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ON GENERALIZATION OF WEIERSTRASS APPROXIMATION

THEOREM FOR A GENERAL CLASS OF POLYNOMIALS AND

GENERATING FUNCTIONS

HEMANT KUMAR1, M. A. PATHAN2, §

Abstract. Here, in this work we present a generalization of the Weierstrass Approxima-
tion Theorem for a general class of polynomials. Then we generalize it for two variable
continuous function F (x, t) and prove that on a rectangle [a, b] × (−1, 1), a ≤ x ≤
b, |t|<1, a, b, t ∈ R , it uniformly converges into a generating function.As a result,we are
able to apply our theorems to derive a number of generating functions.
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1. Introduction

Weierstrass [5] has proved his Weierstrass Approximation Theorem in the year 1885
(see also, Schep [4]). Here we put that in the following general form:
Weierstrass Approximation Theorem.

Theorem 1.1. Let f : [a, b] → R; ; a, b ∈ R; ; be a continuous function. Then f is on
interval [a, b] a uniform limit of polynomials.

In other words, assume that the function f is continuous on bounded interval [a, b],
given any ∈> 0, there is a polynomial Pn(n ≥ 0) with sufficiently high degree n such that

|f(x)− Pn(x)| <∈, for a ≤ x ≤ b, a, b ∈ R. (1)

Now, to obtain a general proof of the theorem 1 we define a transformation formula for a
bounded uniformly continuous function f : R → R such that Hkf(x) = 1

k

∫∞
−∞ f(u)g(u−xk )du,

where k > 0, and g (x) is a probability density function defined by∫ ∞
−∞

g(x)dx = 1, otherwise g(x) = 0. (2)

Again, in this order we prove that

Theorem 1.2. Let f : R → R be a bounded uniformly continuous function. Then Hkf
converges uniformly to f as k > 0.
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Proof. Let ε > 0, then there exists δ > 0 such that |f(x)− f(y)| <
ε

2
, for all x, y ∈ R with

|x− y| < δ. Assume |f(x)| ≤M, ∀x ∈ R.
Again, g(x) is a probability density function so that with the help of Eqn. (2) we may

write

f(x) =
1

k

∫ ∞
−∞

f(x)g

(
u− x
k

)
du, k > 0. (3)

Now let k0 > 0 such that 0 < k ≤ k0 < εδ

4MF
(
δ
k0

) , where F
(
δ
k0

)
=
∫∞
δ
k0

(v) g (v) dv <∞,

then on using Eqns. (2) and (3), we get

|Hk0f(x)− f(x)| ≤ 1

k0

∫ ∞
−∞
|f(u)− f(x)|g

(
u− x
k0

)
du|when|u−x|<δ.

+
1

k0

∫
|u−x|≥δ

|f(u)− f(x)|g
(
u− x
k0

)
du

≤ ε

2
+

1

k0

∫
|u−x|≥δ

|f(u)− f(x)|g
(
u− x
k0

)
du

≤ ε

2
+

2M

k0

∫
|u−x|≥δ

g

(
u− x
k0

)
du (4)

Again, let
u− x
k0

= v so that du = k0dv,

∣∣∣∣u− xk0

∣∣∣∣ = |v| ≥
δ

k0
and

k0 |v|
δ
≥ 1, also

|v| =
{
−v, v < 0,
v, v > 0; ;

then the inequality (4) becomes

|Hk0f (x)− f (x)| ≤ ε

2
+ 2M

∫
|v|≥ δ

k0

g (v) dv ≤ ε

2
+

2Mk0
δ

∫
|v|≥ δ

k0

|v| g (v) dv

=
ε

2
+

2Mk0
δ

∫ − δ
k0

−∞
(−v) g (v) dv +

2Mk0
δ

∫ ∞
δ
k0

(v) g (v) dv

=
ε

2
− 2Mk0

δ

∫ δ
k0

∞
(v) g (−v) dv +

2Mk0
δ

∫ ∞
δ
k0

(v) g (v) dv (5)

Further, if in the Eqn. (5), the probability density function g (v) is even function then
g (−v) = g (v) and for odd g (v) it is g (−v) = −g (v), therefore for

∫∞
δ
k0

(v) g (v) dv =

F
(
δ
k0

)
<∞, we get

|Hk0f (x)− f (x)| ≤


ε

2
+

(
4Mk0
δ

)
F

(
δ

k0

)
, g (v) is even function,

ε

2
, g (v) is odd function.

