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ON A SUM FORM FUNCTIONAL EQUATION

PREM NATH', DHIRAJ KUMAR SINGH?, §

ABSTRACT. The general solutions of a sum form functional equation containing two
unknown mappings, without imposing any regularity condition on them, have been ob-
tained.
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1. INTRODUCTION

Functional equations appear in various branches of pure mathematics and applied math-
ematics, business mathematics, economics, information theory, thermodynamics, physics,
engineering, and so on (see [1], [3], [4], [5])

n
Forn=1,2,..;let '), = {(pl,...,pn) :piZO,izl,...,n;Zpizl} denote the set
i=1

of all n-component complete discrete probability distributions with nonnegative elements.
Let R denote the set of all real numbers; I = {r e R: 0 <z <1};]0,1[={z € R:0<
r<l}and |0,1]]={reR:0<z <1}

By giving necessary motivations from statistics point of view, considering the first and
second order moments of a specific random variable, Nath and Singh [7] derived the
functional equation

$2(pq) = q92(p) + pp2(q) + 261(p)¢1(q)

forallpe I, q e I; ¢p2 : I = R, ¢1 : I — R with ¢2(0) = 0, ¢2(1) = 0, ¢1(0) = 0,
¢1(1) =0.

For all (p1,...,pn) € I'n, (q1,--.,qm) € 'y, the authors [7] considered the functional
equation

SN Ffig) =D fo)+ Y fla) +ed gm)> alg) (A)

n m n m n m
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in which ¢ # 0 is a given real constant; f : I — R, g : I — R are unknown mappings.
Clearly f = ¢9 and g = ¢ satisfy (A) with ¢ = 2. Keeping in view ¢1(0) = 0, ¢1(1) = 0,
#2(0) =0, ¢2(1) = 0 and the fact that f = ¢9 and g = ¢1, we have

(i) f(0)=0, (ii) ¢(0)=0 (1)

and
(i) f(1) =0, (i) g(1)=0. (2)

Nath and Singh [7] obtained the general solutions of (A) by assuming (1) and (2); and
f:I—-R, g:I—=R, (p1,...,pon) €Tn, (q1,---,9m) € I';y; n > 3 and m > 3 being fixed
integers.

The object of this paper is to obtain the general solutions of (A) for all (p1,...,p,) €
Ty, (q1,---5qm) € Ty m > 3 and m > 3 being fixed integers; without assuming (1)
and (2).

2. SOME PRELIMINARY RESULTS

In this section, we mention some known definitions and results.

A mapping a : I — R is said to be additive on I or on the unit triangle A = {(z,y) : 0 <
r<1,0<y<1,0<x+y <1} if it satisfies the equation a(z + y) = a(x) + a(y) for all
(z,y) € A. A mapping A : R — R is said to be additive on R if A(x+y) = A(z)+ A(y) for
all z € R, y € R. It is known (see Dar6czy and Losonczi [2]) that if a mapping a : [ — R
is additive on I, then there exists a unique mapping A : R — R which is additive on R
and A(x) = a(z) for all x € 1.

A mapping M : I — R is said to be multiplicative if M (pq) = M (p)M (q) for all p € I,
qgel.

A mapping £ : I — R is said to be logarithmic if £(0) = 0 and £(pq) = ¢(p) + £(q) for all
p€]0,1], ¢ €]0,1].

k

Result 2.1 ([6]). Let ¢ : I — R be a mapping which satisfies the equation Y ¥ (x;) = ¢
i=1

for all (x1,...,x2x) € Tk; ¢ a given real constant and k > 3 a fized integer. Then there

1
exists an additive mapping b: R — R such that ¢(x) = b(z) — %b(l) + % forallx € 1.

Chaundy and Mcleod [1] considered the functional equation

DS Fwig) =Y fpi) + > flay) (B)
J

i=1 j=1 i=1 =1

where f: I =R, (p1,...,pn) € T, (q1,...,¢m) € I'm; n and m being positive integers.

