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USING IMPLICIT RELATION TO PROVE COMMON COUPLED

FIXED POINT THEOREMS FOR TWO HYBRID PAIRS OF

MAPPINGS

BHAVANA DESHPANDE1, AMRISH HANDA2, DEEPMALA 3, §

Abstract. Using implicit relation we establish two common coupled fixed point theo-
rems under the conditions of weakly commutativity and w−compatibility on a complete
metric space, which is not partially ordered. We do not use the condition of continuity
of any mapping for proving the existence of coupled coincidence and common coupled
fixed point.
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1. Introduction and Preliminaries

Let (X, d) be a metric space and CB(X) be the set of all nonempty closed bounded
subsets of X. Let D(x, A) denote the distance from x to A ⊂ X and H denote the
Hausdorff metric induced by d, that is,

D(x, A) = inf
a∈A

d(x, a),

H(A, B) = max

{
sup
a∈A

D(a, B), sup
b∈B

D(b, A)

}
, for all A, B ∈ CB(X).

The study of fixed points for multivalued contractions and non-expansive mappings using
the Hausdorff metric was studied by many authors under different conditions. This theory
has found application in control theory, convex optimization, differential inclusions and
economics. There exists considerable literature about fixed point properties for two hybrid
pairs of mappings, including [2, 10, 11, 12, 20, 25, 26, 32].

Bhaskar and Lakshmikantham [7] introduced the concept of coupled fixed point for
single-valued mappings and established some coupled fixed point results and found its
application in the existence and uniqueness of solution for periodic boundary value prob-
lems. Lakshmikantham and Ciric [18] proved coupled coincidence and common coupled
fixed point theorems for nonlinear contractive mappings in partially ordered complete
metric spaces and extended the results established in [7]. Many authors focused on cou-
pled fixed point theory for single-valued mappings and proved remarkable results including
[5, 9, 13, 15, 16, 21, 33].
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Recently Samet et al. [28] claimed that most of the coupled fixed point theorems for
single-valued mappings on ordered metric spaces are consequences of well-known fixed
point theorems.

The concepts related to coupled fixed point for single valued mappings have been ex-
tended by Abbas et al. [1] for multivalued mappings to obtained coupled coincidence
point and common coupled fixed point theorems involving hybrid pair of mappings in
complete metric spaces. At present, very few authors have been studied coupled fixed
point theorems for hybrid pair of mappings including [1, 19].

In [1], Abbas, Ciric, Damjanovic and Khan introduced the following concept:

Definition 1.1. Let X be a nonempty set, F : X×X → 2X (a collection of all nonempty
subsets of X) and g be a self-mapping on X. An element (x, y) ∈ X ×X is called

(1) a coupled fixed point of F if x ∈ F (x, y) and y ∈ F (y, x).
(2) a coupled coincidence point of hybrid pair {F, g} if gx ∈ F (x, y) and gy ∈ F (y, x).
(3) a common coupled fixed point of hybrid pair {F, g} if x = gx ∈ F (x, y) and

y = gy ∈ F (y, x).
We denote the set of coupled coincidence points of mappings F and g by CF, g}. Note

that if (x, y) ∈ C(F, g), then (y, x) is also in C(F, g).

Definition 1.2. Let F : X ×X → 2X be a multivalued mapping and g be a self-mapping
on X. The mapping g is called F−weakly commuting at some point (x, y) ∈ X × X if
g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx).

Definition 1.3. Let F : X ×X → 2X be a multivalued mapping and g be a self-mapping
on X. The hybrid pair {F, g} is called w−compatible if gF (x, y) ⊆ F (gx, gy) whenever
(x, y) ∈ C(F, g).

Lemma 1.1. [14] Let (X, d) be a metric space. Then, for each a ∈ X and B ∈ CB(X),
there is b0 ∈ B such that D(a, B) = d(a, b0), where D(a, B) = infb∈B d(a, b).

On the other hand, several authors have been studied fixed point theorems satisfying
an implicit relation for single-valued and multivalued mappings under different conditions
including [3, 4, 6, 8, 17, 22, 23, 24, 27, 29, 30, 31, 34].

In this paper, we establish two common coupled fixed point theorems for two hybrid
pairs of mappings satisfying an implicit relation under the conditions of weakly commuta-
tivity and w−compatibility on a complete metric space, which is not partially ordered. To
prove our theorems we do not use condition of continuity of any mapping. We improve,
extend and generalize the result of Sedghi et al. [29].

2. Implicit relation

Let R+ be the set of all non-negative real numbers and let Ψ be the set of all continuous
functions ψ : (R+)11 → R satisfying the following conditions:
ψ1 : ψ(t1, t2, ..., t11) is non-decreasing in t1 and non-increasing in t2, t3, ..., t11.
ψ2 : There exists 0 < k < 1 such that for every u, v, p, q ∈ R+ such that

ψ(u, v, v, u, u+ v, 0, q, q, p, p+ q, 0) ≤ 0,

or
ψ(u, v, u, v, 0, u+ v, q, p, q, 0, p+ q) ≤ 0,
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then max{u, p} ≤ kmax{v, q}.
ψ3 : For all u, v > 0,

ψ(u, u, 0, 0, u, u, v, 0, 0, v, v) > 0.

Example 2.1. Let ψ(t1, t2, ..., t11) = t1−hmax{t2, t3, t4, t5+t6
2 , t7, t8, t9,

t10+t11
2 } where

0 < h < 1.
(ψ1) Obvious. (ψ2) Let max{u, p} > 0 and ψ(u, v, v, u, u + v, 0, q, q, p, p + q,

0) = u − hmax{u, v, p, q} ≤ 0. Thus u ≤ hmax{max{u, p}, max{v, q}}. Similarly
p ≤ hmax{max{u, p}, max{v, q}}. Thus max{u, p} ≤ hmax{max{u, p}, max{v, q}}.
Now, if max{u, p} ≥ max{v, q}, then max{u, p} ≤ hmax{u, p} < max{u, p}, which is a
contradiction. Thus max{u, p} < max{v, q} and max{u, p} ≤ hmax{v, q}. Similarly, let
max{u, p} > 0 and ψ(u, v, u, v, 0, u + v, q, p, q, 0, p + q) = u− hmax{u, v, p, q} ≤ 0,
then we have max{u, p} ≤ hmax{v, q}. Thus (ψ2) is satisfying with k = h < 1. If max{u,
p} = 0, then max{u, p} ≤ kmax{v, q}. (ψ3) ψ(u, u, 0, 0, u, u, v, 0, 0, v, v) = u−hmax{u,
v} = max{u− hu, u− hv} = max{u(1− h), u− hv} > 0. Therefore ψ ∈ Ψ.

