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ANALYSIS OF DISCRETE-TIME QUEUE WITH TWO

HETEROGENEOUS SERVERS SUBJECT TO CATASTROPHES

VEENA GOSWAMI1, §

Abstract. This paper studies a discrete-time queueing system with two heterogeneous
servers subject to catastrophes. We obtain explicit expressions for the steady-state prob-
abilities at arbitrary epoch using displacement operator method. The waiting time dis-
tribution and outside observer’s observation epoch probabilities are deduced. Various
performance measures and numerical results have been investigated.
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1. Introduction

Queueing models with catastrophes gained considerable interest during the last few
decades due to their applications in the analysis of computer- and communication systems
where catastrophes induced by external effects have an important influence on costs and
performance from an economic viewpoint. Whenever a catastrophe occurs at the system,
all the customers present are forced to abandon the system immediately, the server gets in-
operative instantaneously, and the server is ready for service when a new customer arrives.
The modeling and analysis of queueing systems with catastrophes may be used to study
the migration processes with catastrophes and computer networks with virus infections or
a reset order.

Queueing systems with catastrophes have been investigated by many researchers (Chao
[1], Chen and Renshaw [2], Di Crescenzo et al. [3] and Boudali and Economou [4]). The
catastrophes occur as negative customers to the system and its characteristic is to an-
nihilate all the customers in the system and the momentary deactivation of the service
facilities till a new arrival of customers. The catastrophes might arrive either from outside
the system or from some other service station. In a queueing system, whenever catastro-
phe occurs, it may be thought of as a clearing mechanism which causes all the jobs in
the system to be lost. If a job infected with virus in computer systems, it carries virus to
other processors deactivating files and perhaps the system itself. It has enormous applica-
tions in a broad areas especially in computer communication, industries, biosciences and
population genetics. In real-world catastrophes appear in various situations in practice,
for example, in the production sector, in the service sector, in the health care sector, in
population genetics, in the transportation sector, in the telecommunication industry, etc.
In most of the above cases, there is some sort of compensation for the jobs. Thus, the
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economic analysis of queueing systems with catastrophes who are forced to vacate the
system pretend to be of concern from an applications point of view. Some articles on
continuous-time queueing systems with catastrophes can be found in Kumar and Arivu-
dainambi [5], Kumar and Madheswari [6], Kumar et al. [7]. The strategic behavior and
social optimization in case of heterogeneous customers with Markovian vacation queues
has been discussed in Guo and Hassin [8].

The study on multi-server queueing systems in general presumes the servers to be ho-
mogeneous. The heterogeneous service rates have many practical aspects in modeling real
systems that permit customers to meet different qualities of service. For example, commu-
nications network supporting communication channels of various transmission rates, nodes
in wireless systems serving different mobile users, nodes in telecommunications network
with links of various capacities, servers formed with different processors as a consequence of
system updates, multiprogramming computer system which spools its output for printing
on a set of printers of different speeds, or scheduling jobs on functionally equivalent pro-
cessors of a local computer network, manual assembly formed with different workers with
the average task completion time differing from person to person, machines undergoing
a process of rapid and constant technological renewal and depreciation, the transporta-
tion of goods with different abilities and capacities, etc. involve heterogeneous servers.
The firms must give attention to the quality and service performance when designing and
carrying out their operations as these are requirements in customer perceptions. In a
heterogeneous environment, resources are autonomous, distributed, dense, and dynamic,
hence they should be effectively scheduled so that maximum utilization of the resources
is possible. As a result, heterogeneous multi-server queues can be used to obtain more
insight into these systems and thus make them more manageable. But literature on this
class is limited to the servers having homogeneous service rates as it simplifies the analysis.
For more details on this topic, see Larsen and Agrawala [9] and Lin and Kumar [10].

The analysis of two heterogeneous servers queue subject to catastrophes in continuous-
time has been carried out by Kumar et al. [11]. To evaluate system performance measures,
discrete-time queueing models are better suited than their continuous-time counterparts
for studying slotted digital computer communication systems, including mobile and broad
integrated services digital networks (B-ISDN). It is more accurate and efficient than their
continuous-time counterparts to analyze and design digital transmitting systems. More-
over, the modelling of discrete-time queues is more involved and rather different from the
analysis applied for the corresponding continuous-time queueing models. The advantage
of analyzing a discrete-time queue is that one can get the continuous-time results from
it as a limiting case but the converse is not true. Comprehensive discussion of various
kind of discrete-time queueing models can be found in Hunter [12], Gravey and Hébuterne
[13], Bruneel and Kim [14], Takagi [15], Woodward [16]. The discrete-time Geo/Geo/1
queue with negative customers and disasters has been studied in Atencia and Moreno [17].
Multi-server discrete-time queueing systems Geo/Geo/c have been reported in Goswami
and Gupta [18] and Artalejo and Hernandez-Lerma [19]. Discrete-time two heterogeneous
servers bulk-service infinite buffer queueing system has been discussed in Goswami and
Samanta [20]. However, to the best of our knowledge, studies for the discrete-time two
heterogeneous servers queueing system with catastrophes do not yet exist. It is the aim
of the present paper to study an infinite buffer discrete-time two heterogeneous servers
queueing system subject to catastrophes.