Result 2.2 ([6]). If a mapping f : I — R satisfies (B) for all (p1,...,pn) € 'y,
(q1y---,Gm) € Ty m >3 and m > 3 being fized integers, then f is of the form

f(p) = f(0) + F(0)(nm —n —m)p +a(p) + D(p,p) #f0<p<1
f(0) if p=0,

where f(0) is an arbitrary real constant; a : R — R is an additive mapping; the mapping
D :Rx ]0,1] — R is additive in the first variable; there exists a mapping E : R xR — R
additive in both variables such that a(1) = E(1,1) and D(pq,pq) = D(pq,p) + D(pq,q) +
E(p,q) for all p € 10,1}, q € ]0,1].
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Modified Form of Result 2.2. If a mapping f : I — R satisfies (B) for all (p1,...,pn) €
Thn, (¢1,---,qm) € Ty n >3 and m > 3 being fized integers, then f is of the form

f(p) = f(0) + f(0)(nm — n —m)p + a(p) + D(p, p) (3)

for all p € I; f(0) is an arbitrary real constant; a : R — R is an additive mapping;
D : R x I — R is additive in the first variable; there exists a mapping E : R xR — R
additive in both variables such that a(1) = E(1,1) and

D(pg,pq) = D(pq,p) + D(pg,q) + E(p,q) (4)

forallpel, qel.
Using the fact that a(1) = E(1,1), it can be easily deduced from (4) that

a(1) + D(1,1) = 0. (5)

3. ON THE FUNCTIONAL EQUATION (A)

The main result of this paper is the following:

Theorem. Let ¢ be a nonzero given constant and f : I — R, g : I — R be mappings
which satisfy the equation (A) for all (p1,...,pn) € Thn, (q1,---3qm) €ETm; n >3, m >3
being fized integers. Then, for all p € I, any general solution (f,g) of (A) is of the form

1) flp) = f(0) + f(0)(nm —n —m)p+ a(p) + D(p, p) (81)
(ii) g(p) = Ai(p) + 9(0);
i) f)=rf(0)+ f(O)(nin —n —m)p+ a(p)

+D(p,p) + 5 eplt*(p))? (B2)
(i) g(p) = pt*(p);

(@) f() = £(0) + f(O)(nm —n—m)p

+cX?[M(p) — p] + a(p) + D(p, p) (B3)

(i) g(p) = A[M(p) — pl;

(i) flp) = f(0) +{f(0)(nm —n —m)

—clg(1) + (n = 1)g(0)][g(1) + (m — 1)g(0)]}p + a(p) + D(p,p)  (Ba)
(i) g(p) = A2(p) +9(0); g(1) + (m —1)g(0) #0
where A is an arbitrary nonzero real constant; A; : R — R, i = 1,2 are additive mappings
such that A;(1) = —mg(0) and Az(1) = g(1) — g(0); £* : I — R is a logarithmic mapping
which does not vanish identically on the open interval 10,1[; M : I — R is a multiplicative
mapping which is not additive and M(0) =0, M(1) =1;a:R—>Rand D:RxI - R
are as described in the Modified Form of Result 2.2.

Proof. Let us write (A) in the form

SIS Fpiag) — Fpi) —pi Y fa5) —cglpi) > glg;) p = 0.

i=1 7j=1 j=1 j=1
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By using Result 2.1 and proceeding as in [7], we can obtain

m

> g(xgy) — glw) — (m—1)g(0)| > g(re)
j=1

=1

Z (wre) = g(a) — (m = 1)g(0)| > g(q5) (6)
=1 1

j=

~+

as ¢ # 0. Equation (6) is valid for all x € I, (q1,...,Gm) € T'm, (11, ., 7m) € Ty m >3
being a fixed integer.
From now onwards, we divide our discussion into two cases.

m
Case 1. Y g(r:) vanishes identically on I',,, that is,
i=1

for all (r1,...,rm) € I'yy. By Result 2.1, there exists an additive mapping A; : R — R
such that

9(p) = A1(p) — - Ar(1) (7)

for all p € I. The substitution p = 0 in (7) gives A;(1) = —mg(0). Now (7) gives (f1)(ii)
with A;(1) = —mg(0). Utilizing this form of ¢ in (A), we obtain the functional equation
(B) for (p1,...,pn) €T, (q15---,qm) € I';y; n >3 and m > 3 being fixed integers.