Example 2.2. Let ψ(t1, t2, ..., t11) = t1 − αmax{t2, t3, t4, t7, t8, t9} − βmax{t5 + t6,
t10 + t11} where α, β ≥ 0 and α+ 2β < 1.

(ψ1) Obvious. (ψ2) Let max{u, p} > 0 and ψ(u, v, v, u, u + v, 0, q, q, p, p + q,
0) = u−αmax{v, u, q, p}−βmax{u+ v, p+ q} ≤ 0, then u ≤ αmax{max{u, p}, max{v,
q}}+β[max{u, p}+max{v, q}], it follows that u ≤ max{(α+β) max{u, p}+βmax{v, q},
(α+ β) max{v, q}+ βmax{u, p}}. Similarly p ≤ max{(α+ β) max{u, p}+ βmax{v, q},
(α+β) max{v, q}+βmax{u, p}}. Thus max{u, p} ≤ max{(α+β) max{u, p}+βmax{v,
q}, (α + β) max{v, q} + βmax{u, p}}. Now, if max{u, p} ≥ max{v, q}, then max{u,
p} ≤ (α+2β) max{u, p} < max{u, p}, which is a contradiction. Thus max{u, p} < max{v,
q} and max{u, p} ≤ (α + 2β) max{v, q}. Similarly, let max{u, p} > 0 and ψ(u, v, u, v,
0, u + v, q, p, q, 0, p + q) = u − αmax{v, u, q, p} − βmax{u + v, p + q} ≤ 0, then we
have max{u, p} ≤ (α + 2β) max{v, q}. Thus (ψ2) is satisfying with k = α + 2β < 1. If
max{u, p} = 0, then max{u, p} ≤ kmax{v, q}. (ψ3) ψ(u, u, 0, 0, u, u, v, 0, 0, v, v) =
u−αmax{u, v}−βmax{2u, 2v} = max{u−αu−2βu, u−αv−2βv} = max{u(1−α−2β),
u− (α+ 2β)v} > 0. Therefore ψ ∈ Ψ.

Example 2.3. Let ψ(t1, t2, ..., t11) = t1 − amax{t2, t7} − bmax{t3 + t4, t8 + t9} −
cmax{t5 + t6, t10 + t11}, where a, b, c ∈ [0, 1) and a+ 2b+ 2c < 1.

(ψ1) Obvious. (ψ2) Let max{u, p} > 0 and ψ(u, v, v, u, u + v, 0, q, q, p, p + q,
0) = u− amax{v, q} − bmax{u+ v, p+ q} − cmax{u+ v, p+ q} ≤ 0, then u ≤ amax{v,
q}+ b[max{u, p}+ max{v, q}] + c[max{u, p}+ max{v, q}]. Similarly p ≤ amax{v, q}+
b[max{u, p} + max{v, q}] + c[max{u, p} + max{v, q}]. Thus max{u, p} ≤ amax{v,
q}+ b[max{u, p}+ max{v, q}] + c[max{u, p}+ max{v, q}]. Now, if max{u, p} ≥ max{v,
q}, then max{u, p} ≤ (a+2b+2c) max{u, p} < max{u, p}, which is a contradiction. Thus
max{u, p} < max{v, q} and max{u, p} ≤ (a+ 2b+ 2c) max{v, q}. Similarly, let max{u,
p} > 0 and ψ(u, v, u, v, 0, u + v, q, p, q, 0, p + q) = u − amax{v, q} − bmax{u + v,
p + q} − cmax{u + v, p + q} ≤ 0, then we have max{u, p} ≤ (a + 2b + 2c) max{v,
q}. Thus (ψ2) is satisfying with k = a + 2b + 2c < 1. If max{u, p} = 0, then max{u,
p} ≤ kmax{v, q}. (ψ3) ψ(u, u, 0, 0, u, u, v, 0, 0, v, v) = u − amax{u, v} − cmax{2u,
2v} = max{u−au−2cu, u−av−2cu} = max{u(1−a−2c), u− (a+2c)v} > 0. Therefore
ψ ∈ Ψ.

Example 2.4. Let ψ(t1, t2, ..., t11) = t1 − hmax{t2, t7} − Lmin{t3, t4, t5, t6, t8, t9, t10,
t11}, where h ∈ [0, 1) and L ≥ 0.
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(ψ1) Obvious. (ψ2) Let max{u, p} > 0 and ψ(u, v, v, u, u + v, 0, q, q, p, p + q,
0) = u−hmax{v, q} ≤ 0, then u ≤ hmax{v, q}. Similarly p ≤ hmax{v, q}. Thus max{u,
p} ≤ hmax{v, q}. Similarly, let max{u, p} > 0 and ψ(u, v, u, v, 0, u + v, q, p, q, 0,
p + q) = u − hmax{v, q} ≤ 0, then we have max{u, p} ≤ hmax{v, q}. Thus (ψ2) is
satisfying with k = h < 1. If max{u, p} = 0, then max{u, p} ≤ kmax{v, q}. (ψ3) ψ(u,
u, 0, 0, u, u, v, 0, 0, v, v) = u − hmax{u, v} = max{u − hu, u − hv} = max{u(1 − h),
u− hv} > 0. Therefore ψ ∈ Ψ.

Example 2.5. ψ(t1, t2, ..., t11) = t1−hmax{t2, t3, t4, t5+t6
2 , t7, t8, t9,

t10+t11
2 }−Lmin{t3,

t4, t5, t6, t8, t9, t10, t11}, where h ∈ [0, 1) and L ≥ 0.
(ψ1) Obvious. (ψ2) Let max{u, p} > 0 and ψ(u, v, v, u, u + v, 0, q, q, p, p + q,

0) = u − hmax{u, v, p, q} ≤ 0, then u ≤ hmax{max{u, p}, max{v, q}}. Similarly
p ≤ hmax{max{u, p}, max{v, q}}. Thus max{u, p} ≤ hmax{max{u, p}, max{v, q}.
Now, if max{u, p} ≥ max{v, q}, then max{u, p} ≤ hmax{u, p} < max{u, p}, which is a
contradiction. Thus max{u, p} < max{v, q} and max{u, p} ≤ hmax{v, q}. Similarly, let
max{u, p} > 0 and ψ(u, v, u, v, 0, u + v, q, p, q, 0, p + q) = u− hmax{u, v, p, q} ≤ 0,
then we have max{u, p} ≤ hmax{v, q}. Thus (ψ2) is satisfying with k = h < 1. If max{u,
p} = 0, then max{u, p} ≤ kmax{v, q}. (ψ3) ψ(u, u, 0, 0, u, u, v, 0, 0, v, v) = u−hmax{u,
v} = max{u− hu, u− hv} = max{u(1− h), u− hv} > 0. Therefore ψ ∈ Ψ.

