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EXTREMUM SEEKING CONTROL OF UNCERTAIN SYSTEMS

E.DINCMEN1, §

Abstract. Extremum seeking is used in control problems where the reference trajectory
or reference set point of the system is not known but it is searched in real time in order
to maximize or minimize a performance function representing the optimal behaviour of
the system. In this paper, extremum seeking algorithm is applied to the systems with
parametric uncertainties.
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1. Introduction

Extremum seeking control is used for searching a maximum or minimum point of a per-
formance function representing the desired behaviour of the system. The algorithm fits for
the problems where the performance function of the system is completely or partially not
known or may change in time. The system may be nonlinear and may have structured or
unstructured uncertainties and disturbances. Some application areas are maximization of
the braking and traction forces in automotive applications, wind mill adjustment to max-
imize the power generation, spark timing and cam timing control in internal combustion
engines, and optimization of bioreactors.

In the literature there are mainly four types of extremum seeking schemes: perturbation
based, sliding mode based, numerical optimization based, and gradient based extremum
seeking algorithms. In the perturbation based extremum seeking algorithms studied in [1]
- [3], a perturbation is added to the search signal. By observing the effect of the pertur-
bation on the performance function measurement, it is determined whether to increase or
decrease the search signal to reach its optimum value and hence maximize (or minimize)
the performance function. It is assumed that the shape, i.e. the gradient of the perfor-
mance function is unknown. In the seminal paper of Krstic and Wang [1], stability proof
for this type of extremum seeking control is given with the tools of averaging and singular
perturbations.

In the sliding mode based extremum seeking approach studied in [4] - [8], similar to
the previous scheme, the gradient of the performance function is considered unknown. A
sliding surface is defined where on that surface the performance function is forced to follow
an increasing (or decreasing) function. Since the shape of the performance function is not
known, this is a control problem with uncertain direction of control vector. Henceforth,
the search signals are selected as discontinuous periodic switchings.
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The numerical optimization based extremum seeking schemes in [9], and [10] uses it-
erative methods such as steepest descent. Numerical optimization algorithm chooses the
next state and a state regulator manages the system to follow the new state.

In the gradient based extremum seeking algorithms of [11], and [12], in contrast to the
above schemes, an explicit structure of the objective function is required.

In this paper, sliding mode based extremum seeking algorithm is developed for systems
with parametric uncertainties. The control scheme consists of two phases. In the first
phase, a sliding mode regulator brings the system to an equilibrium point characterized
with an adaptation parameter. In the second phase, the value of this adaptation parameter
is changed via the sliding mode-based extremum seeking scheme to operate the system in
the maximum point of its performance function where the gradient, i.e. the shape of the
performance function is unknown.

The paper is organized as follows. In Section 2, the problem formulation is given.
Section 3 explains sliding mode regulator for the parametric uncertain system. Section 4
introduces extremum seeking algorithm. Section 5 presents an exemplary control system.
The paper concludes with Section 6.

2. Problem Formulation

Consider the following nonlinear system with parameter uncertainties

ẋ1 = x2

ẋ2 = f(x,p) + b(x,p)u (1)

Here, x = [x1 x2] ∈ R2 is the state, y = x1 is the system output, u ∈ R is the control, and
p ∈ Rq is the uncertain parameter vector, where q is the number of uncertain parameters.

Assumption 1. The functions f(x,p) and b(x,p) can be written as

f = f̄ +4f ; |4f | ≤ F (x) (2)

0 < b = b̄+4b; |4b| ≤ B(x) (3)

where f̄ and b̄ represent the nominal parts, 4f and 4b represent unknown terms, which
are bounded with some known functions F (x) and B(x).

The objective is to control the uncertain system (1) with assumptions (2) and (3) at
the extremum point of a performance function, where the gradient, i.e. the shape of the
performance function is unknown. Only the magnitude of the performance function can
be measured during the control phase.

Assumption 2. The performance function of the system, which is

z = J(y) (4)

is smooth and has a unique maximum. For example the performance function can be
written as a quadratic function of

J(y) = J∗ + β [y(t)− y∗]2 (5)

where J∗ denotes the extremum value, y∗ is the optimum operation point of the system,
and β is a constant. The controller does not know the values of J∗, y∗, and β. Only the
magnitude of J should be at hand while the system output changes. The controller will
seek the optimum operation point, i.e. y∗ that maximizes the performance function.
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3. Sliding Mode Regulation via Adaptive Parameter

In [8], the idea of introducing a free parameter to the closed loop through the control
law and adapting this parameter to seek the optimum operating point with respect to
a performance function is given. Here, this method is applied to the system (1). A
sliding surface (6) is defined where on that surface the equilibrium point of the system is
characterized by an adaptation parameter θ

s1 = a(x1 − θ) + x2 (6)