In the present paper, we investigate an infinite buffer discrete-time two heterogeneous
servers queueing system with catastrophes, that is, two servers working with different ser-
vice rates with possibility of catastrophe at the system. If both the servers are idle then an
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arriving customer always joins the server I. An arriving customer waits in a queue when
both servers are busy. Whenever a catastrophe occurs at the system, all the customers
present are destroyed instantly, both the servers become deactivated momentarily and the
servers are ready for service to new arrivals. The inter-arrival times of customers and
catastrophe times are assumed to be independent and geometrically distributed. The ser-
vice times are also assumed to be independent and geometrically distributed with different
mean service time at different servers.

This paper is organized as follows. The description of the queueing model and its analy-
sis for the steady-state probabilities at arbitrary epoch is carried out in Section 2. Outside
observer’s distributions have been presented in Section 3. The waiting time analysis is car-
ried out in Section 4. Some particular cases which are matched with existing results in the
literature are demonstrated in Section 5. Numerical results to demonstrate the effect of
the catastrophe on the behavior of the customers and on the various performance measures
of the system are presented in Section 6. Section 7 concludes the paper. Finally, in the
Appendix it has been shown that in the limiting case the results obtained in this paper
tend to the continuous-time counterpart.

2. Model description and solution

We consider a discrete-time infinite waiting space queue with two heterogeneous servers
under the early arrival system (EAS) and the late arrival system with delayed access
(LAS-DA), which are also known as departure-first (DF) and arrival-first (AF) policies,
respectively. Assume that the time axis is slotted into intervals of equal length with the
length of a slot being unity, and it is marked as 0, 1, 2, . . . , t, . . . . The detailed discussion
about these concepts has been explained in the past at several places, see, e.g., Hunter
[12] or Gravey and Hébuterne [13]. We assume that the inter-arrival times A of jobs
are independent and geometrically distributed with probability mass function (p.m.f.)
an = P (A = n) = (1− λ)n−1λ, n ≥ 1. The jobs are served by two heterogeneous servers
with different mean service times. The service times of customers are independent and
geometrically distributed with p.m.f. P (Si = n) = (1 − µi)

n−1µi, n ≥ 1, i = 1, 2. An
arriving job waits in the queue when both the servers are busy. The catastrophes occur at
the service-facility as a geometrically distributed with p.m.f. P (B = n) = (1−γ)n−1γ, n ≥
1. Whenever a catastrophe occurs at the system, all the customers present are annihilated
immediately, the server gets deactivated instantaneously, and the server is ready for service
when a new job arrives. For any real number x ∈ [0, 1], we denote x = 1− x.

If both the servers are idle, it is assumed that an arriving job always joins the server I.
At every departure epoch, that is, before initiating service of the next job, we have any
one of the following cases: (i) both the servers are idle and there is no job waiting in the
queue, (ii) the server I is busy, the server II is idle, and no job is in the queue, (iii) the
server I is idle, the server II is busy, and no job is in the queue, and (iv) both the servers
are busy and there are n ≥ 0 jobs waiting in the queue. To ensure the stability of the
system, without loss of generality, we assume that ρ = λ/(µ1 + µ2) < 1.

2.1. The EAS system. We first discuss the model for the early arrival system (EAS),
that is, departure-first (DF) policy. A potential arrival occurs in the interval (t, t+) and
potential departures occur in the interval (t−, t). The various time epochs at which events
occur are depicted in Figure 1.
Let Q0,0(t) denote the probability that both the servers are idle at time t. Let Q1,0(t)
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Figure 1. Various time epochs in EAS.

denote the probability that the server I is busy and the server II is idle, and Q0,1(t)
denote the probability that the server I is idle and the server II is busy, when the queue
is empty at time t. Further, let Qn,2(t) be the probability that both the servers are busy
and n ≥ 0 customers waiting in the queue at time t. In order to obtain the steady-state
probabilities, we first construct the difference equations by relating the states of the system
at two consecutive prior to potential arrival epochs t and (t+ 1). Using the probabilistic
argument, we obtain

Q0,0(t+ 1) = λ̄Q0,0(t) + γ̄µ1

(
λ̄+ λµ2

)
Q1,0(t) + γ̄µ2

(
λ̄+ λµ1

)
Q0,1(t)

+λ̄µ1µ2γ̄Q0,2(t) + λµ1Q0,0(t) + γ(1−Q0,0(t)), (1)

Q1,0(t+ 1) = γ̄µ̄1

(
λ̄+ λµ2

)
Q1,0(t) + λµ̄1µ2γ̄Q0,1(t) + λµ̄1Q0,0(t) + λ̄µ1µ2γ̄Q1,2(t)

+γ̄µ2

(
λ̄µ̄1 + λµ1

)
Q0,2(t), (2)

Q0,1(t+ 1) = γ̄µ̄2

(
λ̄+ λµ1

)
Q0,1(t) + λµ1µ̄2γ̄Q1,0(t) + λ̄µ1µ̄2γ̄Q0,2(t), (3)

Q0,2(t+ 1) = γ̄
(
λ̄µ̄1µ̄2 + λµ1µ̄2 + λµ̄1µ2

)
Q0,2(t) + λµ̄1µ̄2γ̄ (Q1,0(t) +Q0,1(t))