Example 2.6. Let ψ(t1, t2, ..., t11) = t1 − hmax{t2, t7}, where h ∈ [0, 1).
(ψ1) Obvious. (ψ2) Let max{u, p} > 0 and ψ(u, v, v, u, u + v, 0, q, q, p, p + q,

0} = u − hmax{v, q} ≤ 0. Thus u ≤ hmax{v, q}. Similarly p ≤ hmax{v, q}. Thus
max{u, p} ≤ hmax{v, q}. Similarly, let max{u, p} > 0 and ψ(u, v, u, v, 0, u + v, q, p,
q, 0, p + q) = u − hmax{v, q} ≤ 0, then we have max{u, p} ≤ hmax{v, q}. Thus (ψ2)
is satisfying with k = h < 1. If max{u, p} = 0, then max{u, p} ≤ kmax{v, q}. (ψ3) ψ(u,
u, 0, 0, u, u, v, 0, 0, v, v) = u − hmax{u, v} = max{u − hu, u − hv} = max{u(1 − h),
u− hv} > 0. Therefore ψ ∈ Ψ.

Example 2.7. Let ψ(t1, t2, ..., t11) = t1 − bmax{ t3+t4
2 , t8+t9

2 } where b ∈ [0, 1
2).

(ψ1) Obvious. (ψ2) Let max{u, p} > 0 and ψ(u, v, v, u, u + v, 0, q, q, p, p + q,
0} = u − bmax{u+v

2 , p+q
2 } ≤ 0. Thus u ≤ b

2 [max{u, p} + max{v, q}]. Similarly p ≤
b
2 [max{u, p}+ max{v, q}]. Thus max{u, p} ≤ b

2 [max{u, p}+ max{v, q}]. Now, if max{u,
p} ≥ max{v, q}, then max{u, p} ≤ bmax{u, p} < max{u, p}, which is a contradiction.
Thus max{u, p} < max{v, q} and max{u, p} ≤ bmax{v, q}. Similarly, let max{u, p} > 0
and ψ(u, v, u, v, 0, u + v, q, p, q, 0, p + q) = u − bmax{u+v

2 , p+q
2 } ≤ 0, then we have

max{u, p} ≤ bmax{v, q}. Thus (ψ2) is satisfying with k = b < 1. If max{u, p} = 0, then
max{u, p} ≤ kmax{v, q}. (ψ3) ψ(u, u, 0, 0, u, u, v, 0, 0, v, v) = u > 0. Therefore ψ ∈ Ψ.

Example 2.8. Let ψ(t1, t2, ..., t11) = t1 − cmax{t5 + t6, t10 + t11} where c ∈ [0, 1
2).

(ψ1) Obvious. (ψ2) Let max{u, p} > 0 and ψ(u, v, v, u, u + v, 0, q, q, p, p + q,
0} = u − cmax{u + v, p + q} ≤ 0. Thus u ≤ c[max{u, p} + max{v, q}]. Similarly
p ≤ c[max{u, p} + max{v, q}]. Thus max{u, p} ≤ c[max{u, p} + max{v, q}]. Now,
if max{u, p} ≥ max{v, q}, then max{u, p} ≤ 2cmax{u, p} < max{u, p}, which is a
contradiction. Thus max{u, p} < max{v, q} and max{u, p} ≤ 2cmax{v, q}. Similarly,
let max{u, p} > 0 and ψ(u, v, u, v, 0, u+v, q, p, q, 0, p+q) = u−cmax{u+v, p+q} ≤ 0,
then we have max{u, p} ≤ 2cmax{v, q}. Thus (ψ2) is satisfying with k = 2c < 1. If max{u,
p} = 0, then max{u, p} ≤ kmax{v, q}. (ψ3) ψ(u, u, 0, 0, u, u, v, 0, 0, v, v) = u−cmax{2u,
2v} = max{u− 2cu, u− 2cv} = max{u(1− 2c), u− 2cv} > 0. Therefore ψ ∈ Ψ.
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Example 2.9. Let ψ(t1, t2, ..., t11) = t1−hmax{t2, t3+t4
2 , t5+t6

2 , t7,
t8+t9

2 , t10+t11
2 } where

h ∈ [0, 1).
(ψ1) Obvious. (ψ2) Let max{u, p} > 0 and ψ(u, v, v, u, u + v, 0, q, q, p, p + q,

0} = u − hmax{v, q} ≤ 0. Thus u ≤ hmax{v, q}. Similarly p ≤ hmax{v, q}. Thus
max{u, p} ≤ hmax{v, q}. Similarly, let max{u, p} > 0 and ψ(u, v, u, v, 0, u + v, q, p,
q, 0, p + q) = u − hmax{v, q} ≤ 0, then we have max{u, p} ≤ hmax{v, q}. Thus (ψ2)
is satisfying with k = h < 1. If max{u, p} = 0, then max{u, p} ≤ kmax{v, q}. (ψ3) ψ(u,
u, 0, 0, u, u, v, 0, 0, v, v) = u − hmax{u, v} = max{u − hu, u − hv} = max{u(1 − h),
u− hv} > 0. Therefore ψ ∈ Ψ.

3. Main Results

Theorem 3.1. Let (X, d) be a complete metric space. Assume F, G : X ×X → CB(X)
and f, g : X → X be mappings satisfying

(i) F (X ×X) ⊆ g(X), G(X ×X) ⊆ f(X),
(ii) for all x, y, u, v ∈ X, where ψ ∈ Ψ,

ψ


H(F (x, y), G(u, v)),

d(fx, gu), D(fx, F (x, y)), D(gu, G(u, v)),
D(fx, G(u, v)), D(gu, F (x, y)),

d(fy, gv), D(fy, F (y, x)), D(gv, G(v, u)),
D(fy, G(v, u)), D(gv, F (y, x))

 ≤ 0,

(iii) f(X) and g(X) are closed subsets of X, then
(a) F and f have a coupled coincidence point,
(b) G and g have a coupled coincidence point,
(c) F and f have a common coupled fixed point, if f is F−weakly commuting at (x, y)

and f2x = fx and f2y = fy for (x, y) ∈ C{F, f},
(d) G and g have a common coupled fixed point, if g is G−weakly commuting at (x̃, ỹ)

and g2x̃ = gx̃ and g2ỹ = gỹ for (x̃, ỹ) ∈ C{G, g},
(e) F, G, f and g have common coupled fixed point provided that both (c) and (d) are

true.