By the Modified Form of Result 2.2, it follows that f : I — R is of the form (8;1)(i).
Thus, we have obtained the solution (/1) of (A).

m
Case 2. ) g(r¢) does not vanish identically on I'y,.
t=1
In this case, there exists a probability distribution (r},...,r} ) € I'y, such that

>_9(r) #0. (8)
t=1
Setting rs =7, t=1,...,m in (6) and using (8), we obtain

> g(xq;) — g(x) — (m — 1)g(0)
j=1

m -1
- S
t=1
Define a mapping M : I — R as
m -1
3ot
t=1

for all z € I. Now, from (9) and (10), it follows that

> glar) - gla) — (m - 1)9(0)] > g(g)- 9)

t=1

> glarf) = gx) = (m - 1)9(0)] (10)

t=1

> g(xgy) = M(2) Y g(q5) + 9(x) + (m — 1)g(0). (11)
j=1 j=1
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From (10), it is easy to conclude that

M(0) = 0. (12)
The substitution z = 1, in (10), gives

m —1

1= M(1) = [g(1) + (m — 1)g(0)] [Z 9(7’?)] : (13)
t=1

Let us write (11) in the form
> {g(zgj) — M(z)g(q;) — [9(z) + (m — 1)g(0)]g;} = 0.
j=1

By Result 2.1, there exists a mapping E : [ x R — R, additive in the second variable, such
that

g(ea) ~ M(2)g(a) ~ [g(x) + (m ~ Dg(O)la = Bl q) — - B(;1). (14)

Equation (14) holds for all x € I and ¢ € I. The substitution ¢ = 0 in it gives (using
E(x;0) =0)

E(x;1) = mg(0)[M(z) — 1] (15)
for all x € I. From (14) and (15), we obtain
9(zq) — M(2)[g(q) — 9(0)] = [g(z) + (m — 1)g(0)]g — 9(0) = E(z;q). (16)

Case 2.1. E(x;q)=0on I x I.
In this case, E(z;1) = 0. So, (15) gives

mg(0) = mg(0) M (x) (17)

for all x € I. Since the left hand side of (17) is independent of the variable z, x € I, it
follows that

mg(0)M(z) = mg(0)M (q) (18)
for all x € I and ¢q € I. Also, from (16) and the fact that E(x;q) =0 on I x I, we obtain
g9(zq) — g(0) = M(2)[g(q) — 9(0)] + [g(x) + (m — 1)g(0)]q (19)

for all x € I and ¢ € I. The left hand side of (19) is symmetric in z and ¢q. Hence, so
should be its right hand side. This fact gives rise to the equation

M (z)[9(q) — 9(0)] + [g(x) + (m — 1)g(0)]¢

= M(q)[g(x) = 9(0)] + [9(q) + (m — 1)g(0)]=. (20)
Making use of (18), (20) gives rise to the equation
l9(q) + (m = 1)g(0)][M (z) — ] = [g(z) + (m — 1)g(0)][M(q) — q] (21)

valid for all z € I and ¢q € I.

Case 2.1.1. M(z) —xz =0 for all z € I.
In this case, M(z) = x for all x € I. Now, (17) gives mg(0)(1 —z) = 0 for all x € I.

1
Choosing = = 30 we obtain g(0) = 0. Using M(x) = «x for all x € I and the fact that

g(0) =0, (19) gives the functional equation g(zq) = zg(q) + qg(z) whose general solution
is g(z) = xl(x) for all z € I; ¢ : I — R being any logarithmic mapping. If ¢(x) = 0 for all
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x € I, then g(x) = 0 for all x € I. Consequently, > g(r;) = 0 contradicting (8). So, g
=1
must be of the form (f2)(ii). Making use of this form of g in (A), we obtain the equation

>SS fpigg) prz +Zf g +CZZPzQJ (pi)*(g5).

i=1 j=1 i=1 j=1

The above equation can be written as

zn:Z{ f(pig;) cth] G (pin)]Z}

=1 j=1
_ Z{ sz[g (pi)]Q} +]§;{f(qj) - ;CQj[f*(Qj)F}.

1
Define a mapping f1: I — R as fi(p) = f(p) — icp[ﬁ* (p))? for all p € I. Then making use

of Modified Form of Result 2.2, it can be proved that f is of the form (/52)(i). Thus, we
have obtained the solution (82) of (A).