+γ̄
(
λ̄µ1µ̄2 + λ̄µ̄1µ2 + λµ1µ2

)
Q1,2(t) + λ̄µ1µ2γ̄Q2,2(t), (4)

Qn,2(t+ 1) = γ̄
(
λ̄µ̄1µ̄2 + λµ1µ̄2 + λµ̄1µ2

)
Qn,2(t) + λ̄µ1µ2γ̄Qn+2,2(t)

+γ̄
(
λ̄µ1µ̄2 + λ̄µ̄1µ2 + λµ1µ2

)
Qn+1,2(t) + λµ̄1µ̄2γ̄Qn−1,2(t), n ≥ 1. (5)

Let us define in the steady-state as

Q0,0 = lim
t→∞

Q0,0(t); Q1,0 = lim
t→∞

Q1,0(t), Q0,1 = lim
t→∞

Q0,1(t); Qn,2 = lim
t→∞

Qn,2(t), n ≥ 0.

In the steady-state, above equations (1) - (5) reduce to

0 = −λµ̄1Q0,0 + γ̄µ1

(
λ̄+ λµ2

)
Q1,0 + γ̄µ2

(
λ̄+ λµ1

)
Q0,1 + λ̄µ1µ2γ̄Q0,2

+λµ1Q0,0 + γ(1−Q0,0), (6)
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0 = γ̄µ̄1

(
λ̄+ λµ2 − 1

)
Q1,0 + λµ̄1µ2γ̄Q0,1 + λµ̄1Q0,0 + λ̄µ1µ2γ̄Q1,2

+γ̄µ2

(
λ̄µ̄1 + λµ1

)
Q0,2, (7)

0 = γ̄µ̄2

(
λ̄+ λµ1 − 1

)
Q0,1 + λµ1µ̄2γ̄Q1,0 + λ̄µ1µ̄2γ̄Q0,2, (8)

0 = γ̄
(
λ̄µ̄1µ̄2 + λµ1µ̄2 + λµ̄1µ2 − 1

)
Q0,2 + γ̄

(
λ̄µ1µ̄2 + λ̄µ̄1µ2 + λµ1µ2

)
Q1,2

+λ̄µ1µ2γ̄Q2,2, (9)

0 = γ̄
(
λ̄µ̄1µ̄2 + λµ1µ̄2 + λµ̄1µ2

)
Qn,2 + γ̄

(
λ̄µ1µ̄2 + λ̄µ̄1µ2 + λµ1µ2

)
Qn+1,2

+λ̄µ1µ2γ̄Qn+2,2 + λµ̄1µ̄2γ̄Qn−1,2, n ≥ 1. (10)

The steady-state probabilities Q0,0, Q1,0, Q0,1, and Qn,2, (n ≥ 0) are computed by solving
the system of equations (6) to (10). In order to obtain them, let us define the displacement
operator E as EjQn,2=Qn+j,2. We first solve the difference equation (10), and it can be
simplified as [

γ̄
(
λ̄+ λE−1

)(
µ̄1 + µ1E

)(
µ̄2 + µ2E

)
− 1

]
Qn,2 = 0. (11)

The characteristic equation associated with (11), after simplification, reduces to

h(z) ≡ γ̄(λ+ λ̄z)(µ̄1 + µ1z)(µ̄2 + µ2z)− z = 0.

Using Rouché’s theorem it can be shown that only one zero of h(z) falls inside the unit
circle and, this root is real and unique if and only if ρ < 1. We denote this root by
r, (0 < r < 1). Then r satisfies the equation

γ̄(λ+ λ̄r)(µ̄1 + µ1r)(µ̄2 + µ2r)− r = 0. (12)

Now the solution of (10) can be written as

Qn,2 = Crn, n ≥ 0,

where C is constant. Setting n = 0 yields C = Q0,2, and hence

Qn,2 = rnQ0,2, n ≥ 1. (13)

Using (13) into (9), and simplifying, we obtain

Q1,0 +Q0,1 =
Q0,2

r
. (14)

Substituting (14) into (8) yields

Q0,1 =
µ1µ̄2γ̄(λ+ λ̄r)

r(1− λ̄µ̄2γ̄)
Q0,2. (15)

From (14) and (15), we obtain

Q1,0 =
Q0,2

r

[
1− µ1µ̄2γ̄(λ+ λ̄r)

(1− λ̄µ̄2γ̄)

]
. (16)

Again making use of (14) to (16) into (6), and after some algebraic manipulation, we
obtain

Q0,0 =
Q0,2

λµ̄1r

[
(1− λ̄µ̄1γ̄)

{
1− µ1µ̄2γ̄(λ+ λ̄r)

(1− λ̄µ̄2γ̄)

}
− γ̄µ2(λ̄r + λ)(µ̄1 + µ1r)

]
. (17)

Finally, using the normalizing condition, we obtain

Q0,2 =

[
(1− λ̄µ̄1γ̄)

λµ̄1r

{
1− µ1µ̄2γ̄(λ+ λ̄r)

(1− λ̄µ̄2γ̄)

}
− γ̄µ2(λ̄r + λ)(µ̄1 + µ1r)

λµ̄1r
+

1

r(1− r)