Proof. Let x0, y0 ∈ X be arbitrary. Choose u1 = gx1 ∈ F (x0, y0) and v1 = gy1 ∈ F (y0,
x0), as F (X ×X) ⊆ g(X). Since F, G : X ×X → CB(X), therefore by Lemma 1.1, there
exist u2 ∈ G(x1, y1) and v2 ∈ G(y1, x1) such that

d(u1, u2) ≤ H(F (x0, y0), G(x1, y1)),

d(v1, v2) ≤ H(F (y0, x0), G(y1, x1)).

Since G(X × X) ⊆ f(X), there exist x2, y2 ∈ X such that u2 = fx2 ∈ G(x1, y1) and
v2 = fy2 ∈ G(y1, x1). Then we choose u3 ∈ F (x2, y2) and v3 ∈ F (y2, x2) such that

d(u2, u3) ≤ H(G(x1, y1), F (x2, y2)),

d(v2, v3) ≤ H(G(y1, x1), F (y2, x2)).

Continuing this process, we obtain sequences {un}, {vn}, {xn} and {yn} in X such that
for all n ≥ 0, we have

u2n = fx2n ∈ G(x2n−1, y2n−1), u2n+1 = gx2n+1 ∈ F (x2n, y2n),

v2n = fy2n ∈ G(y2n−1, x2n−1), v2n+1 = gy2n+1 ∈ F (y2n, x2n),
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and

d(u2n−1, u2n) ≤ H(F (x2n−2, y2n−2), G(x2n−1, y2n−1)),

d(u2n, u2n+1) ≤ H(G(x2n−1, y2n−1), F (x2n, y2n)),

d(v2n−1, v2n) ≤ H(F (y2n−2, x2n−2), G(y2n−1, x2n−1)),

d(v2n, v2n+1) ≤ H(G(y2n−1, x2n−1), F (y2n, x2n)).

Then by condition (ii), we get

ψ



H(F (x2n, y2n), G(x2n−1, y2n−1)),
d(fx2n, gx2n−1),

D(fx2n, F (x2n, y2n)), D(gx2n−1, G(x2n−1, y2n−1)),
D(fx2n, G(x2n−1, y2n−1)), D(gx2n−1, F (x2n, y2n)),

d(fy2n, gy2n−1),
D(fy2n, F (y2n, x2n)), D(gy2n−1, G(y2n−1, x2n−1)),
D(fy2n, G(y2n−1, x2n−1)), D(gy2n−1, F (y2n, x2n))


≤ 0.

Using (ψ1), we get

ψ


d(u2n+1, u2n),

d(u2n, u2n−1), d(u2n, u2n+1), d(u2n−1, u2n),
0, d(u2n−1, u2n+1),

d(v2n, v2n−1), d(v2n, v2n+1), d(v2n−1, v2n),
0, d(v2n−1, v2n+1)

 ≤ 0,

which implies that

ψ


d(u2n+1, u2n),

d(u2n, u2n−1), d(u2n, u2n+1), d(u2n−1, u2n),
0, d(u2n−1, u2n) + d(u2n, u2n+1),

d(v2n, v2n−1), d(v2n, v2n+1), d(v2n−1, v2n),
0, d(v2n−1, v2n) + d(v2n, v2n+1)

 ≤ 0.

By (ψ2), we get

max {d(u2n+1, u2n), d(v2n+1, v2n)}
≤ kmax {d(u2n, u2n−1), d(v2n, v2n−1)} .

Similarly, we can obtain

max {d(u2n, u2n−1), d(v2n, v2n−1)}
≤ kmax {d(u2n−1, u2n−2), d(v2n−1, v2n−2)} .

Thus, we have for all n ∈ N,

max {d(un, un+1), d(vn, vn+1)}
≤ kmax {d(un−1, un), d(vn−1, vn)}
≤ kn max {d(u0, u1), d(v0, v1)}
≤ knδ.

Thus

max {d(un, un+1), d(vn, vn+1)} ≤ knδ, (1)

where

δ = max {d(u0, u1), d(v0, v1)} .
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Thus, for m, n ∈ N with m > n, by triangle inequality and (1), we get

max {d(un, um+n), d(vn, vm+n)}
≤ max {d(un, un+1), d(vn, vn+1)}

+ max {d(un+1, un+2), d(vn+1, vn+2)}
+...+ max {d(um+n−1, um+n), d(vm+n−1, vm+n)}

≤ knδ + kn+1δ + ...+ kn+m−1δ

≤ kn(1 + k + k2 + ...+ km−1)δ

≤ kn(1− km)

1− k
δ → 0 as n, m→∞,

which shows that {un} and {vn} are Cauchy sequences in X. Since X is complete, there
exist u, v ∈ X such that

lim
n→∞

un = lim
n→∞

fx2n = lim
n→∞

gx2n+1 = u, (2)

lim
n→∞

vn = lim
n→∞

fy2n = lim
n→∞

gy2n+1 = v.

Since f(X) and g(X) are closed subsets of X, then there exist x, y, x̃, ỹ ∈ X, we have

u = fx = gx̃, v = fy = gỹ. (3)

Now, since fx2n ∈ G(x2n−1, y2n−1) and fy2n ∈ G(y2n−1, x2n−1), therefore by using
condition (ii), we get

ψ


H(F (x, y), G(x2n−1, y2n−1)),

d(fx, gx2n−1), D(fx, F (x, y)), D(gx2n−1, G(x2n−1, y2n−1)),
D(fx, G(x2n−1, y2n−1)), D(gx2n−1, F (x, y)),

d(fy, gy2n−1), D(fy, F (y, x)), D(gy2n−1, G(y2n−1, x2n−1)),
D(fy, G(y2n−1, x2n−1)), D(gy2n−1, F (y, x))

 ≤ 0,

which implies, by (ψ1), that

ψ


D(F (x, y), fx2n),

d(fx, gx2n−1), D(fx, F (x, y)), d(gx2n−1, fx2n),
d(fx, fx2n), D(gx2n−1, F (x, y)),

d(fy, gy2n−1), D(fy, F (y, x)), d(gy2n−1, fy2n),
d(fy, fy2n), D(gy2n−1, F (y, x))

 ≤ 0.

