leads the expected order to be O(h4/3).

We use a numerical test problem is taken from [10], of a highly convection dominated
OCP problem

Q = (0, 1]× Ω, Ω = (0, 1)2, ε = 10−5, β = (0.5, 0.5)T , σ = 0, α = 1.

We take Ω = ΩU and B = I. The source function f and the initial condition y0 are
computed using the following exact solutions of the state, adjoint and control, respectively,

y(x, t) = p(
1

2
√
ε

sin(tx)− 8επ2 −
√
ε

2
+

1

2
sin(tx)2)

− π cos(πt) sin(2πx1) sin(2πx2) exp(
−1 + cos(tx)√

ε
),

p(x, t) = sin(πt) sin(2πx1) sin(2πx2) exp(
−1 + cos(tx)√

ε
),

u(x, t) = max(−p, 0)

yd(x, t) = π(1 + 2
√
ε sin(tx)) sin(πt) sin(2π(x1 + x2)) exp(

−1 + cos(tx)√
ε

),

tx = t− 0.5(x1 + x2).

We choose the stabilization parameter as τ = 4k/5. In Table 1, we present the error

and convergence rates. Theoretical convergence rate O(h4/3) is achieved for the numerical
results of the state, adjoint and control. Indeed, the rate of convergence for the state
increases up to 1.5. The Errors are in the same range as in [10].

We observe that the state, adjoint and control variables are are approximated well in
Figure 1 as in [10].
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h/
√

2 ‖y − yh‖∞ order ‖p− ph‖∞ order ‖u− uh‖2 order
2−2 3.3791e-1 - 3.3772e-2 - 1.8472e-2 -
2−3 1.2205e-1 1.47 1.5106e-2 1.16 7.0489e-3 1.39
2−4 6.3586e-2 0.94 7.3456e-3 1.04 3.3531e-3 1.07
2−5 2.6872e-2 1.24 3.1713e-3 1.21 1.4818e-3 1.18
2−6 9.2758e-3 1.53 1.4241e-3 1.16 6.8664e-4 1.11

Table 1. Error and convergence rates for the stabilization parameter τ =
4k/5
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Figure 1. h = 2−6
√

2, τ = 4k/5, k ∼= h4/3, t = 0.5: Errors for the state,
adjoint and control errors.

6. Conclusion

We have shown that by balancing the errors, the convergence rates of the optimal
solutions can be improved under SUPG discretization in space, which is common for
OCPs, when the state, control and adjoint are discretized by linear finite elements. In
case of higher order finite elements, for SUPG discretized diffusion-convection-reaction
equations, the difference between the DO and OD is more significant. But this does not
imply more accurate controls. This will be investigated in a future work for time-dependent
diffusion-convection-reaction equations.
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