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ON A SUM FORM FUNCTIONAL EQUATION

PREM NATH1, DHIRAJ KUMAR SINGH2, §

Abstract. The general solutions of a sum form functional equation containing two
unknown mappings, without imposing any regularity condition on them, have been ob-
tained.

Keywords: functional equation, additive mapping, multiplicative mapping, logarith-
mic mapping.
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1. Introduction

Functional equations appear in various branches of pure mathematics and applied math-
ematics, business mathematics, economics, information theory, thermodynamics, physics,
engineering, and so on (see [1], [3], [4], [5])

For n = 1, 2, . . .; let Γn =

{
(p1, . . . , pn) : pi ≥ 0, i = 1, . . . , n;

n∑
i=1

pi = 1

}
denote the set

of all n-component complete discrete probability distributions with nonnegative elements.
Let R denote the set of all real numbers; I = {x ∈ R : 0 ≤ x ≤ 1}; ]0, 1[ = {x ∈ R : 0 <
x < 1} and ]0, 1] = {x ∈ R : 0 < x ≤ 1}.

By giving necessary motivations from statistics point of view, considering the first and
second order moments of a specific random variable, Nath and Singh [7] derived the
functional equation

φ2(pq) = qφ2(p) + pφ2(q) + 2φ1(p)φ1(q)

for all p ∈ I, q ∈ I; φ2 : I → R, φ1 : I → R with φ2(0) = 0, φ2(1) = 0, φ1(0) = 0,
φ1(1) = 0.

For all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm, the authors [7] considered the functional
equation

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

f(pi) +

m∑
j=1

f(qj) + c

n∑
i=1

g(pi)

m∑
j=1

g(qj) (A)
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in which c 6= 0 is a given real constant; f : I → R, g : I → R are unknown mappings.
Clearly f = φ2 and g = φ1 satisfy (A) with c = 2. Keeping in view φ1(0) = 0, φ1(1) = 0,
φ2(0) = 0, φ2(1) = 0 and the fact that f = φ2 and g = φ1, we have

(i) f(0) = 0, (ii) g(0) = 0 (1)

and

(i) f(1) = 0, (ii) g(1) = 0. (2)

Nath and Singh [7] obtained the general solutions of (A) by assuming (1) and (2); and
f : I → R, g : I → R, (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3 and m ≥ 3 being fixed
integers.

The object of this paper is to obtain the general solutions of (A) for all (p1, . . . , pn) ∈
Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3 and m ≥ 3 being fixed integers; without assuming (1)
and (2).

2. Some Preliminary Results

In this section, we mention some known definitions and results.
A mapping a : I → R is said to be additive on I or on the unit triangle ∆ = {(x, y) : 0 ≤

x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x+ y ≤ 1} if it satisfies the equation a(x+ y) = a(x) + a(y) for all
(x, y) ∈ ∆. A mapping A : R→ R is said to be additive on R if A(x+y) = A(x)+A(y) for
all x ∈ R, y ∈ R. It is known (see Daróczy and Losonczi [2]) that if a mapping a : I → R
is additive on I, then there exists a unique mapping A : R → R which is additive on R
and A(x) = a(x) for all x ∈ I.

A mapping M : I → R is said to be multiplicative if M(pq) = M(p)M(q) for all p ∈ I,
q ∈ I.

A mapping ` : I → R is said to be logarithmic if `(0) = 0 and `(pq) = `(p) + `(q) for all
p ∈ ]0, 1], q ∈ ]0, 1].

Result 2.1 ([6]). Let ψ : I → R be a mapping which satisfies the equation
k∑

i=1
ψ(xi) = c

for all (x1, . . . , xk) ∈ Γk; c a given real constant and k ≥ 3 a fixed integer. Then there

exists an additive mapping b : R→ R such that ψ(x) = b(x)− 1

k
b(1) +

c

k
for all x ∈ I.

Chaundy and Mcleod [1] considered the functional equation

n∑
i=1

m∑
j=1

f(piqj) =
n∑

i=1

f(pi) +
m∑
j=1

f(qj) (B)

where f : I → R, (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n and m being positive integers.