Letting n→∞ in the above inequality, using the continuity of ψ, (2) and (3), we obtain

ψ

 D(F (x, y), fx),
0, D(fx, F (x, y)), 0, 0, D(fx, F (x, y)),
0, D(fy, F (y, x)), 0, 0, D(fy, F (y, x))

 ≤ 0.

Thus, by (ψ2), we obtain

D(fx, F (x, y)) = 0 and D(fy, F (y, x)) = 0,

which implies that

fx ∈ F (x, y) and fy ∈ F (y, x),
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that is, (x, y) is a coupled coincidence point of F and f. This proves (a). Again, since
gx2n+1 ∈ F (x2n, y2n) and gy2n+1 ∈ F (y2n, x2n), therefore by using condition (ii), we get

ψ


H(F (x2n, y2n), G(x̃, ỹ)),

d(fx2n, gx̃), D(fx2n, F (x2n, y2n)), D(gx̃, G(x̃, ỹ)),
D(fx2n, G(x̃, ỹ)), D(gx̃, F (x2n, y2n)),

d(fy2n, gỹ), D(fy2n, F (y2n, x2n)), D(gỹ, G(ỹ, x̃)),
D(fy2n, G(ỹ, x̃)), D(gỹ, F (y2n, x2n))

 ≤ 0,

which implies, by (ψ1), that

ψ


D(gx2n+1, G(x̃, ỹ)),

d(fx2n, gx̃), d(fx2n, gx2n+1), D(gx̃, G(x̃, ỹ)),
D(fx2n, G(x̃, ỹ)), d(gx̃, gx2n+1),

d(fy2n, gỹ), d(fy2n, gy2n+1), D(gỹ, G(ỹ, x̃)),
D(fy2n, G(ỹ, x̃)), d(gỹ, gy2n+1)

 ≤ 0.

Letting n→∞ in the above inequality, using the continuity of ψ, (2) and (3), we obtain

ψ

 D(gx̃, G(x̃, ỹ)),
0, 0, D(gx̃, G(x̃, ỹ)), D(gx̃, G(x̃, ỹ)), 0,
0, 0, D(gỹ, G(ỹ, x̃)), D(gỹ, G(ỹ, x̃)), 0

 ≤ 0.

Thus, by (ψ2), we obtain

D(gx̃, G(x̃, ỹ)) = 0 and D(gỹ, G(ỹ, x̃)) = 0,

which implies that
gx̃ ∈ G(x̃, ỹ) and gỹ ∈ G(ỹ, x̃),

that is, (x̃, ỹ) is a coupled coincidence point of G and g. This proves (b).
Furthermore, from condition (c), we have f is F−weakly commuting at (x, y), that is,

f2x ∈ F (fx, fy), f2y ∈ F (fy, fx) and f2x = fx, f2y = fy. Thus fx = f2x ∈ F (fx, fy)
and fy = f2y ∈ F (fy, fx), that is, u = fu ∈ F (u, v) and v = fv ∈ F (v, u). This proves
(c). A similar argument proves (d). Then (e) holds immediately. �

Put f = g in the Theorem 3.1, we get the following result:

Corollary 3.1. Let (X, d) be a complete metric space. Assume F, G : X ×X → CB(X)
and g : X → X be mappings satisfying

(i) F (X ×X) ⊆ g(X), G(X ×X) ⊆ g(X),
(ii) for all x, y, u, v ∈ X and ψ ∈ Ψ,

ψ


H(F (x, y), G(u, v)),

d(gx, gu), D(gx, F (x, y)), D(gu, G(u, v)),
D(gx, G(u, v)), D(gu, F (x, y)),

d(gy, gv), D(gy, F (y, x)), D(gv, G(v, u)),
D(gy, G(v, u)), D(gv, F (y, x))

 ≤ 0,

(iii) g(X) is a closed subset of X, then
(a) F and g have a coupled coincidence point,
(b) G and g have a coupled coincidence point,
(c) F and g have a common coupled fixed point, if g is F−weakly commuting at (x, y)

and g2x = gx and g2y = gy for (x, y) ∈ C(F, g),
(d) G and g have a common coupled fixed point, if g is G−weakly commuting at (x̃, ỹ)

and g2x̃ = gx̃ and g2ỹ = gỹ for (x̃, ỹ) ∈ C{G, g},
(e) F, G and g have common coupled fixed point provided that both (c) and (d) are true.
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Put F = G and f = g in the Theorem 3.1, we get the following result:

Corollary 3.2. Let (X, d) be a complete metric space. Assume F : X × X → CB(X)
and g : X → X be mappings satisfying

(i) F (X ×X) ⊆ g(X),
(ii) for all x, y, u, v ∈ X and ψ ∈ Ψ,

ψ


H(F (x, y), F (u, v)),

d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
D(gx, F (u, v)), D(gu, F (x, y)),

d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),
D(gy, F (v, u)), D(gv, F (y, x))

 ≤ 0.

If (iii) of Corollary 3.1 holds, then
(a) F and g have a coupled coincidence point,
(b) F and g have a common coupled fixed point, if g is F−weakly commuting at (x, y)

and g2x = gx and g2y = gy for (x, y) ∈ C(F, g).

