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FIXED POINT THEOREMS FOR GENERALIZED (ψ,ϕ)-WEAK

CONTRACTIONS

H. PIRI1, S. RAHROVI1, §

Abstract. In this paper, we prove some fixed point theorems for generalized (ψ,ϕ)-
weak contractive mappings in a metric space. Our result generalized and extend recent
results of Singh et al.[16, Theorem 2.1], Dorić [7, Theorem 2.1], Rhoades [15, Theorem
1] and Dutta and Choudhary [9, Theorem 2.1]. Also, we provid an example to support
the useability of our results.
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1. Introduction and preliminaries

Let (X, d) be a metric space. A mapping T : X → X is called contraction if there exists
k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ X. (1)

The best known and important fixed point theorem is the Banach contraction principle
[1], which assures that every contraction T from a complete metric space X into itself
has a unique fixed point. The simplicity of its proof and the possibilities of attaining the
fixed point by using successive approximations let this theorem become a very useful tool
in analysis and its applications. Due to importance and simplicity of Banach contraction
principle, several authors have obtained many interesting extensions and generalizations
of Banach contraction principle (see [5], [17]- [19] and references therein). The following

important generalization is due to Ćirić [6].

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X. Assume that there
exists r ∈ [0, 1) such that for every x, y ∈ X

d(Tx, Ty) ≤ rMg(x, y), (2)

where

Mg(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
}. (3)

Then T has a unique fixed point.
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A map T satisfying (2) is called a generalized contraction. The following is the quasi-

contraction theorem, given by Ćirić [5], and is considered the most general contraction
theorem in metric fixed point theory (cf. [14, 15]).

Theorem 1.2. Let (X, d) be a complete metric space and T : X → X. Assume that there
exists r ∈ [0, 1) such that for every x, y ∈ X

d(Tx, Ty) ≤ rM(x, y), (4)

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}. (5)

Then T has a unique fixed point.

The Banach contraction theorem and its several extensions have been generalized using
recently developed notion of weakly contractive maps (see [4, 10, 2, 11, 3, 12, 13]). The
following basic result is due to Rhoades [15]

Theorem 1.3. Let (X, d) be a complete metric space and T : X → X satisfy

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)), ∀x, y ∈ X, (6)

where ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing function such that ϕ(t) = 0
if and only if t = 0. Then T has a unique fixed point.

If one takes ϕ(t) = kt where 0 < k < 1, then (6) reduces to (1). Introducing a
new generalization of Banach contraction principle Dutta and Choudhary [9] proved the
following generalization of Theorem 1.3.

Theorem 1.4. Let (X, d) be a complete metric space and T : X → X satisfy

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− ϕ(d(x, y)), ∀x, y ∈ X, (7)

where

(i) ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function with ψ(t) = 0 if
and only if t = 0,

(ii) ϕ : [0,∞) → [0,∞) is a lower semi-continuous function with ϕ(t) = 0 if and only
if t = 0.

Then T has a unique fixed point.

Dorić [7] obtained the following generalization of Theorem 1.1 and Theorem 1.4

Theorem 1.5. Let (X, d) be a complete metric space and T : X → X satisfy

ψ(d(Tx, Ty)) ≤ ψ(Mg(Tx, Ty))− ϕ(Mg(Tx, Ty)), ∀x, y ∈ X (8)

where Mg(Tx, Ty) is defined by (3), ψ and ϕ are defined as in Theorem 1.4. Then T has
a unique fixed point.

Theorem 1.1, Theorem 1.3, Theorem 1.4 and Theorem 1.5 have been generalized by
Singh et al. [16] in the following manner.

