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SOLUTION OF TWO-DIMENSIONAL HEAT AND MASS TRANSFER

EQUATION WITH POWER-LAW TEMPERATURE-DEPENDENT

THERMAL CONDUCTIVITY

S. PAMUK1, N. PAMUK2,§

Abstract. In this paper, we obtain the particular exact solutions of the two-dimensional
heat and mass transfer equation with power-law temperature-dependent thermal con-
ductivity using the Adomian’s decomposition method. In comparison with existing tech-
niques, the decomposition method is very effective in terms of accuracy and convergence.
Also, it is an advantageous method for obtaining the solutions of non-linear differential
equations without linearization and physically unrealistic assumptions. Numerical com-
parisons are presented in both tables and figures.
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1. Introduction

In this paper we consider the two-dimensional heat and mass transfer equation with
power-law temperature-dependent thermal conductivity [10]

∂ω

∂t
= a

[
∂

∂x

(
ωm∂ω

∂x

)]
+ b

[
∂

∂y

(
ωm∂ω

∂y

)]
+ βω (1)

where m can be an integer, fractional or negative number. Also, a, b and β are some
parameters. Some very special cases of Eq.(1) in one dimension have been studied in
[6,9]. In [9] the authors have obtained the particular exact solutions of the porous media
equation (the case a = 1, b = 0, β = 0) that usually occurs in nonlinear problems of heat
and mass transfer, and in biological systems. When a = 1, b = 1, m = 1 and β = 0, Eq.
(1) is called Boussinesq equation. It arises in nonlinear heat conduction theory and the
theory of unsteady flows through porous media with a free surface [10]. Also, when a = b,
m = −1 and β = 0, the equation admits travelling-wave solutions [10].

To obtain mathematical models of physical or biological phenomena, one generally faces
nonlinear partial differential equations, and to find exact solutions of such equations is
generally not easy. There are some methods to obtain approximate solution of this kind
of equations. Some of them are linearization of the equation, perturbation and numerical
methods. In the beginning of the 1980’s, Adomian aimed to find a new method which
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is called the Adomian Decomposition Method (ADM)[1]. This method is very useful to
find series solution of ordinary differential equations, partial differential equations and
integral equations. Also, this method avoids linearization of the problem and unnecessary
assumptions.

In [2,3] the Authors apply ADM for fin efficiency of convective straight fins with tem-
perature dependent thermal conductivity. Also, in [5] ADM has been applied to obtain
the solution for the convective longitudinal fins with variable thermal conductivity.

In the next section we apply the decomposition method to Eq. (1), and in the last
section we present some numerical examples and results that show how rapidly the series
solution converges to the exact solution.

2. Method

If we let f(ω) = ωm∂ω

∂x
, g(ω) = ωm∂ω

∂y
and h(ω) = βω, Eq.(1) can be written in an

operator form

Ltω = aLx [f(ω)] + bLy [g(ω)] + h(ω) (2)

where Lt = ∂
∂t , Lx = ∂

∂x and Ly = ∂
∂y symbolize the linear differential operators. We

assume integration inverse operators exist and they are defined as L−1
t =

∫ t
0 (.)dt, L

−1
x =∫ x

0 (.)dx and L−1
y =

∫ y
0 (.)dy, respectively. Therefore, the solution of Eq.(1) in t direction

can be written as [1,6,7,8,9]

ω(x, y, t) = ω(x, y, 0) + aL−1
t (Lxf(ω)) + bL−1

t (Lyg(ω)) + L−1
t (h(ω)). (3)

By ADM [1] the solution of Eq.(1) can be written in series form as

ω(x, y, t) =
∞∑
n=0

ωn(x, y, t). (4)

To find the solution, one has to solve the recursive relations

ω0 = ω(x, y, 0), ωn+1 = L−1
t (aLx(An)) + L−1

t (bLy(Bn)) + L−1
t (Cn) n ≥ 0, (5)

where the Adomian polynomials An, Bn and Cn are [1]

An =
1

n!

dn

dλn

[
f

( ∞∑
n=0

λnωn

)]
λ=0

, n ≥ 0. (6)

Bn =
1

n!

dn

dλn

[
g

( ∞∑
n=0

λnωn

)]
λ=0

, n ≥ 0. (7)

Cn =
1

n!

dn

dλn

[
h

( ∞∑
n=0

λnωn

)]
λ=0

, n ≥ 0. (8)

We obtain the first few Adomian polynomials for the functions f(ω), g(ω) and h(ω) defined
above
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C0 = βω0,
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C2 = βω2,
...

The convergence of the series given by (4) is studied in [4].
We let ϕn(x, y, t) represent the partial sum

ϕn(x, y, t) =
n∑

k=0

ωk(x, y, t). (9)

Therefore,

ω(x, y, t) = lim
n→∞

ϕn(x, y, t) (10)

as it is clear from (4). In the following section, we consider some examples and compute
the absolute errors |ω(x, y, t) − ϕn(x, y, t)| in tables where ω(x, y, t) is the exact solution
and ϕn(x, y, t) is the nth partial sum as defined above.