Result 2.2 ([6]). If a mapping f : I → R satisfies (B) for all (p1, . . . , pn) ∈ Γn,
(q1, . . . , qm) ∈ Γm; n ≥ 3 and m ≥ 3 being fixed integers, then f is of the form

f(p) =

{
f(0) + f(0)(nm− n−m)p+ a(p) +D(p, p) if 0 < p ≤ 1

f(0) if p = 0,

where f(0) is an arbitrary real constant; a : R → R is an additive mapping; the mapping
D : R× ]0, 1]→ R is additive in the first variable; there exists a mapping E : R× R→ R
additive in both variables such that a(1) = E(1, 1) and D(pq, pq) = D(pq, p) +D(pq, q) +
E(p, q) for all p ∈ ]0, 1], q ∈ ]0, 1].
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Modified Form of Result 2.2. If a mapping f : I → R satisfies (B) for all (p1, . . . , pn) ∈
Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3 and m ≥ 3 being fixed integers, then f is of the form

f(p) = f(0) + f(0)(nm− n−m)p+ a(p) +D(p, p) (3)

for all p ∈ I; f(0) is an arbitrary real constant; a : R → R is an additive mapping;
D : R × I → R is additive in the first variable; there exists a mapping E : R × R → R
additive in both variables such that a(1) = E(1, 1) and

D(pq, pq) = D(pq, p) +D(pq, q) + E(p, q) (4)

for all p ∈ I, q ∈ I.
Using the fact that a(1) = E(1, 1), it can be easily deduced from (4) that

a(1) +D(1, 1) = 0. (5)

3. On the Functional Equation (A)

The main result of this paper is the following:

Theorem. Let c be a nonzero given constant and f : I → R, g : I → R be mappings
which satisfy the equation (A) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3
being fixed integers. Then, for all p ∈ I, any general solution (f, g) of (A) is of the form{

(i) f(p) = f(0) + f(0)(nm− n−m)p+ a(p) +D(p, p)

(ii) g(p) = A1(p) + g(0);
(β1)

or 
(i) f(p) = f(0) + f(0)(nm− n−m)p+ a(p)

+D(p, p) +
1

2
cp[`∗(p)]2

(ii) g(p) = p`∗(p);

(β2)

or 
(i) f(p) = f(0) + f(0)(nm− n−m)p

+ cλ2[M(p)− p] + a(p) +D(p, p)

(ii) g(p) = λ[M(p)− p];
(β3)

or 
(i) f(p) = f(0) + {f(0)(nm− n−m)

− c[g(1) + (n− 1)g(0)][g(1) + (m− 1)g(0)]}p+ a(p) +D(p, p)

(ii) g(p) = A2(p) + g(0); g(1) + (m− 1)g(0) 6= 0

(β4)

where λ is an arbitrary nonzero real constant; Ai : R→ R, i = 1, 2 are additive mappings
such that A1(1) = −mg(0) and A2(1) = g(1)− g(0); `∗ : I → R is a logarithmic mapping
which does not vanish identically on the open interval ]0, 1[; M : I → R is a multiplicative
mapping which is not additive and M(0) = 0, M(1) = 1; a : R → R and D : R × I → R
are as described in the Modified Form of Result 2.2.

Proof. Let us write (A) in the form

n∑
i=1


m∑
j=1

f(piqj)− f(pi)− pi
m∑
j=1

f(qj)− cg(pi)
m∑
j=1

g(qj)

 = 0.
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By using Result 2.1 and proceeding as in [7], we can obtain m∑
j=1

g(xqj)− g(x)− (m− 1)g(0)

 m∑
t=1

g(rt)

=

[
m∑
t=1

g(xrt)− g(x)− (m− 1)g(0)

]
m∑
j=1

g(qj) (6)

as c 6= 0. Equation (6) is valid for all x ∈ I, (q1, . . . , qm) ∈ Γm, (r1, . . . , rm) ∈ Γm; m ≥ 3
being a fixed integer.

From now onwards, we divide our discussion into two cases.

Case 1.
m∑
t=1

g(rt) vanishes identically on Γm, that is,

m∑
t=1

g(rt) = 0

for all (r1, . . . , rm) ∈ Γm. By Result 2.1, there exists an additive mapping A1 : R → R
such that

g(p) = A1(p)−
1

m
A1(1) (7)

for all p ∈ I. The substitution p = 0 in (7) gives A1(1) = −mg(0). Now (7) gives (β1)(ii)
with A1(1) = −mg(0). Utilizing this form of g in (A), we obtain the functional equation
(B) for (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3 and m ≥ 3 being fixed integers.

By the Modified Form of Result 2.2, it follows that f : I → R is of the form (β1)(i).
Thus, we have obtained the solution (β1) of (A).

Case 2.
m∑
t=1

g(rt) does not vanish identically on Γm.