]−1

.(18)
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2.2. The LAS-DA system. We now discuss the model for the late arrival system with
delayed access (LAS-DA), that is, arrival-first (AF) policy. Here, a potential arrival takes
place in (t−, t) and a potential departures occur in (t, t+). The various time epochs at
which events occur are depicted in Figure 2. Let P0,0(t−) denote the probability that both
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Figure 2. Various time epochs in LAS-DA.

the servers are idle at time t−. When the queue is empty at time t−, let P1,0(t−) denote
the probability that the server I is busy and the server II is idle, and P0,1(t−) denote the
probability that the server I is idle and the server II is busy. Further, let Pn,2(t−) be the
probability that both the servers are busy and there are n ≥ 0 customers waiting in the
queue at time t−. Relating the states of the system at two consecutive prior to potential
arrival epochs t− and (t + 1)−, we obtain the following equations, where for the sake of
simplicity we use t instead of t−,

P0,0(t+ 1) =
(
λ̄− γ

)
P0,0(t) + λ̄µ1γ̄P1,0(t) + λ̄µ2γ̄P0,1(t) + λ̄µ1µ2γ̄P0,2(t) + γ, (19)

P1,0(t+ 1) = λ̄µ̄1γ̄P1,0(t) + γ̄µ2

(
λ̄µ̄1 + λµ1

)
P0,2(t) + λP0,0(t) + λµ2γ̄P0,1(t)

+λ̄µ1µ2γ̄P1,2(t), (20)

P0,1(t+ 1) = λ̄µ̄2γ̄P0,1(t) + λ̄µ1µ̄2γ̄P0,2(t) + λµ1γ̄P1,0(t), (21)

P0,2(t+ 1) = γ̄
(
λ̄µ̄1µ̄2 + λµ1µ̄2 + λµ̄1µ2

)
P0,2(t) + λµ̄1γ̄P1,0(t) + λµ̄2γ̄P0,1(t)

+γ̄
(
λ̄µ1µ̄2 + λ̄µ̄1µ2 + λµ1µ2

)
P1,2(t) + λ̄µ1µ2γ̄P2,2(t), (22)

Pn,2(t+ 1) = γ̄
(
λ̄µ̄1µ̄2 + λµ1µ̄2 + λµ̄1µ2

)
Pn,2(t) + λ̄µ1µ2γ̄Pn+2,2(t)

+γ̄
(
λ̄µ1µ̄2 + λ̄µ̄1µ2 + λµ1µ2

)
Pn+1,2(t) + λµ̄1µ̄2γ̄Pn−1,2(t), n ≥ 1.(23)

In the steady-state, above equations (19) - (23) reduce to

0 = −λP0,0 + λ̄µ1γ̄P1,0 + λ̄µ2γ̄P0,1 + λ̄µ1µ2γ̄P0,2 + γ(1− P0,0), (24)

0 =
(
λ̄µ̄1γ̄ − 1

)
P1,0 + γ̄µ2

(
λ̄µ̄1 + λµ1

)
P0,2 + λP0,0 + λµ2γ̄P0,1

+λ̄µ1µ2γ̄P1,2, (25)
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0 =
(
λ̄µ̄2γ̄ − 1

)
P0,1 + λ̄µ1µ̄2γ̄P2 + λµ1γ̄P1,0, (26)

0 =
{
γ̄
(
λ̄µ̄1µ̄2 + λµ1µ̄2 + λµ̄1µ2

)
− 1

}
P0,2 + γ̄

(
λ̄µ1µ̄2 + λ̄µ̄1µ2 + λµ1µ2

)
P1,2

+λ̄µ1µ2γ̄P2,2 + λµ̄1γ̄P1,0 + λµ̄2γ̄P0,1, (27)

0 =
{
γ̄
(
λ̄µ̄1µ̄2 + λµ1µ̄2 + λµ̄1µ2

)
− 1

}
Pn,2 + γ̄

(
λ̄µ1µ̄2 + λ̄µ̄1µ2 + λµ1µ2

)
Pn+1,2

+λ̄µ1µ2γ̄Pn+2,2 + λµ̄1µ̄2γ̄Pn−1,2, n ≥ 1. (28)

It is observed that equations (28) and (10) are identical but others are distinct. Therefore,
the characteristic equation and hence the value of r will be same in both (EAS and LAS-
DA) cases. Applying the procedure discussed for EAS, we can yield

Pn,2 = rnP0,2, n ≥ 1. (29)

Substituting (29) into (27), and then using (26), we get

P0,1 =
µ1µ̄1µ̄2γ̄

(
λ̄r + λ

)
r (µ̄1 + µ̄2γ̄(λ− µ̄1))

P0,2, (30)

P1,0 =
µ̄2P0,2

r

[
1−

µ1µ̄2γ̄
(
λ̄r + λ

)
µ̄1 + µ̄2γ̄(λ− µ̄1)

]
P0,2. (31)

Using (29) - (31) into (24), and after simplification, we obtain

P0,0 =
P0,2

λ

[
µ1µ̄2γ̄

(
λ̄r + λ

)
r (µ̄1 + µ̄2γ̄(λ− µ̄1))

