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INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM

GEOMETRY OF THE PSEUDO-GALILEAN SPACE G1
3
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Abstract. In this paper, we study inextensible flows of curves in 3-dimensional pseudo-
Galilean space. We give necessary and sufficient conditions for inextensible flows of curves
according to equiform geometry in pseudo-Galilean space.
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1. Introduction

The flow of a curve is said to be inextensible if its arclength is preserved. Physically,
the inextensible curve flows give rise to motions in which no strain energy is induced.
The flows of inextensible curve and surface are used to solve many problems in computer
vision [8], [12], computer animation [1] and even structural mechanics [17]. Especially the
methods used in this paper developed by Gage and Hamilton [6] and Grayson [7]. The
differentiation between heat flows and inextensible flows of planar curves were elaborated
in detail, and some examples of the latter were given by [10]. Also, a general formulation
for inextensible flows of curves and developable surfaces in R3 are exposed by [9]. Latifi
et al.[11] studied inextensible flows of curves in Minkowski 3-space. Ogrenmis et al.[13]
studied inextensible curves in the Galilean space G3 , moreover inelastic flows of curves
according to equiform in Galilean space given in [18].

The curves and the surfaces in G1
3 are described in [14, 2, 3, 4]. Theory of curves and the

curves of constant curvature in the equiform differential geometry of the isotropic space I13
and I23 and the Galilean space G3 are described in [15] and [16], respectively. Also, Divjak
et al.[5] studied the equiform differential geometry of curves in the pseudo-Galilean space
.

In this paper, we investigate inextensible flows of curves in the equiform geometry of
the pseudo-Galilean space G1

3. Then we obtain partial differential equations in terms of
inextensible flows of curves according to equiform in G1

3.
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2. Preliminaries

The pseudo-Galilean geometry is one of the real Cayley-Klein geometries of projective
signature (0,0,+,-), explained in [3]. As in [3], pseudo-Galilean inner product can be
written as

〈v1, v2〉 =

{
x1x2 , if x1 6= 0 ∨ x2 6= 0
y1y2 − z1z2 , if x1 = 0 ∧ x2 = 0

where v1 = (x1, y1, z1) and v2 = (x2, y2, z2). The pseudo-Galilean norm of the vector
v = (x, y, z) defined by

‖v‖ =

{
x , if x 6= 0√
|y2 − z2| , if x = 0

In pseudo-Galilean space a curve is given by α : I → G1
3

α (t) = (x (t) , y (t) , z (t)) (1)

where I ⊆ R and x (t) , y (t) , z (t) ∈ C3 . A curve α given by (1) is admissible if x′ (t) 6= 0
[3].

The curves in pseudo-Galilean space are characterized as follows [2]
An admissible curve in G1

3 can be parametrized by arclength t = s, given in coordinate
form

α (s) = (s, y (s) , z (s)) . (2)

For an admissible curve α : I ⊆ R → G1
3, the curvature κ (s) and the torsion τ (s) are

defined by

κ (x) =
√
|y′′2 − z′′2|, (3)

τ (s) =
1

κ2 (s)
det
(
α′ (s) , α′′ (s) , α′′′ (s)

)
. (4)

The associated trihedron is given by

t(s) = α′ (s) =
(
1, y′ (s) , z′ (s)

)
n(s) =

1

κ (s)
α′′ (s) =

1

κ (s)

(
0, y′′ (s) , z′′ (s)

)
(5)

b(s) =
1

κ (s)

(
0, z′′ (s) , y′′ (s)

)
[4].

The vectors t (s),n (s) and b (s) are called the vectors of tangent, principal normal and
binormal line of α, respectively. The curve α given by (2) is timelike if n (s) is spacelike
vector. For derivatives of tangent vector t (s), principal normal vector n (s) and binormal
vector b (s), respectively, the following Frenet formulas hold

t′ (s) = κ (s)n (s) ,

n′ (s) = τ (s) b (s) , (6)

b′ (s) = τ (s)n (s) .

If the admissible curve β is given by β (x) = (x, y (x) , 0) and for this admissible curve
the curvature κ (s) and the torsion τ (s) are defined by

κ (x) = y′′ (x)

τ (x) =
a′2 (x)

a3 (x)
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where a (x) = (0, a2 (x) , a3 (x)). The associated trihedron is given by

t (x) =
(
1, y′ (x) , 0

)
,

n (x) = (0, a2 (x) , a3 (x)) ,

b (x) = (0, a3 (x) , a2 (x)) .