(6)

Now, in Eqn. (6) we set k0 = εδ

8MF
(

δ
εδ0

) to get

|Hk0f (x)− f (x)| ≤
{
ε, g (v) is even function,
ε
2 , g (v) is odd function.

(7)

Finally, in Eqn. (7) as ε→ 0, Hk0f (x) converges uniformly to f (x) . �



HEMANT KUMAR, M. A. PATHAN : ON GENERALIZATION OF WEIERSTRASS APPROXIMATION ... 49

2. The Weierstrass Approximation Theorem for a General Class of
Polynomials

Here, we extend the function f to a bounded uniformly continuous function on R. This
is accomplished here with the add of the following extended function.

Let
f(x)− f(a)

x− a
= f(a) on open interval (a − 1, a), and

f(x)− f(b)

x− b
= −f(b) on open

interval (b, b+ 1), and f(x) = 0 for all x ∈ R\[a− 1, b+ 1].
Particularly, we consider R > 0 such that R ∈ R and f(x) = 0 for |x| > R. Let ε > 0

and M such that |f(x)| ≤M,∀ x ∈ R. Then by Theorem 2 there exists k0 > 0 such that
for all x ∈ R, we have

|Hk0f(x)− f(x)| < ε

2
. (8)

Again, f(u) = 0 for |u| > R, R > 0, then we may write

Hk0f(x) =
1

k0

∫ R

−R
f(u)g

(
u− x
k0

)
du, where k0 > 0. (9)

Further letting g(x) = lim
n→∞

1

C

n∑
m=0

(−n)mAn,m(x)2m, where, An,m(∀n ≥ 0,∀m ≥ 0) is

a bounded sequence, (−n)m =
(−1)mn!

n−m!
, 0 ≤ m ≤ n, and for m > n, there is (−n)m = 0,

and C is any constant which may be found on satisfying the equation (2). Also for all

|x| ≤ R, and all |u| ≤ R, we have |u− x| ≤ 2R, so that

∣∣∣∣u− xk0

∣∣∣∣ ≤ 2R

k0
, hence then on

closed interval

[
−

2R

k0
, 2Rk0

]
, we get∣∣∣∣∣ 1

k0
g

(
u− x
k0

)
− 1

Ck0

n∑
m=0

(−n)m An,m

(
u− x
k0

)2m
∣∣∣∣∣ < ε

4RM
(10)

Thus with the help of Eqns. (9) and (10), we have∣∣∣∣∣Hk0f (x)− 1

Ck0

∫ R

−R
f (u)

n∑
m=0

(−n)m An,m

(
u− x
k0

)2m

du

∣∣∣∣∣ < ε

2
(11)

Now in Eqn. (11), we define a general class of polynomials in the form Pn (x) =

1
Ck0

∫ R
−R f (u)

∑n
m=0 (−n)m An,m

(
u−x
k0

)2m
du to get

|Hk0f (x)− Pn (x)| < ε

2
(12)

Finally, with the help of Eqns. (8) and (12) we find

|f (x)− Pn (x)| < |(Hk0f (x)− Pn (x))− (Hk0f (x)− f (x))|

< |Hk0f(x)− Pn(x)|+ |Hk0f(x)− f(x)| < ε. (13)

Hence, f is on interval [a, b] a uniform limit of polynomials. (The Weierstrass Ap-
proximation Theorem).
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Remark 2.1. In Eqns. (10) and (12) set An,m = (n−m)!
n!m! , then C =

√
π .Thus we get

the results equivalent to the results given by

g (x) =
1√
π
e
−x2

and Pn (x) =
1

k0
√
π

∫ R

−R
f (u)

n∑
m=0

(−1)m

m!

(
u− x
k0

)2m

du (14)

due to Schep [4].

Remark 2.2. In Eqn. (10) set An,m = Cf
(
m
n

) (−1)m
m! , and replace x by

√
x

(1−x) , then it

becomes Bernstein Approximation theorem [2] in the form

|f(x)−Qn(x)| <∈, where,Qn(x) = xnPn(x). (15)

3. Generalization of Weierstrass Approximation Theorem

Theorem 3.1. Let F (x, t) : [a, b] × (−1, 1) → R, a ≤ x ≤ b, |t|<1, a, b, t ∈ R, be a two
variable continuous function, then on the rectangle [a, b]× (−1, 1) F (x, t) is a generating
function

∑∞
n=0 Pn (x) tn, where Pn (x) is a polynomial defined in Eqn. (12).