{
(λ̄µ2γ̄ + γ)µ̄1 − (λ̄µ1γ̄ + γ)µ̄2

}
+
λ̄µ1γ̄

r
(µ̄2 + µ2r) +

γµ̄2

r
+

γ

1− r

]
. (32)

Finally, using the normalizing condition, we obtain

P0,2 =

[
µ1µ̄2γ̄

(
λ̄r + λ

)
λr (µ̄1 + µ̄2γ̄(λ− µ̄1))

{
λ(µ2 − µ1) + (λ̄µ2γ̄ + γ)µ̄1 − (λ̄µ1γ̄ + γ)µ̄2

}
+
λ̄µ1γ̄

rλ
(µ̄2 + µ2r) +

µ̄2(λ+ γ)

rλ
+

(λ+ γ)

λ(1− r)

]−1

. (33)

3. Outside observer’s distribution

In EAS, since an outside observer’s observation epoch falls in a time interval after a
potential arrival and before a potential departure, the probabilities Qo

0,0, Q
o
1,0, Q

o
0,1 and

Qo
n,2 (n ≥ 0) that the outside observer sees both the servers idle, one server busy, and

both the servers busy with n customers in the queue, respectively, can be obtained by
observing arbitrary epoch (t) and outside observer’s observation epoch (∗) in Figure 1.
They are given by

Qo
0,0 = λ̄Q0,0, (34)

Qo
1,0 = λ̄Q1,0 + λQ0,0, (35)

Qo
0,1 = λ̄Q0,1, (36)

Qo
0,2 = λ̄Q0,2 + λQ0,1 + λQ1,0, (37)

Qo
n,2 = λ̄Qn,2 + λQn−1,2, n ≥ 1. (38)
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Using (13) in (37) and (38), it follows that

Qo
n,2 = (λ̄r + λ)rn−1Q0,2 =

rnQ0,2

γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)
, n ≥ 0.

In LAS-DA, since an outside observer’s observation epoch falls in a time interval after
a potential departure and before a potential arrival, the probability P o

0,0, P
o
1,0, P

o
0,1 and

P o
n,2 (n ≥ 0) that outside observer sees both the servers idle, one server busy, and both

the servers busy with n jobs in the queue are the same as P0,0, P1,0, P0,1 and P o
n,2 (n ≥ 0),

respectively. Hence P o
0,0 = P0,0, P

o
1,0 = P1,0, P

o
0,1 = P0,1 and P o

n,2 = Pn,2.

4. Performance measures

There are several system performance measures of the discussed queueing system, such
as the expected number of jobs in the system, the expected number of jobs in the queue,
the probability that an arriving job is expected to join the queue, the probability that the
system has n (n = 1, 2) busy servers, the expected number of busy servers, the mean busy
period of the system, etc. The expected number of jobs (Ls) in the system is given by

Ls = Q1,0 +Q0,1 +

∞∑
n=0

nQn,2 =

(
1

r
+

r

(1− r)2

)
Q0,2.

The probability of an arriving jobs joining the queue is
∑∞

n=0Qn,2 =
Q0,2

1−r . Let H denote
the number of busy servers. The probability that the system has n busy servers is given
by

P{H = n} =

{
P{H = 1} = Q1,0 +Q0,1, for n = 1,
P{H > 1} =

∑∞
n=0Qn,2, for n = 2.

The mean number of busy servers is given by

E[H] = Q1,0 +Q0,1 + 2

∞∑
n=0

Qn,2 =

(
1 + r

r(1− r)

)
Q0,2.

Similarly, we can evaluate performance measures for LAS-DA model.

4.1. Expected lengths of the idle period, the busy period and the busy cycle.
Let the expected length of the busy period, the idle period and the busy cycle be

denoted by E[B], E[I] and E[C], respectively. A cycle is the time that elapses between two
consecutive arrivals finding an empty system. A cycle begins with a busy period during
which the server is serving jobs, followed by an idle period during which the system is
empty. The busy period starts from the instant when both the servers become busy and
terminates when they go idle. The queue alternates between idle and busy periods and
form an alternating renewal process. Due to the memoryless property of the geometric
distribution, an idle period is geometrically distributed with mean 1/λ. The long-run
proportion of time that the server is idle equals

Q0,0 =
E[I]

E[I] + E[B]
.

Hence, the expected busy period is given by

E[B] =
1−Q0,0

λQ0,0
, and E[I] =

1

λ
.
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A busy cycle is the time between two successive departures leaving an empty system or
equivalently, the sum of a busy period and an adjacent idle period. The expected length
of busy cycle (C) is E[C] = 1/λQ0,0.

4.2. Waiting time distribution. In this section, we obtain the actual waiting time
distribution in the queue of an arrival job under the first-come, first-served (FCFS)
queueing discipline. Let us define the random variable Tq as the total amount of time
measured in slots that an arrival spends in the queue and the corresponding p.m.f.
wk = P (Tq = k), k ≥ 0. Further, let Wq =

∑∞
k=1 kwk denote the average waiting time in

the queue of an arrival job.
Waiting time in EAS system:
In EAS, an arriving job may observe the system in any one of the following two cases.
Case 1. w0 = P (Tq = 0).
If prior to an arrival, there are no jobs in the queue and at most one server is busy.
Case 2. wk = P (Tq = k), k ≥ 1.
Both the servers are busy and there may be k ≥ 0 jobs waiting in the queue. Since there
may occur at most two departures from the system in a slot so a new arriving job has to
wait until the first departure or continue to wait for as many departures during k slots as
there were jobs waiting upon arrival. Therefore, the probability that an arriving job waits
for greater than k slots is

P (Tq > k) =
(
γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

)k
∞∑
n=1

rn−1Q0,2

=

(
γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

)k
Q0,2

1− r
, k ≥ 0.