For derivatives of tangent vector t (s), principal normal vector n (s) and binormal vector
b (s), respectively, the following Frenet formulas hold

t′ (x) = κ (x) (coshφ (x)n (x)− sinhφ (x) b (x))

n′ (x) = τ (x) b (x) (7)

b′ (x) = τ (x)n (x)

where φ is the angle between a (x) and the plane z = 0 [4].

3. Frenet Formulas in Equiform Geometry in G1
3

Let α : I → G1
3 be an admissible curve. We define the equiform parameter of α by

σ :=

∫
ds

ρ
=

∫
κds ,

for ρ =
1

κ
is the radius of curvature of the curve α. Then

dσ

ds
=

1

ρ
, i.e.,

ds

dσ
= ρ . (8)

Let h be a homothety with the center in the origin and the coefficient λ. If we put
α̃ = h (α), we obtain

s̃ = λs and ρ̃ = λρ

where s̃ is the arclength parameter of α̃ and ρ̃ the radius of curvature of this curve. Then,
σ is an equiform invariant parameter of α [5].
From now on, we define the Frenet formula of the curve α with respect to the equiform
invariant parameter σ in G1

3. The vector

T =
dα

ds

is called a tangent vector of the curve α in the equiform geometry. Using (5) and (8) we
have

T =
dα

ds
· ds
dσ

= ρ · dα
ds

= ρ · t . (9)

Also, we have the principal normal vector and binormal vector by

N = ρ · n , B = ρ · b . (10)

One can say that the trihedron {T,N,B} is an equiform invariant trihedron of the curve
α. On the other hand, the derivations of these vectors with respect to σ are given by

T ′ =
dT

dσ
= ρ̇T +N,

N ′ =
dN

dσ
= ρ̇N + ρτB,

B′ =
dB

dσ
= ρ̇B + ρτN.
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Definition 3.1. The function K : I → R defined by

K = ρ̇

is called the equiform curvature of the curve α.

Definition 3.2. The function T : I → R defined by

T = ρτ =
τ

κ

is called the equiform torsion of the curve α.

Then we can write the Frenet formulas in the equiform geometry of the pseudo-Galilean
space as follows [5]

dT

dσ
= K.T +N,

dN

dσ
= K.N + T.B (11)

dB

dσ
= T.N + K.B

4. Inextensible Flows of Curves According to Equiform in
pseudo-Galilean Space G1

3

Throughout this paper, we assume that F : [0, l]× [0, w]→ G1
3 is a one parameter family

of smooth curves in pseudo-Galilean space G1
3, where l is the arclength of initial curve.

Let u be the curve parametrization variable, 0 ≤ u ≤ l. We put v =

∥∥∥∥∂F∂u
∥∥∥∥, from which

the arclength of F is defined by s (u) =

∫ u

0
vdu .

Also, the operator
∂

∂s
is given in terms of u by

∂

∂s
=

1

v

∂

∂u
, and the arclength parameter

is given by ds = vdu.
On the equiform invariant orthonormal frame {T,N,B} of a curve α in G1

3 any flow of F
can be written by

∂F

∂t
= fT + gN + hB (12)

for f , g, h are the tangential, principal normal, binormal speeds of the curve in G1
3,

respectively. We set s (u, t) =

∫ u

0
vdu, it is called the arclength variation of F . Then,

the requirement that the curve not be subject to any elongation or compression can be
expressed by the condition

∂

∂s
s (u, t) =

∫ u

0

∂v

∂t
du = 0 , (13)

for all u ∈ [0, l].

Definition 4.1. A curve evolution F (u, t)and its flow
∂F

∂t
in pseudo-Galilean space G1

3

are said to be inextensible if

∂

∂t

∥∥∥∥∂F∂u
∥∥∥∥ = 0.
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Lemma 4.1. Let
∂F

∂t
= fT +gN+hB be a smooth flow of the curve α in pseudo-Galilean

space G1
3. The flow is inextensible if and only if

∂v

∂t
=
∂f

∂u
+ fvK (14)

Proof. Let
∂F

∂t
be a smooth flow of the curve F in pseudo-Galilean space G1

3. From the

definition of v, we obtain

v
∂v

∂t
=

〈
∂F

∂u
,
∂

∂u
(fT + gN + hB)

〉
. (15)

From (11) we obtain

∂v

∂t
=

〈
T,

(
∂f

∂u
+ fvK

)
T +

(
∂g

∂u
+ fv + hvT + gvK

)
N +

(
∂h

∂u
+ gvT + hvK

)
B

〉
.

If we make necessary calculations, we get (14). �

Theorem 4.1. Suppose that
∂F

∂t
= fT + gN + hB be a smooth flow of the curve F in

pseudo-Galilean space G1
3. The flow is inextensible if and only if

∂f

∂u
= −fK.