Theorem 1.6. Let (X, d) be a complete metric space and T : X → X satisfy

1

2
d(x, Tx) ≤ d(x, y)⇒ ψ(d(Tx, Ty)) ≤ ψ(Mg(Tx, Ty))− ϕ(Mg(Tx, Ty)), (9)

for all x, y ∈ X, where Mg(Tx, Ty) is defined by (3), ψ and ϕ are defined as in Theorem
1.4. Then T has a unique fixed point.
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2. main results

In this section, we established a fixed point theorem which generalized Theorem 1.4,
Theorem 1.5 and Theorem 1.6. Also, we give an illustrative example.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X satisfy

1

2
d(x, Tx) < d(x, y)⇒ ψ(d(Tx, Ty)) ≤ ψ(MT (x, y))− ϕ(MT (x, y)), ∀x, y ∈ X (10)

where

MT (x, y) = max


d(x, y), d(T 2x, Tx), d(T 2x, y),

d(x,Ty)+d(Tx,y)
2 , d(T

2x,Tx)+d(T 2x,Ty)
2 ,

d(T 2x, Ty) + d(Tx, x), d(Tx, y) + d(y, Ty)

 , (11)

and

(i) ψ : [0,∞) → [0,∞) is a continuous and nondecreasing function with ψ(t) = 0 if
and only if t = 0,

(ii) ϕ : [0,∞) → [0,∞) is a lower semi-continuous function with ϕ(t) = 0 if and only
if t = 0.

Then T has a unique fixed point.

Proof. Take x ∈ X. We construct a sequence {xn}∞n=1 as follows:

xn = Txn−1, ∀n ∈ N, (12)

where x0 = x. If there exists m ∈ N such that d(xm, Txm) = 0 then x∗ = xm becomes
a fixed point of T , which completes the proof. Consequently, in the rest of the proof, we
assume that

0 < d(xn, Txn), ∀n ∈ N. (13)

Hence, we have

1

2
d(xn, Txn) < d(xn, Txn) = d(xn, xn+1), ∀n ∈ N. (14)

Therefore by (10), we have

ψ(d(Txn, Txn+1))

≤ ψ(MT (xn, xn+1))− ϕ(MT (xn, xn+1))

= ψ

 max


d(xn, xn+1), d(xn+2, xn+1), d(xn+2, xn+1),

d(xn,xn+2)+d(xn+1,xn+1)
2 , d(xn+2,xn+1)+d(xn+2,xn+2)

2 ,
d(xn+2, xn+2) + d(xn+1, xn), d(xn+1, xn+1) + d(xn+1, xn+2)




− ϕ

 max


d(xn, xn+1), d(xn+2, xn+1), d(xn+2, xn+1),

d(xn,xn+2)+d(xn+1,xn+1)
2 , d(xn+2,xn+1)+d(xn+2,xn+2)

2 ,
d(xn+2, xn+2) + d(xn+1, xn), d(xn+1, xn+1) + d(xn+1, xn+2)


 .

So

ψ(d(xn+1, xn+2)) ≤ ψ
(

max
{
d(xn, xn+1), d(xn+1, xn+2)

} )
− ϕ

(
max

{
d(xn, xn+1), d(xn+1, xn+2)

} )
. (15)

If d(xn+1, xn+2) > d(xn, xn+1) , then

max
{
d(xn, xn+1), d(xn+1, xn+2)

}
= d(xn+1, xn+2),
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so (15) becomes

ψ(d(xn+1, xn+2)) ≤ ψ(d(xn+1, xn+2))− ϕ(d(xn+1, xn+2)),

which is a contradiction ( from (13) and property of ϕ, we have ϕ(d(xn+1, xn+2)) > 0).
Thus, we conclude that

ψ(d(xn+1, xn+2)) ≤ ψ(d(xn, xn+1))− ϕ(d(xn, xn+1)). (16)

Consequently,
ψ(d(xn+1, xn+2)) < ψ(d(xn, xn+1)),

and by the property of ψ, we can get

d(xn+1, xn+2) < d(xn, xn+1), ∀n ∈ N.
Hence the sequence {d(xn, xn+1)} is monotonic nonincreasing and bounded below. So,
there exists r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r = lim
n→∞

d(xn+1, xn+2). (17)

Therefore, by the lower semi-continuity of ϕ, we have

ϕ(r) ≤ lim inf
n→∞

ϕ(d(xn, xn+1)). (18)

We claim that r = 0. In fact taking upper limits as n → ∞ to each side of the (16) and
using (17) and (18), we get

ψ(r) ≤ ψ(r)− ϕ(r).