Case 2.1.2. [M(x) —xz] Z0 on I.
In this case, there exists an element x¢ € I such that [M(xo) — x¢] # 0. Setting x = x
n (21), we obtain

9(q) = A[M(q) — q] — (m —1)g(0) (22)

where A\ = [M(xg) — z0] [g(w0) + (m — 1)g(0)]. If X = 0, then (22) gives g(q) = — (m —
1)g(0) for all ¢ € I. From this, it follows that g(0) = 0 as m > 3. Now (22) gives g(q) =0

m

for all ¢ € I. In particular, ) g(r;) = 0 contradicting (8). Hence, A # 0. Putting ¢ =0
=1

in (22) and using (12), it follows that g(0) = 0. Thus, (22) gives

9(q) = A[M(q) —ql, A#0 (23)
for all ¢ € I. From (19), and the fact that g(0) = 0, we obtain
9(xq) = M(x)g(q) + q9(x) (24)

for all z € I, ¢ € I. From (23) and (24), it follows that M(zq) = M (z)M(q) for all
x €1,qe Il Thus, M is a multiplicative mapping. But, we have to consider only those
multiplicative mappings M which satisfy the condition (12). The possibility M (z) = 1
x € I, is ruled out as, in this case, M (0) # 0. Since [M(zg) — xo] # 0 for some zg € I, it
follows that g(xg) # 0 for some z¢ € I. Since g(0) = 0, the possibility z¢g = 0 is ruled out.
So, g € ]0,1]. Consider zp = 1. This means g(1) # 0. Hence, by (23), M (1) # 1. But, M
is multiplicative. So, M (x)[M (1) — 1] = 0. Since M (1) # 1, it follows that M (z) = 0 for
all z € I. Consequently, (23) gives g(q) = —Aq for all ¢ € I with X\ # 0 which is included
in (B4)(il) upon choosing A2(q) = —Ag (as ¢g(0) = 0) with Ay(1) = g(1) = —\ # 0. Now
proceeding as in the Case 2.1.1, the corresponding form of f is

f(p) = £(0) +{f(0)(nm — n —m) — c[g(1)]*}p + a(p) + D(p,p)

which is included in (S4)(i).
Now we consider the case when zo € ]0,1[. In this case, we must have g(0) = 0 and
also g(1) = 0. Now, from (23), it follows M (1) = 1.
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Now we prove that M is not additive. To the contrary, suppose M : I — R is additive.
Then, for all (r1,...,7y) € I'y, using (23) and M (1) = 1, we have

> glre) =X [ZM(’T’t) — 1] = AMM(1)—1] =0
t=1 t=1

contradicting (8). So, M is not additive. Thus, the solution (/3)(ii) stands obtained in
which M is a multiplicative mapping with M (0) =0, M (1) =1 and M is not additive.

Now, making use of (3)(ii) in (A) and proceeding as in the Case 2.1.1, we can obtain
(B3)(i). Thus the solution (/33) follows.

Case 2.2. E(x;q) Z0on I x I.
In this case, there exists an element (z*,¢*) € I x I such that F(z*;¢*) # 0. Now we
prove that

r=[B(z*;¢")] B ¢"r) + M(«*)E(¢";r) — E(z*q*;r)
+ [M(z")M(q") = M(z*q")][g(r) — 9(0)] + rmg(0)[M (z*) — 1]} (25)
holds for all » € I. Using (16), we have
9((z*q")r) —rq*[g(z") + (m — 1)g(0)] — rM(z")[g(q") — 9(0)] — g(0)
= E(z"q";r) + M(27q")[g(r) — 9(0)] + rE(z%; ¢") + rmg(0) (26)
and
9@ (q"r)) — q"rlg(z™) + (m — 1)g(0)] — rM(27)[g(q") — g(0)] — g(0)
= E(a";q"r) + M(a%)E(q";7) + M(2%)M(q")[g(r) — g(0)] + rmM (z")g(0). (27)
Since the left hand sides of (26) and (27) are same, we get
E((z*q");r) + M(2*q")[g(r) — 9(0)] + rE(z"; ¢") + rmg(0)
= E(%q"r) + M(z")E(q";7) + M (2)M(¢")[g(r) — g(0)] + rmM (z")g(0). (28)
Using the fact that E(z*;¢*) # 0, (25) follows from (28).
Let us write (25) as
r— B¢ HE@ ¢'r) + M(2*)E(q;r) — E(a*q"; ) + rmg(0)[M («*) — 1]}
= [B(e*;¢")]) 7 [M (z*)M(q*) — M(2*q")][9(r) — 9(0)]. (29)
Case 2.2.1. [M(z*)M (¢*) — M (z*q*)] # 0.
In this case, (29) gives
g(r) = Ai(r) +9(0), 0<r<1, (30)
where A; : R — R is a mapping defined as
Ai(t) = [M(«")M(q*) = M (2*¢")] " {tE(z*;¢") — E(z*; ")
— M(2")E(q";t) + E(z"q";t) — tmg(0)[M (z”) — 1]} (31)
for all ¢t € R. Since E : I x R — R is additive in the second variable, it follows that
A1 : R — R is an additive mapping. Putting » = 1 in (31) and using (15), it turns out