By taking the time derivative of (6), one can obtain

ṡ1 = a(x2 − θ̇) + f + bu (7)

The control input is selected as

u =
1

b̄

[
−f̄ − a(x2 − θ̇)− U(x)sgn(s1)

]
(8)

Putting (8) in (7)

ṡ1 = a(x2 − θ̇) + f̄ +4f − b

b̄
f̄ − b

b̄
a(x2 − θ̇)−

b

b̄
Usgn(s1) (9)

Grouping same factors in (9), one can get

ṡ1 =

(
1− b

b̄

)[
a(x2 − θ̇) + f̄

]
+4f − b

b̄
Usgn(s1) (10)

From (10) one can write

s1ṡ1 ≤ |s1|
∣∣∣∣1−

b

b̄

∣∣∣∣
∣∣∣a(x2 − θ̇) + f̄

∣∣∣+ |s1|F −
b

b̄
U |s1| (11)

Since the inequalities of
b

b̄
≥ b̄−B

b̄
(12)

∣∣b̄− b
∣∣

b̄
=
4b
b̄
≤ B

b̄
(13)

are true, one can write following inequality from (11)

s1ṡ1 ≤ |s1|
B

b̄

∣∣∣a(x2 − θ̇) + f̄
∣∣∣+ |s1|F −

b̄−B
b̄

U |s1| (14)

In order to make right hand side of (14) negative definite, U is selected as

U =
b̄

b̄−B

[
U0 +

B

b̄

∣∣∣a(x2 − θ̇) + f̄
∣∣∣+ F

]
(15)

where U0 > 0. So (14) becomes
s1ṡ1 ≤ −σ0 |s1| (16)

where σ0 is a positive number. Since (16) is the finite time stability condition, after a
finite time interval, s1 will equal to zero. Then, (6) becomes

a(x1 − θ) + x2 = 0 (17)

By choosing a big enough to let (17) have a fast dynamics, x1 will track θ. Putting (15)
to the (8), the control input is calculated from

u =
1

b̄

[
−f̄ − a(x2 − θ̇)

]
− 1

b̄−B

[
U0 +

B

b̄

∣∣∣a(x2 − θ̇) + f̄
∣∣∣+ F

]
sgn(s1) (18)
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4. Extremum Seeking Adaptation Rule

As introduced in Section 2, the performance function can be a quadratic function as
shown in (5). The sliding mode regulator given in Section 3 ensures that the state x1 will
track the adaptation parameter θ. Hence, (5) can be written as

J(θ) = J∗ + β [θ(t)− x∗1] (19)

So, the problem turns into adapting the θ value to seek the optimum point of the
performance function, e.g. (19). A second sliding surface is selected as

s2 = J(θ)− g(t) (20)

where g(t) is a time increasing function with the slope of ρ. Taking the time derivative of
(20), one can obtain

ṡ2 =
dJ

dθ
θ̇ − ρ (21)

The adaptation rule for the parameter θ is selected as

θ̇ = Ksgn
[
sin
(πs2
α

)]
(22)

where K and α are positive constants. By putting (22) into (21) one can get

ṡ2 =
dJ

dθ
Ksgn

[
sin
(πs2
α

)]
− ρ (23)

Theorem 4.1. In (23) as long as the condition
∣∣∣∣
dJ

dθ

∣∣∣∣ >
ρ

K
(24)

holds, then, after a finite time interval, the time derivative of s2 will be equal to zero.

Proof. Assuming that the initial value of the sliding surface variable s2 is between the
interval of

α < s2(0) < 2α (25)

then, the following mathematical expressions can be written on this interval

sgn
[
sin
(πs2
α

)]
= −sgn(s2 − α) = sgn(s2 − 2α) (26)

Expressions of (26) can be justified from Figure 1. It is seen that when the value of s2
is between α < s2 < 2α, then the function sgn

[
sin
(
πs2
α

)]
is equal to -1 and the values of

the functions −sgn(s2 − α) and sgn(s2 − 2α) are also equal to -1 on this interval. Now,
according to (24), consider the case that the current operation point satisfies

dJ

dθ
< − ρ

K
(27)

From (23) and (26), one can write

ṡ2 =
dJ

dθ
Ksgn(s2 − 2α)− ρ (28)

By defining a new variable γ as

γ = s2 − 2α (29)

then, since γ̇ = ṡ2, (28) can be written as

γ̇ =
dJ

dθ
Ksgn(γ)− ρ (30)
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Figure 1. Function of sgn
[
sin
(
πs2
α

)]
.