Then, consequently, we obtain

w0 = 1− P (Tq > 0) = 1− Q0,2

1− r
, (39)

wk = P (Tq > k − 1)− P (Tq > k)

=
Q2

1− r

(
γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

)k−1(
1− γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

)
, k ≥ 1. (40)

The average waiting time in the queue is given by

Wq =
Q0,2

(1− r)[1− γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)]
.

Remark 1. The average queue length (Lo
q) at outside observer’s observation epoch is

given by

Lo
q =

∞∑
n=1

nQo
n,2 =

rQ0,2

(1− r)2γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

=
r[1− γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)]

(1− r)γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)
· Q0,2

(1− r)[1− γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)]

= λWq,

where

λ =
r[1− γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)]

(1− r)γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)
(41)
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is obtained from equation (12). Thus, the Little’s formula Lo
q = λWq is verified.

Waiting time in LAS-DA system:
In LAS-DA, an arriving job may observe the system in any one of the following two cases.
Case 1. w0 = P (Tq = 0).
This happens if prior to an arrival, there are (i) no jobs in the queue and at most one
server is busy, or (ii) no jobs in the queue and first server becomes idle, or (iii) no jobs in
the queue and second server becomes idle, or (iv) at most one job in the queue and both
servers become idle.
Case 2. wk = P (Tq = k), k ≥ 1.
Similarly, this happens if prior to an arrival, both the servers are busy and there may
or may not be jobs waiting in the queue. Therefore, the probability that an arriving job
waits for greater than k slots is

P (Tq > k) =
(
γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

)k+1
∞∑
n=1

rn−1P0,2,

=

(
γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

)k+1
P0,2

1− r
, k ≥ 0. (42)

Using (42), we obtain

w0 = 1− P (Tq > 0) = 1− P0,2γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

1− r
,

wk = P (Tq > k − 1)− P (Tq > k)

=
P0,2

1− r

(
γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

)k(
1− γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

)
, k ≥ 1.

The average waiting time in the queue is given by

Wq =
P0,2γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

(1− r)[1− γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)]
.

Remark 2. The average queue length (Lo
q) at outside observer’s observation epoch is

given by

Lo
q =

∞∑
n=1

nP o
n,2 =

rP0,2

(1− r)2

=
r[1− γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)]

(1− r)γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)
· P0,2γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)

(1− r)[1− (γ̄(µ̄1 + µ1r)(µ̄2 + µ2r)]

= λWq.

5. Particular cases

In this section, some particular cases which are available in the literature are deduced
from our model by taking specific values for the parameters µ1, µ2 and γ.
Case 1: µ1 = µ2 = µ. The model reduces to Geo/Geo/2 queue with catastrophe, where
jobs are served by two homogeneous servers.
The equation (12) is simplified as

r = γ̄(λ̄r + λ)(µ̄+ µr)2.
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In the case of EAS, the steady state probabilities with the above value of r are obtained
from (13), (14), (17) and (18), and they are given by

Qn,2 = rnQ0,2, n ≥ 1,

Q̃0,1 = Q1,0 +Q0,1 =
Q0,2

r
,

Q0,0 =
γ̄(λ− λ̄µr)Q0,2

λr2
,

Q0,2 =

[
γ̄(λ− λ̄µr)Q0,2

λr2
+

1

r(1− r)

]−1

.

The outside observer’s observation epoch probabilities are obtained from (34) to (38) with
the above value of r, and they are given by

Qo
n,2 =

rnQ0,2

γ̄(µ̄+ µr)2
, n ≥ 0,

Q̃o
0,1 = λ̄Q̃0,1 + λQ0,0 =

Q0,2

r

(
λ̄+

γ̄(λ− λ̄µr)

r

)
,

Qo
0,0 =

λ̄γ̄(λ− λ̄µr)Q0,2

λr2
,

where Q̃o
0,1 = Qo

1,0 +Qo
0,1.

The average queue length and average waiting time in the queue are, respectively, given
by

Lo
q =

Q0,2r

(1− r)2γ̄(µ̄+ µr)2
, Wq =

Q0,2

(1− r) [1− γ̄(µ̄+ µr)2]
.

In the similar way, from equations (29)-(33) in the case of LAS-DA, we obtain

Pn,2 = rnP0,2, n ≥ 1,

P̃0,1 =
µ̄P0,2

r
,

P0,0 =
P0,2

λ

( λ̄µγ̄
r

(µ̄+ µr) +
γµ̄

r
+

γ

1− r

)
,

P0,2 =

[
λ̄µγ̄

λr
(µ̄+ µr) +

µ̄(λ+ γ)

λr
+

λ+ γ

λ(1− r)

]−1

,

where P̃0,1 = P1,0 + P0,1.
The average queue length and average waiting time in the queue are, respectively, given
by

Lo
q =

P0,2r

(1− r)2
, Wq =

γ̄(µ̄+ µr)2P0,2

(1− r)[1− γ̄(µ̄+ µr)2]
.