Consequently ϕ(r) ≤ 0. Hence by the property of the function ϕ, ϕ(r) = 0. But ϕ(r) = 0
implies r = 0. So, we have

lim
n→∞

d(xn, xn+1) = lim
n→∞

d(xn, Txn) = 0. (19)

Also from (19) and the inequality

0 ≤ d(xn, xn+m) ≤ Σm−1
i=0 d(xn+i, xn+i+1),

for all m ∈ N, we have

lim
n→∞

d(xn, xn+m) = 0. (20)

Now, we claim that {xn}∞n=1 is a Cauchy sequence. Arguing by contradiction, we assume
that there exist ε > 0, the sequences {p(n)}∞n=1 and {q(n)}∞n=1 of natural numbers such
that

p(n) > q(n) > n, d(xp(n), xq(n)) ≥ ε, d(xp(n)−1, xq(n)) < ε, ∀n ∈ N. (21)

Observe that

ε ≤ d(xp(n), xq(n)) ≤ d(xp(n), xp(n)−1) + d(xp(n)−1, xq(n))

≤ d(xp(n)−1, Txp(n)−1) + ε.

It follows from (19) and the above inequality that

lim
n→∞

d(xp(n), xq(n)) = ε. (22)

Also from (19), (22) and the inequality

d(xp(n), xq(n)) ≤ d(xp(n), xp(n)+m) + d(xp(n)+m, xq(n))

≤ 2d(xp(n), xp(n)+m) + d(xp(n), xq(n))

≤ 2Σm−1
i=0 d(xp(n)+i, xp(n)+i+1) + d(xp(n), xq(n)),
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for all m ∈ N, we can get

lim
n→∞

[d(xp(n), xp(n)+m) + d(xp(n)+m, xq(n))] = ε. (23)

From (20) and the inequality

0 ≤ d(xp(n), xp(n)+m) ≤ Σm−1
i=0 d(xp(n)+i, xp(n)+i+1),

we have

lim
n→∞

d(xp(n), xp(n)+m) = 0, ∀m ∈ N. (24)

So, from (23) and (24), we get

lim
n→∞

d(xp(n)+m, xq(n)) = ε, ∀m ∈ N. (25)

Then from (19) and (22), we can choose a positive integer n1 ∈ N such that

1

2
d(xp(n), Txp(n)) <

1

2
ε < d(xp(n), xq(n)), ∀n ≥ n1.

Therefore by (10), we obtain

ψ(d(Txp(n), Txq(n)))

≤ ψ(MT (xp(n), xq(n)))− ϕ(MT (xp(n), xq(n)))

= ψ

 max



d(xp(n), xq(n)), d(xp(n)+2, xp(n)+1), d(xp(n)+2, xq(n)),
d(xp(n),xq(n)+1)+d(xp(n)+1,xq(n))

2 ,
d(xp(n)+2,xp(n)+1)+d(xp(n)+2,xq(n)+1)

2 ,
d(xp(n)+2, xq(n)+1) + d(xp(n)+1, xp(n)),
d(xp(n)+1, xq(n)) + d(xq(n), xq(n)+1)





− ϕ

 max



d(xp(n), xq(n)), d(xp(n)+2, xp(n)+1), d(xp(n)+2, xq(n)),
d(xp(n),xq(n)+1)+d(xp(n)+1,xq(n))

2 ,
d(xp(n)+2,xp(n)+1)+d(xp(n)+2,xq(n)+1)

2 ,
d(xp(n)+2, xq(n)+1) + d(xp(n)+1, xp(n)),
d(xp(n)+1, xq(n)) + d(xq(n), xq(n)+1)



 .

Taking limits as n→∞ on each side of the above inequality and using (22) and (25), we
have ψ(ε) ≤ ψ(ε) − ϕ(ε), which is a contradiction with ε > 0, so it follows that {xn} is a
Cauchy sequence in X. By completenes of (X, d), {xn}∞n=1 converges to some point x∗ in
X. Therefore,

lim
n→∞

d(xn, x
∗) = 0. (26)

Now, we claim that,

(I)
1

2
d(xn, Txn) < d(xn, x

∗) or (II)
1

2
d(Txn, T

2xn) < d(Txn, x
∗), ∀n ∈ N. (27)