In this case, there exists a probability distribution (r∗1, . . . , r
∗
m) ∈ Γm such that

m∑
t=1

g(r∗t ) 6= 0. (8)

Setting rt = r∗t , t = 1, . . . ,m in (6) and using (8), we obtain

m∑
j=1

g(xqj)− g(x)− (m− 1)g(0)

=

[
m∑
t=1

g(r∗t )

]−1 [ m∑
t=1

g(xr∗t )− g(x)− (m− 1)g(0)

]
m∑
j=1

g(qj). (9)

Define a mapping M : I → R as

M(x) =

[
m∑
t=1

g(r∗t )

]−1 [ m∑
t=1

g(xr∗t )− g(x)− (m− 1)g(0)

]
(10)

for all x ∈ I. Now, from (9) and (10), it follows that

m∑
j=1

g(xqj) = M(x)

m∑
j=1

g(qj) + g(x) + (m− 1)g(0). (11)
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From (10), it is easy to conclude that

M(0) = 0. (12)

The substitution x = 1, in (10), gives

1−M(1) = [g(1) + (m− 1)g(0)]

[
m∑
t=1

g(r∗t )

]−1

. (13)

Let us write (11) in the form

m∑
j=1

{g(xqj)−M(x)g(qj)− [g(x) + (m− 1)g(0)]qj} = 0.

By Result 2.1, there exists a mapping E : I×R→ R, additive in the second variable, such
that

g(xq)−M(x)g(q)− [g(x) + (m− 1)g(0)]q = E(x; q)− 1

m
E(x; 1). (14)

Equation (14) holds for all x ∈ I and q ∈ I. The substitution q = 0 in it gives (using
E(x; 0) = 0)

E(x; 1) = mg(0)[M(x)− 1] (15)

for all x ∈ I. From (14) and (15), we obtain

g(xq)−M(x)[g(q)− g(0)]− [g(x) + (m− 1)g(0)]q − g(0) = E(x; q). (16)

Case 2.1. E(x; q) ≡ 0 on I × I.
In this case, E(x; 1) = 0. So, (15) gives

mg(0) = mg(0)M(x) (17)

for all x ∈ I. Since the left hand side of (17) is independent of the variable x, x ∈ I, it
follows that

mg(0)M(x) = mg(0)M(q) (18)

for all x ∈ I and q ∈ I. Also, from (16) and the fact that E(x; q) ≡ 0 on I × I, we obtain

g(xq)− g(0) = M(x)[g(q)− g(0)] + [g(x) + (m− 1)g(0)]q (19)

for all x ∈ I and q ∈ I. The left hand side of (19) is symmetric in x and q. Hence, so
should be its right hand side. This fact gives rise to the equation

M(x)[g(q)− g(0)] + [g(x) + (m− 1)g(0)]q

= M(q)[g(x)− g(0)] + [g(q) + (m− 1)g(0)]x. (20)

Making use of (18), (20) gives rise to the equation

[g(q) + (m− 1)g(0)][M(x)− x] = [g(x) + (m− 1)g(0)][M(q)− q] (21)

valid for all x ∈ I and q ∈ I.

Case 2.1.1. M(x)− x = 0 for all x ∈ I.
In this case, M(x) = x for all x ∈ I. Now, (17) gives mg(0)(1 − x) = 0 for all x ∈ I.

Choosing x =
1

2
, we obtain g(0) = 0. Using M(x) = x for all x ∈ I and the fact that

g(0) = 0, (19) gives the functional equation g(xq) = xg(q) + qg(x) whose general solution
is g(x) = x`(x) for all x ∈ I; ` : I → R being any logarithmic mapping. If `(x) = 0 for all
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x ∈ I, then g(x) = 0 for all x ∈ I. Consequently,
m∑
t=1

g(r∗t ) = 0 contradicting (8). So, g

must be of the form (β2)(ii). Making use of this form of g in (A), we obtain the equation

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

f(pi) +

m∑
j=1

f(qj) + c

n∑
i=1

m∑
j=1

piqj`
∗(pi)`

∗(qj).

The above equation can be written as

n∑
i=1

m∑
j=1

{
f(piqj)−

1

2
cpiqj [`

∗(piqj)]
2

}

=
n∑

i=1

{
f(pi)−

1

2
cpi[`

∗(pi)]
2

}
+

m∑
j=1

{
f(qj)−

1

2
cqj [`

∗(qj)]
2

}
.

Define a mapping f1 : I → R as f1(p) = f(p)− 1

2
cp[`∗(p)]2 for all p ∈ I. Then making use

of Modified Form of Result 2.2, it can be proved that f is of the form (β2)(i). Thus, we
have obtained the solution (β2) of (A).