Proof. Since for |t| < 1, we have |1− t| < 2 then, from Eqn. (10) on closed interval[
−2R
k0
, 2Rk0

]
, we write∣∣∣∣∣ 1

k0
g

(
u− x
k0

)
1

(1− t)
− 1

Ck0

( ∞∑
n=0

tn
n∑

m=0

(−n)mAn,m

(
u− x
k0

)2m
)∣∣∣∣∣ < ε

8RM
(16)

Then by the Eqn. (16), we may write∣∣∣∣∣Hk0f (x)
1

(1− t)
− 1

Ck0

( ∞∑
n=0

tn
∫ R

−R
f(u)

n∑
m=0

(−n)mAn,m

(
u− x
k0

)2m

du

)∣∣∣∣∣ < ε

4
(17)

Again let |F (x, t)| < M
2 , ∀ (x, t) ∈ {[a, b]× (−1, 1) : a, b ∈ R} as |f (x)| < M, ∀x ∈ R

and let
∣∣∣F (x, t)− f (x) 1

(1−t)

∣∣∣ < ε
2 , then making an application of Eqns. (12) and (17),

we write ∣∣∣∣∣Hk0f (x)
1

(1− t)
−
∞∑
n=0

Pn (x) tn

∣∣∣∣∣ < ε

4
(18)

Therefore, on using Theorem 1 and Eqn. (18), we get∣∣∣∣∣F (x, t)−
∞∑
n=0

Pn (x) tn

∣∣∣∣∣ <
∣∣∣∣F (x, t)−Hk0f (x)

1

(1− t)

∣∣∣∣
+

∣∣∣∣∣Hk0f (x)
1

(1− t)
−
∞∑
n=0

Pn (x) tn

∣∣∣∣∣
<

∣∣∣∣F (x, t)− f (x)
1

(1− t)

∣∣∣∣+

∣∣∣∣f (x)
1

(1− t)
−Hk0f (x)

1

(1− t)

∣∣∣∣
+

∣∣∣∣∣Hk0f (x)
1

(1− t)
−
∞∑
n=0

Pn (x) tn

∣∣∣∣∣
<
ε

2
+
ε

4
+
ε

4
= ε
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This result implies that ∣∣∣∣∣F (x, t)−
∞∑
n=0

Pn (x) tn

∣∣∣∣∣ < ε (19)

Therefore, on the rectangle [a, b]×(−1, 1) , F (x, t) is a generating function

∞∑
n=0

Pn (x) tn,

where Pn (x) is a polynomial defined in Eqn. (12). �

4. Applications

The highly important role of the above theorems in deep consideration and the gener-
ating function description is pointed out rather precisely in this section.First we use the
Theorem 3 and Eqn. (12) to get the following Theorem:

Theorem 4.1. For any sequence Bn (n ≥ 0), the polynomial Pn (x) defined by

1

Ck0

∫ R

−R
f(u)

n∑
m=0

(−n)mAn,m

(
u− x
k0

)2m

du generates the generating function F (x, ζ)

such that

F (x, ζ) =
(1 + ζ)α+1

Ck0 (1− βζ)

∞∑
n=0

Bn(−ζ)n
∫ R

−R

(
u− x
k0

)2n

f (u)du (20)

Here, it is provided that An,m =
(α+ (β + 1)n)!

n! (α+ βn+m)!
Bm and ζ = t(1 + ζ)β+1 and ζ (0) = 0.