Again, assume that there exists m ∈ N such that

1

2
d(xm, Txm) ≥ d(xm, x

∗) and
1

2
d(Txm, T

2xm) ≥ d(Txm, x
∗). (28)

Therefore,

2d(xm, x
∗) ≤ d(xm, Txm) ≤ d(xm, x

∗) + d(x∗, Txm),

which implies that

d(xm, x
∗) ≤ d(x∗, Txm), (29)
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Since 1
2d(xm, Txm) < d(xm, Txm), by the assumption of theorem, we get

ψ(d(Txm, T
2xm)))

≤ ψ(MT (xm, Txm))− ϕ(MT ((xm, Txm))

= ψ

 max



d(xm, Txm), d(T 2xm, Txm),

d(T 2xm, Txm), d(xm,T 2xm)+d(Txm,Txm)
2 ,

d(T 2xm,Txm)+d(T 2xm,T 2xm)
2 ,

d(T 2xm, T
2xm) + d(Txm, xm),

d(Txm, Txm) + d(Txm, T
2xm)





− ϕ

 max



d(xm, Txm), d(T 2xm, Txm),

d(T 2xm, Txm), d(xm,T 2xm)+d(Txm,Txm)
2 ,

d(T 2xm,Txm)+d(T 2xm,T 2xm)
2 ,

d(T 2xm, T
2xm) + d(Txm, xm),

d(Txm, Txm) + d(Txm, T
2xm)




= ψ

(
max

{
d(xm, Txm), d(T 2xm, Txm)

} )
− ϕ

(
max

{
d(xm, Txm), d(T 2xm, Txm)

} )
. (30)

If d(T 2xm, Txm) > d(xm, Txm) , then (30) becomes

ψ(d(Txm, T
2xm)) ≤ ψ(d(Txm, T

2xm))− ϕ(d(Txm, T
2xm)),

which is a contradiction ( from (13) and property of ϕ, we have ϕ(d(T 2xm, Txm)) > 0).
Thus, we conclude that

ψ(d(Txm, T
2xm)) ≤ ψ(d(xm, Txm))− ϕ(d(xm, Txm)). (31)

Consequently,

ψ(d(Txm, T
2xm)) < ψ(d(xm, Txm)),

and by the property of ψ, we have

d(Txm, T
2xm) < d(xm, Txm). (32)

It follows from (28), (29) and (32) that

d(Txm, T
2xm) < d(xm, Txm) ≤ d(xm, x

∗) + d(x∗, Txm)

≤ 2d(x∗, Txm) ≤ d(Txm, T
2xm).

This is a contradiction. Hence, (27) holds. Suppose part (I) of (27) is true, then from
assumption of theorem, we have

ψ(d(xn+1, Tx
∗))

≤ ψ(MT (xn, x
∗))− ϕ(MT (xn, x

∗))

= ψ

 max

 d(xn, x
∗), d(Txn+1, xn+1), d(xn+2, x

∗), d(xn,Tx∗)+d(xn+1,x∗)
2 ,

d(Txn+1,xn+1)+d(xn+2,Tx∗)
2 ,

d(xn+2, Tx
∗) + d(Txn, xn), d(xn+1, x

∗) + d(x∗, Tx∗)




− ϕ

 max

 d(xn, x
∗), d(Txn+1, xn+1), d(xn+2, x

∗), d(xn,Tx∗)+d(xn+1,x∗)
2 ,

d(Txn+1,xn+1)+d(xn+2,Tx∗)
2 ,

d(xn+2, Tx
∗) + d(Txn, xn), d(xn+1, x

∗) + d(x∗, Tx∗)


 .
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Taking n→∞ and using (26), we get

ψ(d(x∗, Tx∗)) ≤ ψ(d(x∗, Tx∗))− ϕ(d(x∗, Tx∗)).

