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A NOTE ON DISCRETE FRAMES OF TRANSLATES IN CN

DEEPSHIKHA1, L. K. VASHISHT1, §

Abstract. In this note, we present necessary and sufficient conditions with explicit
frame bounds for a discrete system of translates of the form {Tkφ}k∈ZN to be a frame

for the unitary space CN .
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1. Introduction and Preliminaries

Motivated by discrete Gabor system in a finite dimensional complex space by Pfander
[7], we give some frame properties of a family of the form {Tkφ}k∈ZN (called family of
translates) in CN . The discrete wavelet structure (and wave packet) in CN studied by
authors in [6, 8]. Frames of translates in L2(R) studied by Benedetto and Li [1], Chris-
tensen et al. [4] and Daubechies [5]. A family of translates can at most be a frame for a
subspace of L2(R), but this is not the case in CN . In this paper, we prove necessary and
sufficient conditions with explicit frame bounds for a discrete system of translates of the
form {Tkφ}k∈ZN to be a frame for CN . We also characterize generator functions associated
with discrete frames of translates in C2

First we recall some basic definitions and notations to make the paper self-contained.
Let H be a separable Hilbert space with inner product 〈., .〉 linear in the first entry. A
countable sequence {fk}k∈I ⊂ H is called a frame (or Hilbert frame) for H if there exist
constants 0 < αo ≤ βo <∞ such that

αo‖f‖2 ≤
∑
k∈I
|〈f, fk〉|2 ≤ βo‖f‖2 for all f ∈ H.

Associated with the frame {fk}k∈I for H, the frame operator S : H → H given by

Sf =
∑
k∈I
〈f, fk〉fk, f ∈ H.

The operator S is an invertible operator on H. This gives the reconstruction formula for
each f ∈ H,

f = SS−1f =
∑
k∈I
〈S−1f, fk〉fk =

∑
k∈I
〈f, S−1fk〉fk. (1)

Theorem 1.1. [3] A family of vectors {fk}mk=1 ⊂ CN is a frame for CN if and only if

span{fk}mk=1 = CN .
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of Mathematics, 2016; all rights reserved.

143



144 TWMS J. APP. ENG. MATH. V.6, N.1, 2016

In the rest part of this section, we follow notations and definitions given in [7]. Let
N be a positive integer. In the unitary space CN an arbitrary element x is represented
by ((x(0), x(1), ..., x(N − 1))T , where xT denotes the transpose of the vector x. More
precisely, we write

CN = {(x(0), x(1), ..., x(N − 1))T : x(i) ∈ C, i ∈ ZN = {0, 1, ..., N − 1}}.

Let k ∈ ZN . The translation operator Tk : CN → CN is given by

Tk((x(0), x(1), ..., x(N − 1))T = (x(0− k), x(1− k), ..., x((N − 1)− k))T ,

where substraction is over modulo N .
For l ∈ ZN , the modulation operator Ml : CN → CN is defined as

Ml((x(0), x(1), ..., x(N − 1))T = (e2πil0/Nx(0), e2πil1/Nx(1), ..., e2πil(N−1)/Nx(N − 1))T .

The Fourier transform F on CN is given pointwise as follows (see [7] at page 196):

Fx(m) = x̂(m) =
∑
n∈ZN

x(n)e−2πimn/N ,m ∈ ZN ,

One of the major properties of the Fourier transform includes the Fourier inversion formula
and the Parseval-Plancherel formula:

Theorem 1.2. [2, p. 197] The normalized harmonics 1√
N
e2πim(•)/N , m = 0, 1, ..., N − 1,

form an orthonormal basis of CN and, hence, we have

x =
1√
N

N−1∑
m=0

x̂(m)e2πim(•)/N and 〈x, y〉 =
1

N
〈x̂, ŷ〉, x, y ∈ CN .

In matrix notation, the Fourier transform is represented by the Fourier matrix given by

WN = (ω−rs)N−1r,s=0, where ω = e2πi/N .

2. Discrete Frames of Translates

Definition 2.1. Let φ ∈ CN . A family of vectors {Tkφ}k∈ZN for CN is called a discrete
frame of translates (in short DFT ) for CN if there exists positive scalars ao ≤ bo < ∞
such that

ao‖x‖2 ≤
∑
k∈ZN

|〈Tkφ, x〉|2 ≤ bo‖x‖2 for all x ∈ CN .

The vector φ is called a generator function (or scaling function) for DFT .

Remark 2.1. It is well known that a frame of translates for L2(R) need not be a basis
for L2(R) .On the other hand, a DFT for CN contains exactly N vectors. Hence by using
the fact that a spanning set of CN with exactly N vectors is linearly independent, we get
that every DFT is a basis for CN . From this we notice that {Tkφ}k∈Z1 is a frame for C1

if and only if φ 6= 0.