3. Applications

Example 1: We take m = 1 and β = 0 in Eq.(1), then Eq.(1) becomes

∂ω

∂t
= a

[
∂

∂x

(
ω
∂ω

∂x

)]
+ b

[
∂

∂y

(
ω
∂ω

∂y

)]
. (11)

In [10] the authors give the exact solution to this equation as ω(x, y, t) = x+y+(a+b)t.
Taking ω0 = x+ y and using ADM to obtain recursive relation, we can find the Adomian
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polynomials as

A0 = B0 = x+ y,

ω1 = aL−1
t (Lx(A0)) + bL−1

t (Ly(B0)) = (a+ b)t,

A1 = B1 = (a+ b)t,

ω2 = aL−1
t (Lx(A1)) + bL−1

t (Ly(B1)) = 0,

...

Therefore, one gets ωn = 0 for n ≥ 2. These polynomials are enough to get the exact
solution of the Eq.(11)

ω(x, y, t) = ω0(x, y, t) + ω1(x, y, t) = x+ y + (a+ b)t.

Example 2: We take m = 2 and β = 0 in Eq.(1), then Eq.(1) becomes

∂ω

∂t
= a

[
∂

∂x

(
ω2∂ω

∂x

)]
+ b

[
∂

∂y

(
ω2∂ω

∂y

)]
. (12)

In [10] the exact solution of this equation is given as

ω(x, y, t) =

[
2(x+ y + t)

(a+ b)

]1/2
. (13)

We take ω0 = ω(x, y, 0) =

[
2(x+ y)

(a+ b)

]1/2
. To find the series solution of this equation by

ADM, we find Adomian polynomials and the terms of the series as

A0 = 21/2(a+ b)−3/2(x+ y)1/2,

B0 = 21/2(a+ b)−3/2(x+ y)1/2,

A1 = 2−1/2(a+ b)−3/2(x+ y)−1/2t,

B1 = 2−1/2(a+ b)−3/2(x+ y)−1/2t,

A2 = −2−5/2(a+ b)−3/2(x+ y)−3/2t2,

B2 = 2−5/2(a+ b)−3/2(x+ y)−3/2t2,

ω0 = 21/2(a+ b)−1/2(x+ y)1/2,

ω1 = 2−1/2(a+ b)−1/2(x+ y)−1/2t,

ω2 = −2−5/2(a+ b)−1/2(x+ y)−3/2t2,

ω3 = 2−7/2(a+ b)−1/2(x+ y)−5/2t3,

and so on. The other terms of the series solution are found by using Matcad7. Therefore,
the series solution of Eq.(12) is

ω(x, y, t) = ω0(x, y, t) + ω1(x, y, t) + ω2(x, y, t) + ω3(x, y, t) + ...

= 21/2(a+ b)−1/2(x+ y)1/2 + 2−1/2(a+ b)−1/2(x+ y)−1/2t

− 2−5/2(a+ b)−1/2(x+ y)−3/2t2 + 2−7/2(a+ b)−1/2(x+ y)−5/2t3 + · · · .
This gives the exact solution given by (13) in the closed form which can be verified through
substitution.

Example 3: If we plug m = −1, a = b = α and β = 0 in the Eq.(1), then Eq.(1)
becomes

∂ω

∂t
= α

[
∂

∂x

(
1

ω

∂ω

∂x

)
+

∂

∂y

(
1

ω

∂ω

∂y

)]
. (14)
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We will obtain the series solution of the problem with the initial condition

ω0 = (sin y + expx)−2.

Therefore, one gets

A0 = −2 expx(sin y + expx)−1,

B0 = −2 cos y(sin y + expx)−1,

ω1 = 2αt(sin y + expx)−2,

An = Bn = 0, n = 1, 2, 3 · · · ,
ωn = 0, n = 2, 3, 4 · · · .

This gives the exact solution to Eq.(14)

ω(x, y, t) = ω0(x, y, t) + ω1(x, y, t),

= (sin y + expx)−2 + 2αt(sin y + expx)−2,

=
2αt+ 1

(sin y + expx)2
. (15)

Example 4: In this example, we obtain a series solution for two-dimensional heat and
mass transfer equation with power-law temparature-dependent thermal conductivity with
a source term for some cases. We take m = −1 , a = b = α in the Eq.(1), therefore it
becomes

∂ω

∂t
= α

[
∂

∂x

(
1

ω

∂ω

∂x

)
+

∂

∂y

(
1

ω

∂ω

∂y

)]
+ βω, (16)

where α and β are parameters. In [10] a partial exact solution of this equation is given by

ω(x, y, t) = exp(βt)u(x, y, η) (17)

where

η =
1

β
[1− exp(−βt)] , u(x, y, η) =

2αη + 1

(sin y + exp(x))2

with the initial condition ω0 = ω(x, y, 0) = (sin y + expx)−2. If we compute the Adomian
polynomials and the terms of the series we obtain