This yields x∗ = Tx∗. Now suppose part (II) of (27) is true, then from assumption of
theorem, we have

ψ(d(xn+2, Tx
∗))

= ψ(d(Txn+1, Tx
∗))

≤ ψ(MT (xn+1, x
∗))− ϕ(MT (xn+1, x

∗))

= ψ

 max


d(xn+1, x

∗), d(T 2xn+1, Txn+1), d(T 2xn+1, x
∗), d(xn+1,Tx∗)+d(Txn+1,x∗)

2 ,
d(T 2xn+1,Txn+1)+d(T 2xn+1,Tx∗)

2 ,
d(T 2xn+1, Tx

∗) + d(Txn+1, xn+1), d(Txn+1, x
∗) + d(x∗, Tx∗)




− ϕ

 max


d(xn+1, x

∗), d(T 2xn+1, Txn+1), d(T 2xn+1, x
∗), d(xn+1,Tx∗)+d(Txn+1,x∗)

2 ,
d(T 2xn+1,Txn+1)+d(T 2xn+1,Tx∗)

2 ,
d(T 2xn+1, Tx

∗) + d(Txn+1, xn+1), d(Txn+1, x
∗) + d(x∗, Tx∗)




= ψ

 max

 d(xn+1, x
∗), d(Txn+2, xn+2), d(xn+3, x

∗), d(xn+1,Tx∗)+d(xn+2,x∗)
2 ,

d(Txn+2,xn+2)+d(xn+3,Tx∗)
2 ,

d(xn+3, Tx
∗) + d(Txn+1, xn+1), d(xn+2, x

∗) + d(x∗, Tx∗)




− ϕ

 max

 d(xn+1, x
∗), d(Txn+2, xn+2), d(xn+3, x

∗), d(xn+1,Tx∗)+d(xn+2,x∗)
2 ,

d(Txn+2,xn+2)+d(xn+3,Tx∗)
2 ,

d(xn+3, Tx
∗) + d(Txn+1, xn+1), d(xn+2, x

∗) + d(x∗, Tx∗)


 .

Taking n→∞ and using (26), we get

ψ(d(x∗, Tx∗)) ≤ ψ(d(x∗, Tx∗))− ϕ(d(x∗, Tx∗)).

This yields x∗ = Tx∗. Hence, x∗ is a fixed point of T . Now let us to show that T has
at most one fixed point. Indeed, if x∗, y∗ ∈ X be two distinct fixed points of T, that is,
Tx∗ = x∗ 6= y∗ = Ty∗, then d(x∗, y∗) > 0. So, we have 0 = 1

2d(x∗, Tx∗) < d(x∗, y∗) and
from the assumption of theorem, we obtain

ψ(d(y∗, x∗))

≤ ψ(MT (y∗, x∗))− ϕ(MT (y∗, x∗))

= ψ

 max


d(y∗, x∗), d(T 2y∗, T y∗), d(T 2y∗, x∗), d(y

∗,Tx∗)+d(Ty∗,x∗)
2 ,

d(T 2y∗,T y∗)+d(T 2y∗,Tx∗)
2 ,

d(T 2y∗, Tx∗) + d(Ty∗, y∗), d(Ty∗, x∗) + d(x∗, Tx∗)




− ϕ

 max


d(y∗, x∗), d(T 2y∗, T y∗), d(T 2y∗, x∗), d(y

∗,Tx∗)+d(Ty∗,x∗)
2 ,

d(T 2y∗,T y∗)+d(T 2y∗,Tx∗)
2 ,

d(T 2y∗, Tx∗) + d(Ty∗, y∗), d(Ty∗, x∗) + d(x∗, Tx∗)




= ψ(d(y∗, x∗))− ϕ(d(y∗, x∗)).

This gives ϕ(d(y∗, x∗)) ≤ 0. Hence y∗ = x∗. This completes the proof. �

The following two theorems can be obtained easily by repeating the steps in the proof
of Theorem 2.1.
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Theorem 2.2. Let (X, d) be a complete metric space and T : X → X satisfy

1

2
d(x, Tx) < d(x, y)⇒ ψ(d(Tx, Ty)) ≤ ψ(MT (x, y))− ϕ(Mg(Tx, Ty)), ∀x, y ∈ X,

where MT (x, y) is defined by (11), Mg(Tx, Ty) is defined by (3), ψ and ϕ are defined as
in Theorem 2.1. Then T has a unique fixed point.

Theorem 2.3. Let (X, d) be a complete metric space and T : X → X satisfy

1

2
d(x, Tx) < d(x, y)⇒ ψ(d(Tx, Ty)) ≤ ψ(MT (x, y))− ϕ(d(x, y)), ∀x, y ∈ X,

where MT (x, y) is defined by (11), ψ and ϕ are defined as in Theorem 2.1. Then T has a
unique fixed point.