The following theorem gives a sufficient condition for a family of translates {Tkφ}k∈ZN

to be a frame for CN .

Theorem 2.1. Let φ ∈ CN . Assume that

A = inf
m∈ZN

[
|φ̂(m)|2

]
> 0.

Then, {Tkφ}k∈ZN is a DFT for CN with frame bounds A and N‖φ‖2.
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Proof. By using the Parsevals-Plancherel formula, we compute∑
k∈ZN

|〈Tkφ, x〉|2 =
∑
k∈ZN

〈Tkφ, x〉〈Tkφ, x〉

=
1

N2

∑
k∈ZN

〈T̂kφ, x̂〉〈T̂kφ, x̂〉

=
1

N2

∑
k∈ZN

〈M−kφ̂, x̂〉〈M−kφ̂, x̂〉

=
1

N2

∑
k∈ZN

 ∑
n∈ZN

φ̂(n)e−2πink/N x̂(n)

 ∑
m∈ZN

φ̂(m)e2πimk/N x̂(m)


=

1

N2

∑
k∈ZN

[
√
N

〈
φ̂ x̂,

1√
N
e2πi(•)k/N

〉√
N

〈
φ̂ x̂,

1√
N
e2πi(•)k/N

〉 ]

=
1

N2

∑
k∈ZN

N

∣∣∣∣〈φ̂ x̂, 1√
N
e2πi(•)k/N

〉∣∣∣∣2
=

1

N

∑
m∈ZN

|φ̂(m)|2|x̂(m)|2

≥ 1

N
inf

m∈ZN

[
|φ̂(m)|2

] ∑
m∈ZN

|x̂(m)|2

=
A

N
‖x̂‖2

= A‖x‖2 for all x ∈ CN .
Therefore, {Tkφ}k∈ZN satisfies lower frame inequality with bound A.

For the upper frame inequality, we compute∑
k∈ZN

|〈Tkφ, x〉|2 ≤
∑
k∈ZN

‖Tkφ‖2‖x‖2

= ‖x‖2
∑
k∈ZN

‖Tkφ‖2

= N‖φ‖2‖x‖2.

Hence {Tkφ}k∈ZN is a DFT for CN with frame bounds A and N |φ‖2. �

Next we prove a necessary condition for DFT in CN .

Theorem 2.2. Let {Tkφ}k∈ZN be a DFT for CN with bounds A and B. Then,

A ≤
∑
m∈ZN

|φ̂(m)|2 ≤ B. (2)

Proof. Let x ∈ CN be arbitrary. Then, by using the Parseval-Plancheral formula and
Cauchy-Scharwtz inequality, we compute

A‖x‖2 ≤
∑
k∈ZN

|〈Tkφ, x〉|2

≤
∑
k∈ZN

‖Tkφ‖2‖x‖2
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= ‖x‖2
∑
k∈ZN

‖Tkφ‖2

= N‖φ‖2‖x‖2

= ‖φ̂‖2‖x‖2

= ‖x‖2
∑
m∈ZN

|φ̂(m)|2. (3)

Choose x ∈ CN such that ‖x‖2 = 1, then by (3), we have

A ≤
∑
m∈ZN

|φ̂(m)|2.

Next we prove upper inequality in (2) by contradiction method. Assume that
∑

m∈ZN |φ̂(m)|2 >

B. Then, there exist m′ ∈ ZN such that

sup
m∈ZN

(|φ̂(m)|2) = |φ̂(m′)|2 and N |φ̂(m′)|2 > B.

Choose x ∈ CN such that x̂(m) = 0 for m 6= m′ and x̂(m) = φ̂(m′) for m = m′.
We compute∑

k∈ZN

|〈Tkφ, x〉|2 =
∑
k∈ZN

〈Tkφ, x〉〈Tkφ, x〉

=
1

N2

∑
k∈ZN

〈T̂kφ, x̂〉〈T̂kφ, x̂〉

=
1

N2

∑
k∈ZN

〈M−kφ̂, x̂〉〈M−kφ̂, x̂〉

=
1

N2

∑
k∈ZN

 ∑
n∈ZN

φ̂(n)e−2πink/N x̂(n)
∑
m∈ZN

φ̂(m)e2πimk/N x̂(m)


=

1

N2

∑
k∈ZN

[
√
N

〈
φ̂ x̂,

1√
N
e2πi(•)k/N

〉√
N

〈
φ̂ x̂,

1√
N
e2πi(•)k/N

〉]

=
1

N2

∑
k∈ZN

N

∣∣∣∣〈φ̂ x̂, 1√
N
e2πi(•)k/N

〉∣∣∣∣2
=

1

N

∑
m∈ZN

∣∣∣φ̂(m) x̂(m)
∣∣∣2

=
1

N
|φ̂(m′)φ̂(m′)|2

=
1

N
|φ̂(m′)|2|φ̂(m′)|2

> N
B

N
|φ̂(m′)|2

= B‖x̂‖2

= NB‖x‖2

≥ B‖x‖2.
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This shows that B is not an upper bound for {Tkφ}k∈ZN , a contradiction. Hence we must

have
∑

m∈ZN |φ̂(m)|2 ≤ B. This completes the proof. �

We now demonstrate by a concrete example that condition given in Theorem 2.2 is not
sufficient.