Proof. In definition of the polynomial set An,m =
(α+ (β + 1)n)!

n! (α+ βn+m)!
Bm , then we get

Pn (x) =
1

Ck0

∫ R

−R
f(u)

n∑
m=0

(−1)m
(
α+ (β + 1)n

n−m

)
Bm

(
u− x
k0

)2m

du (21)

Therefore the polynomial given in Eqn. (21) generates the function

F (x, ζ) =
∞∑
n=0

Pn(x)tn =
1

Ck0

∫ R

−R
f(u)

∞∑
n=0

tn
n∑

m=0

(−1)m

(
α+ (β + 1)n

n−m

)
Bm

(
u− x
k0

)2m

du (22)

Now, in Eqn. (22) make an appeal to the Theorem due to Brown [1] on providing

ζ = t(1 + ζ)β+1 and ζ (0) = 0 we find the result (20). �

Example 4.1. Define the function

f(x) =

{
λ, |x| ≤ R
0, |x| ≥ R , An,m =

(α+ (β + 1)n)!

n!(α+ βn+m)!
Bm, then on using the Theorem 4, we get

generating function

F (x, ζ) =
λ(1 + ζ)α+1

C(1− βζ)[(
R+ x

k0

) ∞∑
n=0

Bn

(
−ζ
(
R+ x

k0

)2
)n

+

(
R− x
k0

) ∞∑
n=0

Bn

(
−ζ
(
R− x
k0

)2
)n]

(23)
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Example 4.2. Define the function

f(x) =

{
λ, |x| ≤ R
0, |x| ≥ R , An,m =

(α+ (β + 1)n)!

n!(α+ βn+m)!

(α1)m . . . (αp)m
(β1)m . . . (βq)m

, where for α 6= 0,−1,−2, . . . ,

(α)m =
Γ(α+m)

Γ(α)
is a Pochhammer symbol. Then on using Theorem 4, we get the follow-

ing generating function of classical generalized hypergeometric function pF q

F (x, ζ) =
λ(1 + ζ)α+1

C (1− βζ)[(
R+ x

k0

)
pF q

[
α1, . . . , αp; ;
β1, . . . , βq; ;

(
−ζ
(
R+ x

k0

)2
)]

+

(
R− x
k0

)
pF q

[
α1, . . . , αp; ;
β1, . . . , βq; ;

(
−ζ
(
R− x
k0

)2
)]]

(24)

where for the definition of pF q ,we refer [3].

Acknowledgement The second author would like to thank the Department of Science and
Technology,Government of India for the financial assistance for this work under project
number SR/S4/MS:794/12 and the Centre for Mathematical and Statistical Sciences for
the facilities.

References

[1] Brown,J.W., (1969), New generating functions for classical polynomials, Proc. Amer. Math. Soc. 21,
pp. 263-268.

[2] Estep,D., (2002), Practical Analysis in One Variable, Spriger, http://www.springer.com/978-0–387-
95484-4

[3] Rainville,E.D., (1960), Special Functions, Macmillan, New York; Reprinted by Chelsea Publ. Co.,
Bronx, New York.

[4] Schep,A.R., (2007), Weierstrass’ Proof of The Weierstrass Approximation Theorem, published in the
site: www.math.sc.edu/˜schep/weierstrass.pdf

[5] Weierstrass,K., (1885), Uber die analytische Darstellbarkeit sogenannter willk, Urlicher Functionen
einer reellen Ver, anderlichen, Verl. D. Kgl. Akad. D. Wiss. Berlin 2, pp. 633-639.



HEMANT KUMAR, M. A. PATHAN : ON GENERALIZATION OF WEIERSTRASS APPROXIMATION ... 53

Dr. Hemant Kumar has received Ph. D. Degree in 1993 from Burkatullah University,
Bhopal, (M. P.), India. He is an Associate Professor in the Department of Mathematics,
D. A-V. P. G. College, Kanpur - 208001 (U. P.), India. He has supervised 07 Ph. Ds in
Generalized Special Functions and Their Applications in Different Areas. His research
interests include Mathematical Modeling and Special functions, Application of Special
functions in Boundary value problems, Fractional Calculus and Generating functions via
Lie Groups. He has published more than 56 papers in national and international journals.

He has also presented more than 35 research articles in national and international conferences.

Prof. M. A. Pathan studied at University of Rajasthan, Jaipur and received the Ph.D.
degree in 1968. He has served as Chairman of the Department of Mathematics, Aligarh
Muslim University, Aligarh, India. He has supervised 13 Ph.Ds in Integral operators,
Fractional calculus, Lie theory and Special functions. He is author of 4 books and pub-
lished more than 170 research papers. He is former President of the Indian Mathematical
Society, Sectional President of Indian Science Congress Association and is General Sec-

retary of the Society for Special Functions and their Applications. He is on the Editorial board of more
than 20 Journals,/Bulletins and Proceedings of international conferences.