Examples 2.1-2.9 and Theorem 3.1 imply the following:

Corollary 3.3. Let (X, d) be a complete metric space. Assume F, G : X ×X → CB(X)
and f, g : X → X be mappings satisfying (i) of Theorem 3.1 and

(i) for all x, y, u, v ∈ X, where 0 < h < 1,

H(F (x, y), G(u, v))

≤ hmax


d(fx, gu), D(fx, F (x, y)), D(gu, G(u, v)),
d(fy, gv), D(fy, F (y, x)), D(gv, G(v, u)),

D(fx, G(u, v))+D(gu, F (x, y))
2 , D(fy, G(v, u))+D(gv, F (y, x))

2

 ,

or for all x, y, u, v ∈ X, where α, β ≥ 0 and α+ 2β < 1,

H(F (x, y), G(u, v))

≤ αmax

{
d(fx, gu), D(fx, F (x, y)), D(gu, G(u, v)),
d(fy, gv), D(fy, F (y, x)), D(gv, G(v, u))

}
+βmax

{
D(fx, G(u, v)) +D(gu, F (x, y)),
D(fy, G(v, u)) +D(gv, F (y, x))

}
,

or for all x, y, u, v ∈ X, where a, b, c ∈ [0, 1) and a+ 2b+ 2c < 1,

H(F (x, y), G(u, v))

≤ amax {d(fx, gu), d(fy, gv)}

+bmax

{
D(fx, F (x, y)) +D(gu, G(u, v)),
D(fy, F (y, x)) +D(gv, G(v, u))

}
+cmax

{
D(fx, G(u, v)) +D(gu, F (x, y)),
D(fy, G(v, u)) +D(gv, F (y, x))

}
,

or for all x, y, u, v ∈ X, where h ∈ [0, 1) and L ≥ 0,

H(F (x, y), G(u, v))

≤ hmax {d(fx, gu), d(fy, gv)}

+Lmax


D(fx, F (x, y)), D(gu, G(u, v)),
D(fx, G(u, v)), D(gu, F (x, y)),
D(fy, F (y, x)), D(gv, G(v, u)),
D(fy, G(v, u)), D(gv, F (y, x))

 ,
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or for all x, y, u, v ∈ X, where h ∈ [0, 1) and L ≥ 0,

H(F (x, y), G(u, v))

≤ hmax


d(fx, gu), D(fx, F (x, y)), D(gu, G(u, v)),
d(fy, gv), D(fy, F (y, x)), D(gv, G(v, u)),

D(fx, G(u, v))+D(gu, F (x, y))
2 , D(fy, G(v, u))+D(gv, F (y, x))

2


+Lmax


D(fx, F (x, y)), D(gu, G(u, v)),
D(fx, G(u, v)), D(gu, F (x, y)),
D(fy, F (y, x)), D(gv, G(v, u)),
D(fy, G(v, u)), D(gv, F (y, x))

 ,

or for all x, y, u, v ∈ X, where h ∈ [0, 1),

H(F (x, y), G(u, v)) ≤ hmax {d(fx, gu), d(fy, gv)} ,

or for all x, y, u, v ∈ X, where b ∈ [0, 1
2),

H(F (x, y), G(u, v)) ≤ bmax

{
D(fx, F (x, y))+D(gu, G(u, v))

2 ,
D(fy, F (y, x))+D(gv, G(v, u))

2

}
,

or for all x, y, u, v ∈ X, where c ∈ [0, 1
2),

H(F (x, y), G(u, v)) ≤ cmax

{
D(fx, G(u, v)) +D(gu, F (x, y)),
D(fy, G(v, u)) +D(gv, F (y, x))

}
,

or for all x, y, u, v ∈ X, where 0 < h < 1,

H(F (x, y), G(u, v))

≤ hmax


d(fx, gu), d(fy, gv),

D(fx, F (x, y))+D(gu, G(u, v))
2 , D(fx, G(u, v))+D(gu, F (x, y))

2 ,
D(fy, F (y, x))+D(gv, G(v, u))

2 , D(fy, G(v, u))+D(gv, F (y, x))
2

 .

If (i) of Theorem 3.1 holds, then
(a) F and f have a coupled coincidence point,
(b) G and g have a coupled coincidence point,
(c) F and f have a common coupled fixed point, if f is F−weakly commuting at (x, y)

and f2x = fx and f2y = fy for (x, y) ∈ C{F, f},
(d) G and g have a common coupled fixed point, if g is G−weakly commuting at (x̃, ỹ)

and g2x̃ = gx̃ and g2ỹ = gỹ for (x̃, ỹ) ∈ C{G, g},
(e) F, G, f and g have common coupled fixed point provided that both (c) and (d) are

true.

Examples 2.1-2.9 and Corollary 3.1 imply the following:

Corollary 3.4. Let (X, d) be a complete metric space. Assume F, G : X ×X → CB(X)
and g : X → X be mappings satisfying (i) of Corollary 3.1 and

(i) for all x, y, u, v ∈ X, where 0 < h < 1,

H(F (x, y), G(u, v))

≤ hmax


d(gx, gu), D(gx, F (x, y)), D(gu, G(u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, G(v, u)),

D(gx, G(u, v))+D(gu, F (x, y))
2 , D(gy, G(v, u))+D(gv, F (y, x))

2

 ,
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or for all x, y, u, v ∈ X, where α, β ≥ 0 and α+ 2β < 1,

H(F (x, y), G(u, v))

≤ αmax

{
d(gx, gu), D(gx, F (x, y)), D(gu, G(u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, G(v, u))

}
+βmax

{
D(gx, G(u, v)) +D(gu, F (x, y)),
D(gy, G(v, u)) +D(gv, F (y, x))

}
,

or for all x, y, u, v ∈ X, where a, b, c ∈ [0, 1) and a+ 2b+ 2c < 1,

H(F (x, y), G(u, v))

≤ amax {d(gx, gu), d(gy, gv)}

+bmax

{
D(gx, F (x, y)) +D(gu, G(u, v)),
D(gy, F (y, x)) +D(gv, G(v, u))

}
+cmax

{
D(gx, G(u, v)) +D(gu, F (x, y)),
D(gy, G(v, u)) +D(gv, F (y, x))

}
,

or for all x, y, u, v ∈ X, where h ∈ [0, 1) and L ≥ 0,

H(F (x, y), G(u, v))

≤ hmax {d(gx, gu), d(gy, gv)}

+Lmax


D(gx, F (x, y)), D(gu, G(u, v)),
D(gx, G(u, v)), D(gu, F (x, y)),
D(gy, F (y, x)), D(gv, G(v, u)),
D(gy, G(v, u)), D(gv, F (y, x))

 ,

or for all x, y, u, v ∈ X, where h ∈ [0, 1) and L ≥ 0,

H(F (x, y), G(u, v))

≤ hmax


d(gx, gu), D(gx, F (x, y)), D(gu, G(u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, G(v, u)),

D(gx, G(u, v))+D(gu, F (x, y))
2 , D(gy, G(v, u))+D(gv, F (y, x))

2


+Lmax


D(gx, F (x, y)), D(gu, G(u, v)),
D(gx, G(u, v)), D(gu, F (x, y)),
D(gy, F (y, x)), D(gv, G(v, u)),
D(gy, G(v, u)), D(gv, F (y, x))