Example 2.1. Let N > 1. Choose φ = (1, 1, ..., 1)T ∈ CN . Then, by definition of
pointwise Fourier transform, we have

φ̂(0) = 1.φ(0) + 1.φ(1) + ...+ 1.φ(N − 1) = N.

This gives
∑

m∈ZN |φ̂(m)|2 = |φ(0)|2 +
∑

m∈ZN\{0} |φ̂(m)|2 > 0 . Therefore, there exist

A,B > 0 such that

A ≤
∑
m∈ZN

|φ̂(m)|2 ≤ B.

Hence condition (2) given in Theorem 2.2 is satisfied. On the other hand, the family of
vectors {Tkφ}k∈ZN = {(1, 1, ..., 1)T } is not a frame for CN (see Theorem 1.1).

Let {fk}k∈I be a frame for H. A frame {gk}k∈I for H satisfying

f =
∑
k∈I
〈f, gk〉fk for all f ∈ H (4)

is called a dual frame of {fk}k∈I . Let S be the frame operator for {fk}k∈I . Then, the
family of vectors {S−1fk}k∈I is a frame for H and satisfies (4) (see equation (1)). The
frame {S−1fk}k∈I is called the canonical dual frame of {fk}k∈I . The following theorem
shows that the canonical dual of DFT in CN have the same structure.

Theorem 2.3. Suppose that {Tkφ}k∈ZN is a DFT for CN with frame operator S. Then,
the canonical dual frame of {Tkφ}k∈ZN is {TkS−1φ}k∈ZN .

Proof. First we show that frame operator S commutes with translation operator. For any
k′ ∈ ZN and ψ ∈ CN , we compute

Tk′Sψ = Tk′
∑
k∈ZN

〈ψ, Tkφ〉Tkφ

=
∑
k∈ZN

〈ψ, Tkφ〉Tk′Tkφ

=
∑
k∈ZN

〈ψ, Tkφ〉T(k′+k)φ

=
∑
k∈ZN

〈ψ, T(k−k′)φ〉Tkφ

=
∑
k∈ZN

〈ψ, T−k′Tkφ〉Tkφ

=
∑
k∈ZN

〈Tk′ψ, Tkφ〉Tkφ

= STk′ψ.

Therefore, the frame operator S commutes with translation operator. This gives

S−1Tkφ = (T−1k S)−1φ = (T−kS)−1φ = (ST−k)
−1φ = T−1−kS

−1φ = TkS
−1φ

Hence the canonical dual frame of {Tkφ}k∈ZN is {TkS−1φ}k∈ZN . The theorem is proved.
�
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To conclude the paper, we characterize generator functions for DFT in C2.

Theorem 2.4. For φ = (x(0), x(1))T ∈ C2, a family of vectors {Tkφ}k∈Z2 is a DFT for
C2 if and only if (x(0))2 6= (x(1))2.

Proof. First suppose that {Tkφ}k∈Z2 is a DFT for C2. Then, φ 6= 0. Let us write
φ = (x(0), x(1))T = (a, b), where a = x(0) and b = x(1). Without loss of generality, let
a 6= 0. Let, if possible, a2 = b2. Then, for c1 = −b

a , c2 = 1 6= 0, we have

c1(a, b)
T + c2(b, a)T = (

−b
a
a+ b,

−b2

a
+ a)T = (0, 0)T .

which contradicts the linear independence of {Tkφ}k∈Z2 . Hence a2 6= b2.
For the converse part, assume that a2 6= b2, where a and b are same as in forward part.

Then, both a and b can not be zero. Without loss of generality, let a 6= 0. Let c1, c2 ∈ C
be such that c1(a, b)

T + c2(b, a)T = 0. Then, c1a+ c2b = 0 and c1b+ c2a = 0. This gives

c1 = −c2b
a and (−b2+a2)c2

a = 0. By using that a2 6= b2, we obtain c2 = c1 = 0. Therefore,

{Tkφ}k∈Z2 = {(a, b)T , (b, a)T } is linearly independent and hence (by using Theorem 1.1)
form a DFT for C2. �
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