Remark 2.1. Since d(x, y) ≤ Mg(Tx, Ty) ≤ MT (x, y) and ψ is nondecreasing function,
the result of Singh et al. [16, Theorem 2.1] and Dorić [7, Theorem 2.1] are obtained from
Theorem 2.2. Also the result of Rhoades [15, Theorem 1] and Dutta and Choudhary [9,
Theorem 2.1] are obtained from Theorem 2.3.

Example 2.1 shows the generality of Theorem 2.1 over Theorem 1.2, Theorem1.3, The-
orem 1.4, Theorem 1.5 and Theorem 1.6. Further, it is interesting to note that the map
T of Example 2.1 does not satisfy the hypotheses of Theorem 1.2, Theorem1.3, Theorem
1.4, Theorem 1.5 and Theorem 1.6.

Example 2.1. Let X = {−2,−1, 0, 1, 2} and define a metric d on X by

d(x, y) =

 0, if x = y,
2, if (x, y) ∈ {(1,−1), (−1, 1)},
1, otherwise.

Then, (X, d) is a complete metric space. Let T : X → X be defined by

T (−2) = T (0) = T (2) = 2, T (−1) = 0, T (1) = −2.

First observe that

d(Tx, Ty) > 0⇔ [(x ∈ {−2, 0, 2} ∧ y = 1)∨ (x ∈ {−2, 0, 2} ∧ y = −1)∨ (x = 1∧ y = −1)],

and

d(Tx, Ty) = 0⇔ [(x = −2 ∧ y = 0) ∨ (x = −2 ∧ y = 2) ∨ (x = 0 ∧ y = 2)],

Now we consider the following cases:
Case1. Let x ∈ {−2, 0, 2} ∧ y = 1, then

d(Tx, Ty) = d(2,−2) = 1, d(x, y) = d(x, 1) = 1, d(x, Tx) = d(x, 2) = 0 ∨ 1,

d(y, Ty) = d(1,−2) = 1,
d(x, Ty) + d(Tx, y)

2
=
d(x,−2) + d(2, 1)

2
=

1

2
∨ 1,

d(T 2x, x) + d(T 2x, Ty)

2
=
d(2, x) + d(2,−2)

2
=

1

2
∨ 1, d(x, Ty) = d(x,−2) = 0 ∨ 1,

d(Tx, y) = d(2,−2) = 1, d(T 2x, Tx) = d(2, 2) = 0, d(T 2x, y) = d(2, 1) = 1,

d(T 2x, Ty) + d(x, Tx) = d(2,−2) + d(x, 2) = 1 ∨ 2,

d(Tx, y) + d(y, Ty) = d(2, 1) + d(1,−2) = 2.
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Case2. Let x ∈ {−2, 0, 2} ∧ y = −1, then

d(Tx, Ty) = d(2, 0) = 1, d(x, y) = d(x,−1) = 1, d(x, Tx) = d(x, 2) = 0 ∨ 1,

d(y, Ty) = d(−1, 0) = 1,
d(x, Ty) + d(Tx, y)

2
=
d(x, 0) + d(2,−1)

2
=

1

2
∨ 1,

d(T 2x, x) + d(T 2x, Ty)

2
=
d(2, x) + d(2, 0)

2
=

1

2
∨ 1, d(x, Ty) = d(x, 0) = 0 ∨ 1,

d(Tx, y) = d(2,−1) = 1, d(T 2x, Tx) = d(2, 2) = 0, d(T 2x, y) = d(2,−1) = 1,

d(T 2x, Ty) + d(x, Tx) = d(2, 0) + d(x, 2) = 1 ∨ 2

d(Tx, y) + d(y, Ty) = d(2,−1) + d(−1, 0) = 2.