Proof. Using (13), we have

∂

∂t
s (u, t) =

∫ u

0

∂v

∂t
du =

∫ u

0

(
∂f

∂u
+ fvK

)
= 0 . (16)

Substituting (14) in (16) complete the proof of the theorem. �

Suppose that, v = 1 and the local coordinate u corresponds to the curve arc length s.

Lemma 4.2. Let
∂F

∂t
= fT+gN+hB be a smooth flow of the curve α in pseudo-Galilean

space G1
3. Using (11) we have

i) if 〈N,N〉 = −1 and 〈B,B〉 = 1 we have

∂T

∂t
=

(
∂g

∂s
+ f + gK + hT

)
N +

(
∂h

∂s
+ gT + hK

)
B (17)

∂N

∂t
=

(
∂g

∂s
+ f + gK + hT

)
T + ϕB (18)

∂B

∂t
= −

(
∂h

∂s
+ gT + hK

)
T + ϕN (19)

ii) if 〈N,N〉 = 1 and 〈B,B〉 = −1 we have

∂T

∂t
=

(
∂g

∂s
+ f + gK + hT

)
N +

(
∂h

∂s
+ gT + hK

)
B (20)

∂N

∂t
= −

(
∂g

∂s
+ f + gK + hT

)
T − ϕB (21)

∂B

∂t
=

(
∂h

∂s
+ gT + hK

)
T − ϕN (22)

where ϕ =

〈
∂N

∂t
,B

〉
provided that

(
∂g

∂s
+ f + gK + hT

)
= 0.
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Proof. Using definition of F , we have

∂T

∂t
=

∂

∂t

∂F

∂s
=

∂

∂s
(fT + gN + hB) .

Using (11), we have

∂T

∂t
=

(
∂f

∂s
+ fK

)
T +

(
∂g

∂s
+ f + gK + hT

)
N +

(
∂h

∂s
+ gT + hK

)
B (23)

On the other hand using theorem 4.1. in (23), we get

∂T

∂t
=

(
∂g

∂s
+ f + gK + hT

)
N +

(
∂h

∂s
+ gT + hK

)
B .

i) Now we differentiate the Frenet frame by t:

0 =
∂

∂t
〈T,N〉 = −

(
∂g

∂s
+ f + gK + hT

)
+

〈
T,
∂N

∂t

〉
0 =

∂

∂t
〈T,B〉 =

(
∂h

∂s
+ gT + hK

)
+

〈
T,
∂B

∂t

〉
0 =

∂

∂t
〈N,B〉 = ϕ+

〈
N,

∂B

∂t

〉
Then, a straight forward computation using above system gives

∂N

∂t
=

(
∂g

∂s
+ f + gK + hT

)
T + ϕB

∂B

∂t
= −

(
∂h

∂s
+ gT + hK

)
T + ϕN

where ϕ =

〈
∂N

∂t
,B

〉
provided that

(
∂g

∂s
+ f + gK + hT

)
= 0. So, we obtain the lemma

4.2. (i). �

ii) Now we differentiate the Frenet frame by t:

0 =
∂

∂t
〈T,N〉 =

(
∂g

∂s
+ f + gK + hT

)
+

〈
T,
∂N

∂t

〉
0 =

∂

∂t
〈T,B〉 = −

(
∂h

∂s
+ gT + hK

)
+

〈
T,
∂B

∂t

〉
0 =

∂

∂t
〈N,B〉 = ϕ+

〈
N,

∂B

∂t

〉
Then, a straight forward computation using above system gives

∂N

∂t
= −

(
∂g

∂s
+ f + gK + hT

)
T − ϕB

∂B

∂t
=

(
∂h

∂s
+ gT + hK

)
T − ϕN

where ϕ =

〈
∂N

∂t
,B

〉
provided that

(
∂g

∂s
+ f + gK + hT

)
= 0. Thus, we obtain the

lemma 4.2. (ii).
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Theorem 4.2. Let
∂F

∂t
be inextensible. Then, using (11), the following system of partial

differential equations holds:
i) if 〈N,N〉 = −1 and 〈B,B〉 = 1 we have

∂K
∂t

= 0

∂T
∂t

= −
(
∂h

∂s
+ gT + hK

)
+
∂ϕ

∂s

ϕ =

(
∂2h

∂s2
+

∂

∂s
(gT) +

∂

∂s
(hK)

)
ii) if 〈N,N〉 = 1 and 〈B,B〉 = −1 we have

∂K
∂t

= 0

∂T
∂t

=

(
∂h

∂s
+ gT + hK

)
− ∂ϕ

∂s

ϕ = −
(
∂2h

∂s2
+

∂

∂s
(gT) +

∂

∂s
(hK)

)
where ϕ =

〈
∂N

∂t
,B

〉
provided that

(
∂g

∂s
+ f + gK + hT

)
= 0.