 ,

or for all x, y, u, v ∈ X, where h ∈ [0, 1),

H(F (x, y), G(u, v)) ≤ hmax {d(gx, gu), d(gy, gv)} ,

or for all x, y, u, v ∈ X, where b ∈ [0, 1
2),

H(F (x, y), G(u, v)) ≤ bmax

{
D(gx, F (x, y))+D(gu, G(u, v))

2 ,
D(gy, F (y, x))+D(gv, G(v, u))

2

}
,

or for all x, y, u, v ∈ X, where c ∈ [0, 1
2),

H(F (x, y), G(u, v)) ≤ cmax

{
D(gx, G(u, v)) +D(gu, F (x, y)),
D(gy, G(v, u)) +D(gv, F (y, x))

}
,
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or for all x, y, u, v ∈ X, where 0 < h < 1,

H(F (x, y), G(u, v))

≤ hmax


d(gx, gu), d(gy, gv),

D(gx, F (x, y))+D(gu, G(u, v))
2 , D(gx, G(u, v))+D(gu, F (x, y))

2 ,
D(gy, F (y, x))+D(gv, G(v, u))

2 , D(gy, G(v, u))+D(gv, F (y, x))
2

 .

If (iii) of Corollary 3.1 holds, then
(a) F and g have a coupled coincidence point,
(b) G and g have a coupled coincidence point,
(c) F and g have a common coupled fixed point, if g is F−weakly commuting at (x, y)

and g2x = gx and g2y = gy for (x, y) ∈ C(F, g),
(d) G and g have a common coupled fixed point, if g is G−weakly commuting at (x̃, ỹ)

and g2x̃ = gx̃ and g2ỹ = gỹ for (x̃, ỹ) ∈ C{G, g},
(e) F, G and g have common coupled fixed point provided that both (c) and (d) are true.

Examples 2.1-2.9 and Corollary 3.2 imply the following:

Corollary 3.5. Let (X, d) be a complete metric space. Assume F : X × X → CB(X)
and g : X → X be mappings satisfying (i) of Corollary 3.2 and

(i) for all x, y, u, v ∈ X, where 0 < h < 1,

H(F (x, y), F (u, v))

≤ hmax


d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),

D(gx, F (u, v))+D(gu, F (x, y))
2 , D(gy, F (v, u))+D(gv, F (y, x))

2

 ,

or for all x, y, u, v ∈ X, where α, β ≥ 0 and α+ 2β < 1,

H(F (x, y), F (u, v))

≤ αmax

{
d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u))

}
+βmax

{
D(gx, F (u, v)) +D(gu, F (x, y)),
D(gy, F (v, u)) +D(gv, F (y, x))

}
,

or for all x, y, u, v ∈ X, where a, b, c ∈ [0, 1) and a+ 2b+ 2c < 1,

H(F (x, y), F (u, v))

≤ amax {d(gx, gu), d(gy, gv)}

+bmax

{
D(gx, F (x, y)) +D(gu, F (u, v)),
D(gy, F (y, x)) +D(gv, F (v, u))

}
+cmax

{
D(gx, F (u, v)) +D(gu, F (x, y)),
D(gy, F (v, u)) +D(gv, F (y, x))

}
,

or for all x, y, u, v ∈ X, where h ∈ [0, 1) and L ≥ 0,

H(F (x, y), F (u, v))

≤ hmax {d(gx, gu), d(gy, gv)}

+Lmax


D(gx, F (x, y)), D(gu, F (u, v)),
D(gx, F (u, v)), D(gu, F (x, y)),
D(gy, F (y, x)), D(gv, F (v, u)),
D(gy, F (v, u)), D(gv, F (y, x))

 ,
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or for all x, y, u, v ∈ X, where h ∈ [0, 1) and L ≥ 0,

H(F (x, y), F (u, v))

≤ hmax


d(gx, gu), D(gx, F (x, y)), D(gu, F (u, v)),
d(gy, gv), D(gy, F (y, x)), D(gv, F (v, u)),

D(gx, F (u, v))+D(gu, F (x, y))
2 , D(gy, F (v, u))+D(gv, F (y, x))

2


+Lmax


D(gx, F (x, y)), D(gu, F (u, v)),
D(gx, F (u, v)), D(gu, F (x, y)),
D(gy, F (y, x)), D(gv, F (v, u)),
D(gy, F (v, u)), D(gv, F (y, x))

 ,

or for all x, y, u, v ∈ X, where h ∈ [0, 1),

H(F (x, y), F (u, v)) ≤ hmax {d(gx, gu), d(gy, gv)} ,

or for all x, y, u, v ∈ X, where b ∈ [0, 1
2),

H(F (x, y), F (u, v)) ≤ bmax

{
D(gx, F (x, y))+D(gu, F (u, v))

2 ,
D(gy, F (y, x))+D(gv, F (v, u))

2

}
,

or for all x, y, u, v ∈ X, where c ∈ [0, 1
2),

H(F (x, y), F (u, v)) ≤ cmax

{
D(gx, F (u, v)) +D(gu, F (x, y)),
D(gy, F (v, u)) +D(gv, F (y, x))

}
,

or for all x, y, u, v ∈ X, where 0 < h < 1,

H(F (x, y), F (u, v))

≤ hmax


d(gx, gu), d(gy, gv),

D(gx, F (x, y))+D(gu, F (u, v))
2 , D(gx, F (u, v))+D(gu, F (x, y))

2 ,
D(gy, F (y, x))+D(gv, F (v, u))

2 , D(gy, F (v, u))+D(gv, F (y, x))
2

 .

If (iii) of Corollary 3.1 holds, then
(a) F and g have a coupled coincidence point,
(b) F and g have a common coupled fixed point, if g is F−weakly commuting at (x, y)

and g2x = gx and g2y = gy for (x, y) ∈ C(F, g).

Theorem 3.2. Let (X, d) be a complete metric space. Assume F, G : X ×X → CB(X)
and f, g : X → X be mappings satisfying (i), (ii) of Theorem 3.1 and

(i) {F, f} and {G, g} are w−compatible,
(ii) f(X) or g(X) is a closed subset of X,
then F, G, f and g have a common coupled fixed point.