Case 2: γ = 0, µ1 = µ2 = µ. The model reduces to Geo/Geo/2 queue without catastro-
phes and two homogeneous servers. Let us define P0 = P0,0 and P1 = P0,1 + P1,0, where
Pn=Pr{n jobs in the system}, n ≥ 0. The equation (12) is simplified as

r = (λ̄r + λ)(µ̄+ µr)2.
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Then from (29) - (33), we obtain

Pn+2 = rnP2, n ≥ 1,

P1 =
µ̄P2

r
,

P0 =
λ̄µ(µ̄+ µr)P2

λr
,

P2 =

[
λ̄µ(µ̄+ µr)

λr
+

µ̄

r
+

1

1− r

]−1

.

Finally, the average queue length and average waiting time in the queue are, respectively,
given by

Lo
q =

P2r

(1− r)2
, Wq =

P2(µ̄+ µr)2

(1− r)[1− (µ̄+ µr)2]
,

which are matched with the results given in Artalejo and Hernández-Lerma [19] by taking
c = 2.

6. Numerical results

In this section, we present numerical results in the form of table and graphs. The steady
state probabilities at arbitrary, outside observer’s observation epochs and waiting time
distribution for both EAS and LAS-DA systems is given in Table 1. Various performance
measures such as average queue length and average waiting time in the queue are given
at the bottom of the tables. We have also obtained the average waiting time in the queue
using Little’s rule and found that it is the same as the one obtained using the p.m.f. of
the actual waiting time in the queue.

We present the effect of the arrival rate λ on the expected length of the busy period
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Figure 3. Effect of arrival rate on E[B].
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Figure 5. Effect of µ2 on Wq.

(E[B]) in Figure 3 for different values of catastrophic rate γ in case of LAS-DA system.
The parameters for this graph are taken as µ1 = 0.8 and µ2 = 0.6. As expected, the
expected length of the busy period increases with the increasing of the arrival rate λ,
while it decreases with the increasing of the catastrophic rate γ. In Figure 4, we have
plotted the effect of catastrophic rate γ on the expected length of the busy period (E[B])
for different values of mean service rate µ1. The parameters for this graph are taken as
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λ = 0.5, µ1 = 0.1 and µ2 = 0.05. One may observe that for fixed µ1, E[B] decreases
as catastrophic rate γ increases and then it becomes almost static. However, the E[B]
reduces considerably when the mean service rate µ1 is increased. This is because when
the mean service rate µ1 is large, more jobs can be served, which results in the decreasing
of the expected length of the busy period.

Figure 5 presents the effect of service rate (µ2) on the average waiting time in the

Table 1. Queue length and waiting time distributions for λ = 0.2, µ1 =
0.15, µ2 = 0.1, γ = 0.01, ρ = 0.8.

Queue length distributions Waiting time in slots
EAS LAS-DA

(n, j) Qn,j Qo
n,j Pn,j k wk wk

0, 0 0.222586 0.178069 0.183100 0 0.481382 0.484214
1, 0 0.170436 0.180866 0.162529 1 0.0470622 0.0468052
0, 1 0.088359 0.070687 0.087109 2 0.042792 0.042558
0, 2 0.172644 0.189875 0.188837 3 0.038908 0.038696
1, 2 0.115172 0.126667 0.125975 4 0.035378 0.035184
2, 2 0.076832 0.084500 0.084039 5 0.032167 0.031992
3, 2 0.051255 0.056371 0.056063 6 0.029248 0.029089
4, 2 0.034193 0.037605 0.037400 7 0.026594 0.026449
5, 2 0.022810 0.025087 0.024950 8 0.024181 0.024049
10, 2 0.003014 0.003315 0.003296 9 0.021987 0.021866
11, 2 0.002011 0.002211 0.002199 10 0.019991 0.019882
12, 2 0.001341 0.001475 0.001467 20 0.007721 0.007680
13, 2 0.000895 0.000984 0.000979 30 0.0029828 0.0029668
14, 2 0.000597 0.000656 0.000653 40 0.001152 0.001146
15, 2 0.000398 0.000438 0.000436 50 0.000445 0.000442
18, 2 0.000118 0.000130 0.000129 60 0.000172 0.000171
20, 2 0.000053 0.000058 0.000058 70 0.000066 0.000066
25, 2 0.000007 0.000008 0.000008 80 0.000026 0.000025
28, 2 0.000002 0.000002 0.000002 100 0.000004 0.000004
30, 2 0.000001 0.000001 0.000001 110 0.000001 0.000001
40, 2 0.000000 0.000000 0.000000 ≥ 115 0.000000 0.000000
sum 1.000000 1.000000 1.000000 1.000000 1.000000
Lo
q 1.14302 1.13678