Proof. i) Using (17), we have

∂

∂s

∂T

∂t
=

∂

∂s

[(
∂g

∂s
+ f + gK + hT

)
N +

(
∂h

∂s
+ gT + hK

)
B

]
=

[(
∂2g

∂s2
+

∂

∂s
(f) +

∂

∂s
(gK) +

∂

∂s
(hT)

)]
N

+

(
∂g

∂s
+ f + gK + hT

)
(KN + TB)

+

(
∂2h

∂s2
+

∂

∂s
(gT) +

∂

∂s
(hK)

)
B +

(
∂h

∂s
+ gT + hK

)
(TN + KB)

On the other hand, from (11), we have

∂

∂s

∂T

∂t
=

∂

∂t
(KT +N)

=
∂K
∂t
T + K

(
∂g

∂s
+ f + gK + hT

)
N + K

(
∂h

∂s
+ gT + hK

)
B

=

(
∂g

∂s
+ f + gK + hT

)
T + ϕB

Hence we see that
∂K
∂t

= 0 ,

and

ϕ =

(
∂2h

∂s2
+

∂

∂s
(gT) +

∂

∂s
(hK)

)
.

where ϕ =

〈
∂N

∂t
,B

〉
provided that

(
∂g

∂s
+ f + gK + hT

)
= 0.
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Also, we have from lemma 4.2.(i)

∂

∂s

∂B

∂t
=

∂

∂s

[
−
(
∂h

∂s
+ gT + hK

)
T + ϕN

]
= −

(
∂2h

∂s2
+

∂

∂s
(gT) +

∂

∂s
(hK)

)
T −

(
∂h

∂s
+ gT + hK

)
(KT +N)

+
∂ϕ

∂s
N + ϕ (KN + TB)

On the other hand, from (11), we have

∂

∂t

∂B

∂s
=

∂

∂t
(TN + KB)

=

(
∂T
∂t

+ Kϕ
)
N +

[
T
(
∂g

∂s
+ f + gK + hT

)
−K

(
∂h

∂s
+ gT + hK

)]
=

(
∂K
∂t

+ Tϕ
)
B

Hence we see that
∂T
∂t

= −
(
∂h

∂s
+ gT + hK

)
+
∂ϕ

∂s
.

ii) Using (20), we have

∂

∂s

∂T

∂t
=

∂

∂s

[(
∂g

∂s
+ f + gK + hT

)
N +

(
∂h

∂s
+ gT + hK

)
B

]
=

[(
∂2g

∂s2
+

∂

∂s
(f) +

∂

∂s
(gK) +

∂

∂s
(hT)

)]
N +

(
∂g

∂s
+ f + gK + hT

)
(KN + TB)

+

(
∂2h

∂s2
+

∂

∂s
(gT) +

∂

∂s
(hK)

)
B +

(
∂h

∂s
+ gT + hK

)
(TN + KB)

On the other hand, from (11), we have

∂

∂s

∂T

∂t
=

∂

∂t
(KT +N)

=
∂K
∂t
T + K

(
∂g

∂s
+ f + gK + hT

)
N + K

(
∂h

∂s
+ gT + hK

)
B

−
(
∂g

∂s
+ f + gK + hT

)
T − ϕB

Hence we see that
∂K
∂t

= 0 ,

and

ϕ = −
(
∂2h

∂s2
+

∂

∂s
(gT) +

∂

∂s
(hK)

)
.

where ϕ =

〈
∂N

∂t
,B

〉
provided that

(
∂g

∂s
+ f + gK + hT

)
= 0
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Also, we have from lemma 4.2.(ii)

∂

∂s

∂B

∂t
=

∂

∂s

[(
∂h

∂s
+ gT + hK

)
T − ϕN

]
=

(
∂2h

∂s2
+

∂

∂s
(gT) +

∂

∂s
(hK)

)
T +

(
∂h

∂s
+ gT + hK

)
(KT +N)

− ∂ϕ

∂s
N − ϕ (KN + TB)

On the other hand, from (11), we have

∂

∂t

∂B

∂s
=

∂

∂t
(TN + KB)

=

(
∂T
∂t
−Kϕ

)
N +

[
−T

(
∂g

∂s
+ f + gK + hT

)
+ K

(
∂h

∂s
+ gT + hK

)]
=

(
∂K
∂t
− Tϕ

)
B

Hence we see that
∂T
∂t

=

(
∂h

∂s
+ gT + hK

)
− ∂ϕ

∂s
.

Thus, we prove the theorem. �
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