By multiplying (30) with γ, the following equality can be written

γγ̇ =
dJ

dθ
K |γ| − ργ (31)

Since (27) is considered to be true, one can write (31) as

γγ̇ = −
∣∣∣∣
dJ

dθ

∣∣∣∣K |γ| − ργ (32)

From (32), following inequality can be written

γγ̇ ≤ −
∣∣∣∣
dJ

dθ

∣∣∣∣K |γ|+ ρ |γ| = − |γ|
[∣∣∣∣
dJ

dθ

∣∣∣∣K − ρ
]
< 0 (33)

(33) is finite time convergence condition, which means that after a finite time interval γ
will equal to zero. From (29), after a finite time interval, when γ = 0, then

s2 = 2α (34)

which means that after a finite time interval s2 value will approach to a constant value.
Above analysis has been conducted for the case of (27). Now, the analysis is conducted
for the case of

dJ

dθ
>

ρ

K
(35)

From (23) and (26), one can write

ṡ2 = −dJ
dθ
Ksgn(s2 − α)− ρ (36)

This time, when γ is defined as

γ = s2 − α (37)

then, since γ̇ = ṡ2, (36) can be written as

γ̇ = −dJ
dθ
Ksgn(γ)− ρ (38)
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By multiplying (38) with γ, the following equality can be written

γγ̇ = −dJ
dθ
K |γ| − ργ (39)

Since (35) is considered to be true, then one can write (39) as follows

γγ̇ = −
∣∣∣∣
dJ

dθ

∣∣∣∣K |γ| − ργ (40)

From (40), the following inequality can be written

γγ̇ ≤ −
∣∣∣∣
dJ

dθ

∣∣∣∣K |γ|+ ρ |γ| = − |γ|
[∣∣∣∣
dJ

dθ

∣∣∣∣K − ρ
]
< 0 (41)

Again, since (41) is the finite time stability condition, after a finite time interval, γ will
equal to zero. From (37), after a finite time interval

s2 = α (42)

will be true. So, it has been shown that when the initial value of s2 is between α < s2 < 2α,
then, as long as the condition (24) holds, after a finite time interval, s2 value will approach
to α or 2α. The above analysis can be repeated not for only α < s2 < 2α but for any
initial value of s2. For any s2(0), after a finite time interval, s2 will approach to a constant
value, which results that ṡ2 = 0. �

According to the sliding surface given in (20), after a finite time interval, when ṡ2 = 0,
it is true that

J̇ = ρ (43)

which means that the value of the performance function will increase with the slope of ρ.
In sliding mode, the equivalent value of θ̇ can be calculated as

ṡ2 =
dJ

dθ
θ̇ − ρ = 0 (44)

(θ̇)eq =
ρ
dJ
dθ

(45)

So, when the current value of the adaptation parameter is less than its optimum value,
for example point P5 in Figure 2, then the sign of dJ

dθ is positive and according to the (45),
θ value will increase and approach towards its optimum value θ∗. On the contrary, when
the current value of the adaptation parameter is bigger than its optimum value, the sign
of dJ

dθ is negative and according to the (45), θ value will decrease and approach towards
the optimum value.

In Figure 2, P1 and P4 characterizes the points where the condition (24) doesn’t hold
anymore. As long as the gradient is greater than the value in the right hand side of (24),
the performance function will increase towards the points P1 or P4. When the current
operating point hits the point P1, it will be true that

∣∣∣∣
dJ

dθ

∣∣∣∣ <
ρ

K
(46)

Then, from (23), it can be written that,

ṡ2 =
dJ

dθ
Ksgn

[
sin
(πs2
α

)]
− ρ ≤

∣∣∣∣
dJ

dθ

∣∣∣∣K − ρ < 0 (47)
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Figure 2. Sketch of the performance function.

Henceforth, s2 will be not constant anymore as in (34) or (42) and it will start to decrease
with the velocities of (

ds2
dt

)

max

= −
∣∣∣∣
dJ

dθ

∣∣∣∣K − ρ
(
ds2
dt

)

min

= +

∣∣∣∣
dJ

dθ

∣∣∣∣K − ρ (48)

While s2 decreases, according to (22), θ̇ will oscillate between +K and −K. It can be
shown that θ will still converge towards the optimum point with oscillation. According to
(48) change of s2 and ṡ2 can be characterized as in Figure 3 and change of θ̇ according to
(22) is shown in Figure 4. It is obvious from Figure 3 that s2 passes the region I slower

than the region II because of the smaller change rate. Consequently θ̇ takes the value of
+K more than −K and hence θ will increase and approach to the point P2, i.e. continue
to approach towards the optimum point θ∗.

If θ passes to the right side of the optimum value where the gradient is negative, change
of s2 and ṡ2 will be similar as in Figure 5, where s2 will pass the region II slower than
the region I due to the smaller change rate. Consequently θ̇ takes the value of −K more
than +K resulting that θ will decrease and approach to the optimum value. Finally, θ
will oscillate in a small neighborhood of the extremum point as it is shown in Figure 2
with the points of P2 and P3.