Proof. We can prove like Theorem 3.1 that {un} and {vn} are Cauchy sequences in X.
Since X is complete, there exist u, v ∈ X satisfying (2). Suppose that f(X) is a closed
subset of X, then there exist x, y ∈ X, we have

u = fx and v = fy. (4)

As in Theorem 3.1, we can prove that

fx ∈ F (x, y) and fy ∈ F (y, x), (5)

that is, (x, y) is a coupled coincidence point of F and f. Hence (x, y) ∈ C{F, f}. From
w−compatibility of {F, f}, we have fF (x, y) ⊆ F (fx, fy), hence f2x ∈ F (fx, fy) and



B.DESHPANDE, A.HANDA, DEEPMALA: USING IMPLICIT RELATIONS TO PROVE... 43

f2y ∈ F (fy, fx), that is, fu ∈ F (u, v) and fv ∈ F (v, u). Now, by condition (ii) of
Theorem 3.1, we get

ψ


H(F (u, v), G(x2n−1, y2n−1)),

d(fu, gx2n−1), D(fu, F (u, v)), D(gx2n−1, G(x2n−1, y2n−1)),
D(fu, G(x2n−1, y2n−1)), D(gx2n−1, F (u, v)),

d(fv, gy2n−1), D(fv, F (v, u)), D(gy2n−1, G(y2n−1, x2n−1)),
D(fv, G(y2n−1, x2n−1)), D(gy2n−1, F (v, u))

 ≤ 0.

From (ψ1) and triangle inequality, we have

ψ

 d(fu, u2n),
d(fu, u2n−1), 0, d(u2n−1, u2n), d(fu, u2n), d(u2n−1, fu),
d(fv, v2n−1), 0, d(v2n−1, v2n), d(fv, v2n), d(v2n−1, fv)

 ≤ 0.

Letting n→∞ in the above inequality, we get

ψ

 d(fu, u),
d(fu, u), 0, 0, d(fu, u), d(fu, u),
d(fv, v), 0, 0, d(fv, v), d(fv, v)

 ≤ 0.

Hence, by (ψ3), we have d(fu, u) = d(fv, v) = 0. Thus

u = fu ∈ F (u, v) and v = fv ∈ F (v, u).

Since F (X ×X) ⊆ g(X), then there exist x̃, ỹ ∈ X such that gx̃ = u = fu ∈ F (u, v) and
gỹ = v = fv ∈ F (v, u). Now, by condition (ii) of Theorem 3.1, we get

ψ


H(F (u, v), G(x̃, ỹ)),

d(fu, gx̃), D(fu, F (u, v)), D(gx̃, G(x̃, ỹ)),
D(fu, G(x̃, ỹ)), D(gx̃, F (u, v)),

d(fv, gỹ), D(fv, F (v, u)), D(gỹ, G(ỹ, x̃)),
D(fv, G(ỹ, x̃)), D(gỹ, F (v, u))

 ≤ 0,

and so we have

ψ

 D(u, G(x̃, ỹ)),
0, 0, D(u, G(x̃, ỹ)), D(u, G(x̃, ỹ)), 0
0, 0, D(v, G(ỹ, x̃)), D(v, G(ỹ, x̃)), 0

 ≤ 0.

Hence, by (ψ2), we have D(u, G(x̃, ỹ)) = D(v, G(ỹ, x̃)) = 0. Thus

u = gx̃ ∈ G(x̃, ỹ) and v = gỹ ∈ G(ỹ, x̃),

that is, (x̃, ỹ) is a coupled coincidence point of G and g. Hence (x̃, ỹ) ∈ C{G, g}. From
w−compatibility of {G, g}, we have gG(x̃, ỹ) ⊆ G(gx̃, gỹ), hence g2x̃ ∈ G(gx̃, gỹ) and
g2ỹ ∈ G(gỹ, gx̃), that is, gu ∈ G(u, v) and gv ∈ G(v, u). Again, by condition (ii) of
Theorem 3.1, we get

ψ


H(F (u, v), G(u, v)),

d(fu, gu), D(fu, F (u, v)), D(gu, G(u, v)),
D(fu, G(u, v)), D(gu, F (u, v)),

d(fv, gv), D(fv, F (v, u)), D(gv, G(v, u)),
D(fv, G(v, u)), D(gv, F (v, u))

 ≤ 0,

and so by triangle inequality, we have

ψ

 d(u, gu),
d(u, gu), 0, 0, d(u, gu), d(u, gu),
d(v, gv), 0, 0, d(v, gv), d(v, gv)

 ≤ 0.
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Hence, by (ψ3), we have d(u, gu) = d(v, gv) = 0. Thus

u = gu ∈ G(u, v) and v = gv ∈ G(v, u).

Therefore (u, v) is a common coupled fixed point of F, G, f and g. The proof is similar
when g(X) is assumed to be a closed subset of X. �

Put f = g in the Theorem 3.2, we get the following result:

Corollary 3.6. Let (X, d) be a complete metric space. Assume F, G : X ×X → CB(X)
and g : X → X be mappings satisfying (i), (ii) of Corollary 3.1 and

(i) {F, g} and {G, g} are w−compatible.
If (iii) of Corollary 3.1 holds, then F, G and g have a common coupled fixed point.

Put F = G and f = g in the Theorem 3.2, we get the following result:

Corollary 3.7. Let (X, d) be a complete metric space. Assume F : X × X → CB(X)
and g : X → X be mappings satisfying (i), (ii) of Corollary 3.2 and

(i) {F, g} is w−compatible.
If (iii) of Corollary 3.1 holds, then F and g have a common coupled fixed point.

Examples 2.1-2.9 and Theorem 3.2 imply the following:

Corollary 3.8. Let (X, d) be a complete metric space. Assume F, G : X ×X → CB(X)
and f, g : X → X be mappings satisfying (i) of Theorem 3.1 , (i) of Corollary 3.3, (i)
and (ii) of Theorem 3.2, then F, G, f and g have a common coupled fixed point.

Examples 2.1-2.9 and Corollary 3.6 imply the following:

Corollary 3.9. Let (X, d) be a complete metric space. Assume F, G : X ×X → CB(X)
and f, g : X → X be mappings satisfying (i), (iii) of Corollary 3.1, (i) of Corollary 3.4,
and (i) of Corollary 3.6, then F, G and g have a common coupled fixed point.

Examples 2.1-2.9 and Corollary 3.7 imply the following:

Corollary 3.10. Let (X, d) be a complete metric space. Assume F, G : X×X → CB(X)
and g : X → X be mappings satisfying (iii) of Corollary 3.1, (i) of Corollary 3.2, (i) of
Corollary 3.5 and (i) of Corollary 3.7, then F and g have a common coupled fixed point.
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