Case 2.1.2. [M(x)− x] 6≡ 0 on I.
In this case, there exists an element x0 ∈ I such that [M(x0)− x0] 6= 0. Setting x = x0

in (21), we obtain

g(q) = λ[M(q)− q]− (m− 1)g(0) (22)

where λ = [M(x0)− x0]−1[g(x0) + (m− 1)g(0)]. If λ = 0, then (22) gives g(q) = − (m−
1)g(0) for all q ∈ I. From this, it follows that g(0) = 0 as m ≥ 3. Now (22) gives g(q) = 0

for all q ∈ I. In particular,
m∑
t=1

g(r∗t ) = 0 contradicting (8). Hence, λ 6= 0. Putting q = 0

in (22) and using (12), it follows that g(0) = 0. Thus, (22) gives

g(q) = λ[M(q)− q], λ 6= 0 (23)

for all q ∈ I. From (19), and the fact that g(0) = 0, we obtain

g(xq) = M(x)g(q) + qg(x) (24)

for all x ∈ I, q ∈ I. From (23) and (24), it follows that M(xq) = M(x)M(q) for all
x ∈ I, q ∈ I. Thus, M is a multiplicative mapping. But, we have to consider only those
multiplicative mappings M which satisfy the condition (12). The possibility M(x) ≡ 1,
x ∈ I, is ruled out as, in this case, M(0) 6= 0. Since [M(x0)− x0] 6= 0 for some x0 ∈ I, it
follows that g(x0) 6= 0 for some x0 ∈ I. Since g(0) = 0, the possibility x0 = 0 is ruled out.
So, x0 ∈ ]0, 1]. Consider x0 = 1. This means g(1) 6= 0. Hence, by (23), M(1) 6= 1. But, M
is multiplicative. So, M(x)[M(1)− 1] = 0. Since M(1) 6= 1, it follows that M(x) = 0 for
all x ∈ I. Consequently, (23) gives g(q) = −λq for all q ∈ I with λ 6= 0 which is included
in (β4)(ii) upon choosing A2(q) = −λq (as g(0) = 0) with A2(1) = g(1) = −λ 6= 0. Now
proceeding as in the Case 2.1.1, the corresponding form of f is

f(p) = f(0) + {f(0)(nm− n−m)− c[g(1)]2}p+ a(p) +D(p, p)

which is included in (β4)(i).
Now we consider the case when x0 ∈ ]0, 1[. In this case, we must have g(0) = 0 and

also g(1) = 0. Now, from (23), it follows M(1) = 1.
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Now we prove that M is not additive. To the contrary, suppose M : I → R is additive.
Then, for all (r1, . . . , rm) ∈ Γm, using (23) and M(1) = 1, we have

m∑
t=1

g(rt) = λ

[
m∑
t=1

M(rt)− 1

]
= λ[M(1)− 1] = 0

contradicting (8). So, M is not additive. Thus, the solution (β3)(ii) stands obtained in
which M is a multiplicative mapping with M(0) = 0, M(1) = 1 and M is not additive.

Now, making use of (β3)(ii) in (A) and proceeding as in the Case 2.1.1, we can obtain
(β3)(i). Thus the solution (β3) follows.

Case 2.2. E(x; q) 6≡ 0 on I × I.
In this case, there exists an element (x∗, q∗) ∈ I × I such that E(x∗; q∗) 6= 0. Now we

prove that

r = [E(x∗; q∗)]−1{E(x∗; q∗r) +M(x∗)E(q∗; r)− E(x∗q∗; r)

+ [M(x∗)M(q∗)−M(x∗q∗)][g(r)− g(0)] + rmg(0)[M(x∗)− 1]} (25)

holds for all r ∈ I. Using (16), we have

g((x∗q∗)r)− rq∗[g(x∗) + (m− 1)g(0)]− rM(x∗)[g(q∗)− g(0)]− g(0)

= E(x∗q∗; r) +M(x∗q∗)[g(r)− g(0)] + rE(x∗; q∗) + rmg(0) (26)

and

g(x∗(q∗r))− q∗r[g(x∗) + (m− 1)g(0)]− rM(x∗)[g(q∗)− g(0)]− g(0)

= E(x∗; q∗r) +M(x∗)E(q∗; r) +M(x∗)M(q∗)[g(r)− g(0)] + rmM(x∗)g(0). (27)

Since the left hand sides of (26) and (27) are same, we get

E((x∗q∗); r) +M(x∗q∗)[g(r)− g(0)] + rE(x∗; q∗) + rmg(0)

= E(x∗; q∗r) +M(x∗)E(q∗; r) +M(x∗)M(q∗)[g(r)− g(0)] + rmM(x∗)g(0). (28)