5. Example System

A mass-spring-damper with hardening spring is taken as the example system

ẋ1 = x2

ẋ2 = − c

m
x2 −

k

m
(1 + x21)x1 +

1

m
u (49)

where c, m, k are damping coefficient, mass and spring coefficient respectively. These are
uncertain parameters, where their maximum and minimum values are known as

cmin ≤ c ≤ cmax
kmin ≤ k ≤ kmax

mmin ≤ m ≤ mmax (50)
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Figure 3. Change of s2 and ṡ2 around the neighborhood of the extremum point
when the gradient is positive.
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θ̇

I II I
+K
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Figure 4. Change of θ̇.

The objective is to control the uncertain system (49) and (50) such that a performance
function will be maximized. First, the system is brought to an equilibrium point charac-
terized with an adaptation parameter. The sliding surface is selected as

s1 = a(x1 − θ) + x2 (51)

Taking the time derivative of (51)

ṡ1 = a(x2 − θ̇)−
c

m
x2 −

k

m
(1 + x21)x1 +

1

m
u (52)

The control input is selected as

u = c̄x2 + k̄(1 + x21)x1 − m̄
[
a(x2 − θ̇) + U(x)sgn(s1)

]
(53)
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Figure 5. Change of s2 and ṡ2 around the neighborhood of the extremum point
when the gradient is negative.

where c̄, k̄ and m̄ are the average values of the c, k and m. Putting (53) into the (52)

ṡ1 = a(x2 − θ̇)−
c

m
x2 −

k

m
(1 + x21)x1 +

c̄

m
x2

+
k̄

m
(1 + x21)x1 −

m̄

m
a(x2 − θ̇)−

m̄

m
U(x)sgn(s1) (54)

By collecting the same factors, one can get

ṡ1 = a(x2 − θ̇)
[
1− m̄

m

]
+
x2
m

(c̄− c) +
(1 + x21)x1

m
(k̄ − k)− m̄

m
U(x)sgn(s1) (55)

From (55) the following inequality can be written

s1ṡ1 ≤ |s1|a|x2 − θ̇|
|m− m̄|

m
+ |s1|

|x2|
m
|c̄− c|+ |s1|

(1 + x21)

m
|x1|

∣∣k̄ − k
∣∣− m̄

m
U(x)|s1| (56)

In order to make right hand side of (56) negative definite, U(x) can be selected as

U(x) ≥ 1

m̄

[
a|x2 − θ̇| |m− m̄|+ |x2| |c̄− c|

]
+

1

m̄

[
(1 + x21)|x1|

∣∣k̄ − k
∣∣+ U0

]
(57)

where U0 > 0. Since in (57) the values of m, c, and k are not known, one can choose for
U(x) as

U(x) =
1

m̄

[
a|x2 − θ̇| (mmax − m̄) + |x2| (cmax − c̄)

]

+
1

m̄

[
(1 + x21)|x1|

(
kmax − k̄

)
+ U0

]
(58)

By selecting U(x) as in (58), one assures that after a finite time interval, s1 = 0 and x1
will track θ. Putting (58) into (53), the control input can be calculated from

u = c̄x2 + k̄(1 + x21)x1 − m̄a(x2 − θ̇)
−
[
a|x2 − θ̇| (mmax − m̄) + |x2| (cmax − c̄)

+(1 + x21)|x1|
(
kmax − k̄

)
+ U0

]
sgn(s1) (59)
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The parameter θ will be adapted as given in Section 4. The adaptation rule is

θ̇ = Ksgn
[
sin
(πs2
α

)]
(60)

where s2 is calculated from
s2 = J(θ)− g(t) (61)

So, the final expression of the control input will be as follows

u = c̄x2 + k̄(1 + x21)x1 − m̄a
(
x2 −Ksgn

[
sin
(πs2
α

)])

−
[
a
∣∣∣x2 −Ksgn

[
sin
(πs2
α

)]∣∣∣ (mmax − m̄) + |x2| (cmax − c̄)

+(1 + x21)|x1|
(
kmax − k̄

)
+ U0

]
sgn(s1) (62)

6. CONCLUSION

In this paper, sliding mode based extremum seeking algorithm is applied to the systems
with parametric uncertainties. The control scheme consists of two phases. In the first
phase, a sliding mode regulator brings the system to an equilibrium point characterized
with an adaptation parameter. In the second phase, the adaptation parameter is changed
via the extremum seeking scheme to operate the system in the extremum point of a per-
formance function. The controller will operate the uncertain system in a-priori unknown
optimum set point where the performance function is maximized.
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