A0 = −2 expx(sin y + expx)−1,

B0 = −2 cos y(sin y + expx)−1,

C0 = β(sin y + expx)−2,

ω1 = (2α+ β)t(sin y + expx)−2,

An = Bn = 0, n = 1, 2, 3 · · · ,
C1 = βt(2α+ β)(sin y + expx)−2,

ω2 =
βt2

2
(2α+ β)(sin y + expx)−2,

C2 =
β2t2

2
(2α+ β)(sin y + expx)−2,

ω3 =
β2t3

6
(2α+ β)(sin y + expx)−2,
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Table 1. Numerical results for |ω(x, y, t) − ϕ8(x, y, t)| where ω(x, y, t) =

(x+ y + t)1/2

for Eq. (12) in the case a = b = 1

xi, yi|ti 0.1 0.3 0.5 0.6 0.8
x = 0.2, y = 0.3 3.377E − 9 5.159E − 5 4.185E − 3 0.02E + 00 0.226E + 00
x = 1.5, y = 0.2 1.144E − 13 2.054E − 9 1.876E − 7 9.307E − 7 1.152E − 5
x = 2, y = 0.3 9.104E − 15 1.628E − 10 1.515E − 8 7.582E − 8 9.524E − 7
x = 2.5, y = 1 0.000E + 00 4.752E − 12 4.511E − 10 2.278E − 9 2.912E − 8
x = 2.5, y = 0.2 2.22E − 15 4.228E − 11 3.968E − 9 1.994E − 8 2.522E − 7

Table 2. Numerical results for |ω(x, y, t) − ϕ8(x, y, t)| where ω(x, y, t) =
3 exp(t)−2

(sin y+exp(x))2

for Eq. (16) in the case α = β = 1

xi, yi|ti 0.1 0.5 0.8 1 1.5
x = 0.1, y = 0.1 5.184E − 13 2.119E − 7 9.427E − 6 5.756E − 5 1.57E − 3
x = 0.2, y = 1.5 1.528E − 13 6.248E − 8 2.78E − 6 1.698E − 5 4.63E − 4
x = 2, y = 0.6 1.19E − 14 4.863E − 9 2.164E − 7 1.321E − 6 3.604E − 5
x = 3.5, y = 3 0.00E + 00 2.782E − 10 1.238E − 8 7.557E − 8 2.061E − 6
x = 3.5, y = 0.2 0.000E + 00 2.772E − 10 1.233E − 8 7.531E − 8 2.054E − 6

and so on. The other terms of the series solution are obtained by using Matcad7. There-
fore, the series solution of Eq.(16) is

ω(x, y, t) = ω0(x, y, t) + ω1(x, y, t) + ω2(x, y, t) + ...

= (sin y + expx)−2 + (2α+ β)t(sin y + expx)−2

+
βt2

2
(2α+ β)(sin y + expx)−2

+
β2t3

6
(2α+ β)(sin y + expx)−2 + · · · . (18)

This is the exact solution given by (17) in the closed form which can be verified through
substitution.
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Figure 1. Numerical comparison for the solution to Eq. (12) at t = 0.1
in the case a = b = 1.

0

1

2

3

0.2

0.4

0.6

0.8

1

0.8

1

1.2

1.4

1.6

1.8

2

x

t=0.3

y

w=
(x

+y
+t

)1/
2

0

1

2

3

0.2

0.4

0.6

0.8

1

0.8

1

1.2

1.4

1.6

1.8

2

x

t=0.3

y

φ 8(x
,y,

t)

Figure 2. Numerical comparison for the solution to Eq. (12) at t = 0.3
in the case a = b = 1
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Figure 3. Numerical comparison for the solution to Eq. (12) at t = 0.5
in the case a = b = 1
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Figure 4. Numerical comparison for the solution to Eq. (16) at t = 0.1
in the case α = β = 1
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Figure 5. Numerical comparison for the solution to Eq. (16) at t = 0.5
in the case α = β = 1
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Figure 6. Numerical comparison for the solution to Eq. (16) at t = 0.8
in the case α = β = 1
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4. Results

In this paper, we have shown that the approximate solutions obtained by using ADM
are very close to the exact solutions of nonlinear partial differential equations of the form
Eq. (1). For equations (12) and (16) the absolute errors |ω(x, y, t) − ϕn(x, y, t)|, where
ω(x, y, t) is the exact solution and ϕn(x, y, t) is the n th partial sum given by Eq. (9),
are shown in Tables 1 and 2, respectively. For numerical purposes, we take n = 8. As
seen from Tables 1 and 2, the absolute errors are very small. For this type of nonlinear
problems, we achieve a very good approximation to the partial exact solution by using
only 8 terms of the decomposition series, which shows that the speed of convergence of
this method is very fast, and the overall errors can be made very small by adding new
terms to the series (9).

In Figures 1-3 and Figures 4-6 we compare the exact solutions with the 8-term series
expansions for Eq. (12) and Eq. (16), respectively. As seen from the six figures the exact
solutions are almost identical to those we have obtained by using only 8 terms of the
decomposition series.

As a result, when we use ADM there is no need to make linearization or unnecessary
assumptions to solve the non-linear differential equations.
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