Wq 5.71510 5.68388 5.71510 5.68388
E[H] 1.39231 1.38416
E[B] 23.0790 22.3076
E[C] 28.0790 27.3076

queue (Wq) for various γ in case of EAS system. The parameters are taken as λ = 0.8
and µ1 = 0.9. It can be seen that the average waiting time in the queue decreases steadily
with a increasing service rate µ2. The average waiting time in the queue will be very
small when the service rate is large enough, which results in a decrease in the average
waiting time in the queue. For fixed service rate µ2, the average waiting time in the queue
decreases as γ increases. The difference in EAS and LAS-DA system is highlighted in
Figure 6 by considering the waiting time distribution. The parameters for these graphs
are taken as λ = 0.75, µ1 = 0.5, µ2 = 0.4 and γ = 0.03. It can be seen that W o

q in case of
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EAS is slightly higher as compared to LAS-DA. This happens because in the EAS system,
an outside observer’s observation epoch falls in a time interval after a potential arrival
and before a potential departure but in case of LAS-DA, it falls in a time interval after
a potential departure and before a potential arrival. But the distribution of the waiting
time in LAS-DA is larger than EAS when the queue is empty. This is because service to
an arriving customer can starts immediately from the same slot in EAS if there is any free
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server, but in LAS-DA, it will enter into service in the next slot.
Figure 7 illustrates dependence of the mean waiting time in the queue (Wq) on service
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Figure 8. E[B] versus arrival rate and catastrophic rate.

rates µ1 and µ2 in case of EAS system. It is observed that for fixed service rate µ1, the
mean waiting time in the queue decreases when the service rate µ2 increases. Further,
with fixed service rates µ2, the mean waiting time in the queue decreases when the service
rate µ1 increases. To accomplish this, we can carefully setup the service rates µ1 and µ2

in the system in order to ensure the minimum mean waiting time in the queue. Figure
8 investigates dependence of the expected length of the busy period (E[B]) on arrival
rate (λ) and catastrophic rate γ in case of LAS-DA system. The parameters are taken
as µ1 = 0.5 and µ2 = 0.3. It is observed that for fixed catastrophic rate the expected
length of the busy period increases when the arrival rate λ increases. Further, with fixed
arrival rate λ the expected length of the busy period decreases when the catastrophic rate
γ increases. To ensure the minimum expected length of the busy period, we can carefully
setup the catastrophic rate γ and the arrival rate in the system.

7. Conclusions

In this paper, we have carried out an analysis of discrete-time queueing system with
two heterogeneous servers subject to catastrophes for the early arrival system and the
late arrival system with delayed access that have applications in the analysis of computer
and communication systems. We have developed an explicit expression of the steady-
state probabilities at arbitrary epoch using displacement operator method. The waiting
time distribution measured in slots and outside observer’s observation epoch probabilities
have been carried out. Some particular cases of the model have also been discussed.
Various performance measures for the system under consideration are investigated using
numerical illustrations. Finally, it is shown that in the limiting case the results presented
in this paper tend to the continuous-time counterparts. The techniques used in this
paper can be applied to analyze more complex models such as discrete-time multi-server
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queueing system of different service rates subject to catastrophes which is left for future
investigation.

Appendix

Here we study the relationship between our discrete-time queueing system with two
heterogeneous servers subject to catastrophes and its continuous-time counterpart. We
give below a succinct proof to get the continuous-time results from the corresponding
discrete-time ones. Assume that the customers arrive according to a Poisson process with
rate α and wait in the queue if both the servers are busy. The service times of the server
I and server II are assumed to be exponentially distributed with mean service rates as β1
and β2, respectively. The catastrophes too take place according to a Poisson process with
rate ξ. Let the time axis be slotted into intervals of equal length ∆ > 0, so that

λ = α∆, µ1 = β1∆, µ2 = β2∆, γ = ξ∆ (43)

where ∆ is sufficiently small. Using (43) into ρ = λ/(µ1 + µ2) < 1 and taking the limit
as ∆ → 0, we get, ρ = α/(β1 + β2) < 1. Thus, the positive recurrence conditions for the
discrete- and continuous-time systems are consistent.
Now, substituting (43) and taking the limit as ∆ → 0 in (12), we obtain

α− (α+ β1 + β2 + ξ)r + (β1 + β2)r
2 = 0. (44)

Again, substituting (43) and taking the limit as ∆ → 0 in (15) - (18), and from (13), we
obtain the following results for the corresponding continuous-time model. They are

Q0,1 =
β1

α+ β2 + ξ
Q0,2,

Q1,0 =

(
α+ β2 + ξ − β1r

α+ β2 + ξ

)
Q0,2,

Q0,0 =

(
(α+ β1 + ξ)

(
α+ β2 + ξ − β1r

α+ β2 + ξ

)
− β2

)
Q0,2

α
,

Qn,2 = rnQ0,2, n ≥ 1,

Q0,2 =

[(
α+ β1 + ξ

α

)(
α+ β2 + ξ − β1r

α+ β2 + ξ

)
− β2

α
+

1

r(1− r)

]−1

.

Similarly, in the limiting case one can obtain similar results from the outside observer’s
observation epoch probabilities as well as from the LAS-DA system. This leads to the
conclusion that, in the continuous-time, results for both LAS-DA and EAS queues tend
to same as it should be. One may note here that the results for the M/M/2 queue
with heterogeneous servers subject to catastrophes presented in Kumar et al. [7] can be
obtained by taking p = 1.
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