Using the fact that E(x∗; q∗) 6= 0, (25) follows from (28).
Let us write (25) as

r − [E(x∗; q∗)]−1{E(x∗; q∗r) +M(x∗)E(q∗; r)− E(x∗q∗; r) + rmg(0)[M(x∗)− 1]}
= [E(x∗; q∗)]−1[M(x∗)M(q∗)−M(x∗q∗)][g(r)− g(0)]. (29)

Case 2.2.1. [M(x∗)M(q∗)−M(x∗q∗)] 6= 0.
In this case, (29) gives

g(r) = A1(r) + g(0), 0 ≤ r ≤ 1, (30)

where A1 : R→ R is a mapping defined as

A1(t) = [M(x∗)M(q∗)−M(x∗q∗)]−1{tE(x∗; q∗)− E(x∗; q∗t)

−M(x∗)E(q∗; t) + E(x∗q∗; t)− tmg(0)[M(x∗)− 1]} (31)

for all t ∈ R. Since E : I × R → R is additive in the second variable, it follows that
A1 : R → R is an additive mapping. Putting r = 1 in (31) and using (15), it turns out
that A1(1) = −mg(0). From (8), (30) and the fact that A1(1) = −mg(0), we observe
that

0 6=
m∑
t=1

g(r∗t ) =

m∑
t=1

[A1(r
∗
t ) + g(0)]

= A1(1) +mg(0) = −mg(0) +mg(0) = 0
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a contradiction. So, this case is not possible.

Case 2.2.2. [M(x∗)M(q∗)−M(x∗q∗)] = 0.
The substitution r = 1, in (29), gives

mg(0)[M(x∗)M(q∗)−M(x∗q∗)] = 0 .

Since m ≥ 3 is a fixed integer and [M(x∗)M(q∗)−M(x∗q∗)] = 0, it follows that g(0) is an
arbitrary real number. Now, let us put x = 1 in (16). We obtain

[g(q)− g(0)][1−M(1)] = E(1; q) + [g(1) + (m− 1)g(0)]q (32)

for all q ∈ I.

Case 2.2.2.1. 1−M(1) 6= 0.
In this case, (13) gives [g(1) + (m− 1)g(0)] 6= 0. Consequently, [g(1)− g(0)] 6= −mg(0).

Also, from (32),

g(q) = [1−M(1)]−1{E(1; q) + [g(1) + (m− 1)g(0)]q}+ g(0). (33)

Let us define a mapping A2 : R→ R as

A2(t) = [1−M(1)]−1{E(1; t) + [g(1) + (m− 1)g(0)]t} (34)

for all t ∈ R. Then, A2 : R → R is an additive mapping. Now, it follows from (33) and
(34) that g is of the form (β4)(ii) with A2(1) = [g(1) − g(0)]. From (β4)(ii) and (A), it
follows that

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

f(pi) +

m∑
j=1

f(qj)

+ c [g(1) + (n− 1)g(0)][g(1) + (m− 1)g(0)] (35)

with [g(1) + (m− 1)g(0)] 6= 0. Now, proceeding as in the Case 2.1.1, it can be proved that
f is of the form (β4)(i). Thus, we have obtained the solution (β4).

Case 2.2.2.2. 1−M(1) = 0.
In this case, (13) gives

g(1) + (m− 1)g(0) = 0. (36)

The mapping g : I → R, mentioned in (β1)(ii), (β2)(ii) and (β3)(ii), satisfies (36). But, we
have to consider only those solutions of (A) which meet the requirement [M(x∗)M(q∗)−
M(x∗q∗)] = 0 for some x∗ ∈ I and q∗ ∈ I. There is only one such solution, namely β3(ii),
as in this solution, the mapping M is multiplicative and thus the condition [M(x∗)M(q∗)−
M(x∗q∗)] = 0 for some x∗ ∈ I, q∗ ∈ I, is met with. Also M(1) = 1 and M(0) = 0. So,
(β3)(ii) gives g(1) = 0 and g(0) = 0. Now, from (16), g(0) = 0 and the fact that M is
multiplicative, it follows that E(x; q) = 0 for all x ∈ I, q ∈ I, thereby, contradicting the
fact that E(x∗; q∗) 6= 0 for some x∗ ∈ I, q∗ ∈ I. So, in this case we do not get any new
solution. �

Remark. The solutions (β1), (β2) and (β3) are respective nontrivial generalizations
of solutions (3.1), (3.2) and (3.3) of the Theorem ([7], pp. 86–87). The solution (β4)
is absolutely a new solution. The solution (3.1) is included in (β1) but not in (β4) as
g(1) + (m− 1)g(0) 6= 0.
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