Case3. Let x = 1 ∧ y = −1, then

d(Tx, Ty) = d(−2, 0) = 1, d(x, y) = d(1,−1) = 2, d(x, Tx) = d(1,−2) = 1,

d(y, Ty) = d(−1, 0) = 1,
d(x, Ty) + d(Tx, y)

2
=
d(1, 0) + d(−2,−1)

2
= 1,

d(T 2x, x) + d(T 2x, Ty)

2
=
d(2, 1) + d(2, 0)

2
= 1, d(x, Ty) = d(1, 0) = 1,

d(Tx, y) = d(−2,−1) = 1, d(T 2x, Tx) = d(2,−2) = 1, d(T 2x, y) = d(2,−1) = 1,

d(T 2x, Ty) + d(x, Tx) = d(2, 0) + d(1,−2) = 1,

d(Tx, y) + d(y, Ty) = d(−2,−1) + d(−1, 0) = 2.

Case4. Let x = −2 ∧ y = 0, then

d(Tx, Ty) = d(2, 2) = 0, d(x, y) = d(−2, 0) = 1, d(x, Tx) = d(−2, 2) = 1,

d(y, Ty) = d(0, 2) = 1,
d(x, Ty) + d(Tx, y)

2
=
d(2, 2) + d(2, 0)

2
= 1,

d(T 2x, x) + d(T 2x, Ty)

2
=
d(2,−2) + d(2, 2)

2
=

1

2
, d(x, Ty) = d(−2, 2) = 1,

d(Tx, y) = d(2, 2) = 0, d(T 2x, Tx) = d(2, 2) = 0, d(T 2x, y) = d(2, 0) = 1,

d(T 2x, Ty) + d(x, Tx) = d(2, 2) + d(−2, 2) = 1,

d(Tx, y) + d(y, Ty) = d(2, 0) + d(0, 2) = 2.

Case5. Let x = −2 ∧ y = 2, then

d(Tx, Ty) = d(2, 2) = 0, d(x, y) = d(−2, 2) = 1, d(x, Tx) = d(−2, 2) = 1,

d(y, Ty) = d(2, 2) = 0,
d(x, Ty) + d(Tx, y)

2
=
d(2, 2) + d(2, 2)

2
= 0,

d(T 2x, x) + d(T 2x, Ty)

2
=
d(2,−2) + d(2, 2)

2
=

1

2
, d(x, Ty) = d(−2, 2) = 1,

d(Tx, y) = d(2, 2) = 0, d(T 2x, Tx) = d(2, 2) = 0, d(T 2x, y) = d(2, 2) = 0,

d(T 2x, Ty) + d(x, Tx) = d(2, 2) + d(−2, 2) = 1,

d(Tx, y) + d(y, Ty) = d(2, 2) + d(2, 2) = 0.
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Case6. Let x = 0 ∧ y = 2, then

d(Tx, Ty) = d(2, 2) = 0, d(x, y) = d(0, 2) = 1, d(x, Tx) = d(0, 2) = 1,

d(y, Ty) = d(2, 2) = 0,
d(x, Ty) + d(Tx, y)

2
=
d(0, 2) + d(2, 2)

2
=

1

2
,

d(T 2x, x) + d(T 2x, Ty)

2
=
d(2, 0) + d(2, 2)

2
=

1

2
, d(x, Ty) = d(0, 2) = 1,

d(Tx, y) = d(2, 2) = 0, d(T 2x, Tx) = d(2, 2) = 0, d(T 2x, y) = d(2, 2) = 0,

d(T 2x, Ty) + d(x, Tx) = d(2, 2) + d(0, 2) = 1,

d(Tx, y) + d(y, Ty) = d(2, 2) + d(2, 2) = 0.

In Case1 and Case2, we have

d(Tx, Ty) = d(x, y) = M(Tx, Ty) = Mg(Tx, Ty) = 1.

This proves that for all function ψ and ϕ, T does not satisfy the hypotheses of Theorem
1.6, Theorem 1.5, Theorem 1.4, Theorem 1.3 and Theorem 1.2. However, we see that for
all x, y ∈ X

1

2
d(x, Tx) < d(x, y) and MT (x, y) = 2.

We set ψ(t) = 3
4 t and ϕ(t) = 1

4 t, then we have

ψ(d(Tx, T2)) ≤ ψ(MT (x, y))− ϕ(MT (x, y)).

Hence , T satisfies in assumption of Theorem 2.1.
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