that A;(1) = —mg(0). From (8), (30) and the fact that A;(1) = —mg(0), we observe
that

0# > g(ry) =D _[Ai(r]) + 9(0)]
t=1 t=1
= A1 (1) +mg(0) = —mg(0) + mg(0) = 0
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a contradiction. So, this case is not possible.
Case 2.2.2. [M(z*)M (¢*) — M (z*q*)] = 0.
The substitution 7 = 1, in (29), gives
mg(0)[M (z")M(q*) — M(z"q")] = 0.
Since m > 3 is a fixed integer and [M (z*)M (¢*) — M (z*q*)] = 0, it follows that g(0) is an
arbitrary real number. Now, let us put x = 1 in (16). We obtain
l9(q) — g(0)][1 = M(1)] = E(1;9) + [9(1) + (m — 1)g(0)]q (32)
for all g € I.

Case 2.2.2.1. 1 — M(1) #0.
In this case, (13) gives [g(1) + (m —1)g(0)] # 0. Consequently, [g(1) — g(0)] # —mg(0).
Also, from (32),

9(g) = [1 = M) H{E;q) + [9(1) + (m — 1)g(0)]g} + g(0). (33)
Let us define a mapping A, : R — R as
Aa(t) = [1 = M(D)]"H{E(1;t) + [g(1) + (m — 1)g(0)]¢} (34)

for all t € R. Then, Ay : R — R is an additive mapping. Now, it follows from (33) and
(34) that g is of the form (B4)(ii) with Aa(1) = [g(1) — g(0)]. From (B4)(ii) and (A), it
follows that

> fpig) Zf P) Z
i=1 j=1 i=1 j=1
+¢[g(1) 4+ (n = 1)g(0)][g(1) + (m — 1)g(0)] (35)

with [g(1) 4+ (m —1)g(0)] # 0. Now, proceeding as in the Case 2.1.1, it can be proved that
f is of the form (34)(i). Thus, we have obtained the solution (f54).

Case 2.2.2.2. 1 — M(1) =0.
In this case, (13) gives

9(1) + (m —1)g(0) = 0. (36)

The mapping ¢g : I — R, mentioned in (1)(ii), (52)(ii) and (83)(ii), satisfies (36). But, we
have to consider only those solutions of (A) which meet the requirement [M (z*)M (¢*) —
M(z*q*)] = 0 for some z* € I and ¢* € I. There is only one such solution, namely Ss(ii),

as in this solution, the mapping M is multiplicative and thus the condition [M (x*)M(q*)—
M(z*q*)] = 0 for some z* € I, ¢* € I, is met with. Also M(1) = 1 and M(0) = 0. So,
(B3)(ii) gives g(1) = 0 and ¢g(0) = 0. Now, from (16), g(0) = 0 and the fact that M is
multiplicative, it follows that F(x;q) = 0 for all x € I, ¢ € I, thereby, contradicting the
fact that E(z*;¢*) # 0 for some z* € I, ¢* € I. So, in this case we do not get any new
solution. O

Remark. The solutions (f1), (B2) and (B3) are respective nontrivial generalizations
of solutions (3.1), (3.2) and (3.3) of the Theorem ([7], pp. 86-87). The solution (f4)
is absolutely a new solution. The solution (3.1) is included in (/1) but not in (34) as

9(1) + (m — 1)g(0) 0.
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