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ON CONTROLLED POISSON PROCESSES

T.M. ALIYEV1, E.A. IBAYEV1, V.M. MAMEDOV1, §

Abstract. We consider a special class of two-dimensional Markov processes, finding
the relationship between transition probabilities of two such classes.
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1. Introduction

In this paper, we consider Markov processes {αt, nt}, t ≥ 0 with homogeneous second
component, where at fixed αt, process nt is a conditioned Poisson process. Definitions
and basic properties of Markov processes with homogeneous second component have been
investigated in [3] and [4]. The processes under our investigation are quite useful in the
study of service systems with n unreliable components, when a non-ordinary Poisson queue
stream.

By a controlled unbounded Poisson process, we understand a Markov process {αt, nt},
t ≥ 0 with homogeneous second component in the phase space T×N, where T = {α, β, ....}
is a finite set and N = {0, ±1,±2, ....}.

Let

P k
αβ (t, s) = P {αs = β, ns = k + r/αt = α, nt = r} ,

(α, β ∈ T ; k, k ∈ N ; s ≥ t ≥ 0) .

Then let us assume that the bounds

lim
s↓t

P k
αβ (t, s )− δαβδko

s− t
= qkαβ (t) , (α, β ∈ T ; k ∈ N ; t ≥ 0) .

exist and are continuous in t. By virtue of the equation∑
N

∑
T

qkαβ (t) ≡ 0, (α ∈ T ; t ≥ 0) ,

the functions qkαβ (t) are uniformly bounded on α, β, k in any finite run of t.
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Pαβ (t, s, θ) =
∑
N

P k
αβ (t, s) θ

k, P (t, s, θ) = ∥Pαβ (t, s, θ)∥ ,

qαβ (t, θ) =
∑
N

qkαβ (t) θ
k, Q (t, θ) = ∥qαβ (t, θ)∥ ,

Pk (t, s) =
∥∥∥P k

αβ (t, s)
∥∥∥ , Qk (t) =

∥∥∥qkαβ (t)∥∥∥ .
According to the general theory of Markov processes with homogeneous second compo-

nent,

∂P (t, s, θ)

∂s
= P (t, s, θ)Q (s, θ) ,

∂P (t, s, θ)

∂t
= −Q (t, θ)P (t, s, θ) ,

P (t, s, θ)|s=t = I = ∥δαβ∥ . (1)

A multiplicative integral, i.e. a matricient [2] seems to be a general solution to forward
and backward equations (1):

P (t, s, θ) = Ωs
t (Q (u, θ)) ,

where

Ωs
t (Q (u, θ)) = lim

n→∞

n∏
k=0

(
I +

s− t

n
Q

(
t+

k

n
(s− t) , θ

))
.

Let us assume that with probability 1, nt+0 − nt−0 ≥ −2, t > 0. It means that with
probability 1, process nt has no negative jumps different from -1, therefore,

qkαβ (t) = 0, (t ≥ 0; α, β ∈ T ; k ≤ −2) .

Such processes in the case of integer-valued phase are naturally called “downward”
continuous processes [1].

By a controlled bounded Poisson process, we understand a Markov chain {βt, mt}, t ≥ 0
in the phase space T × N+, where N+ = {0, 1, 2, ....} and with the following transition
probabilities in the small interval (t, t+∆):

P

{
(α, k)

(t,t+∆)→ (β, r)

}
= δαβδkr+

+

{
qr−k
αβ (t)∆ + o (∆) , k ≥ c, r ≥ k − 1,

πkr
αβ (t)∆ + o (∆) , 0 ≤ k ≤ c− 1, r ≥ 0.

(2)

where c is a fixed natural number and πkr
αβ (t) are continuous in t function and bounded

by the relation

∞∑
r=0

∑
β∈T

πkr
αβ (t) ≡ 0, (t ≥ 0; α ∈ T ; 0 ≤ k ≤ c− 1) .

It follows from (2) that as long as mt ≥ c, the increment of process {βt, mt} is a
stochastic equivalent to the increment of process {αt, nt}. If mt ∈ [0, c− 1], then the evo-
lution of process {βt, mt} is described by an auxiliary Markov chain with local transition
probabilities πkr

αβ (t).
Using the transition probabilities



254 TWMS J. APP. ENG. MATH. V.4, N.2, 2014

fkr
αβ (t, s) = P {βs = β, ms = r/βt = α, mt = k}

and local characteristics of πkr
αβ (t), let us introduce the matrices:

Fkr (t, s) =
∥∥∥fkr

αβ (t, s)
∥∥∥ , Fk (t, s, θ) =

∥∥∥fk
αβ (t, s, θ)

∥∥∥ ,
Πkr (t) =

∥∥∥πkr
αβ (t)

∥∥∥ , Πk (t, θ) =
∥∥∥πk

αβ (t, θ)
∥∥∥

and the generating function

πkr
αβ (t, θ) =

∞∑
r=0

πkr
αβ (t) θ

r , |θ| ≤ 1.

Our goal is to find the connection between the transition probabilities of the processes
{αt, nt} and {βt, mt}.

2. Main results

Using (2), at ∆ ↓ 0 we have

fαβ (t, s+∆) = fkr
αβ (t, s) + ∆

c−1∑
j=0

∑
γ∈T

fkj
αβ (t, s)π

jr
γβ(s)+

+σ {r ≥ c− 1}∆
r+1∑
j=c

∑
γ∈T

fkj
αβ (t, s) q

r−j
γβ (s) + o (∆) ,

where

σ {r ≥ c− 1} =

{
1, if r ≥ c− 1,
0, if r < c− 1.

Proceeding here to the bound at ∆ ↓ 0 we get a forward system of differential Kol-

mogorov equations for transition probabilities fkj
αβ (t, s):

∂fkr
αβ (t, s)

∂s
=

c−1∑
j=0

∑
γ∈T

fkj
αβ (t, s)π

jr
γβ(s) + σ {r ≥ c− 1}

r+1∑
j=c

∑
γ∈T

fkj
αβ (t, s) q

r−j
γβ (s),

(
α, β ∈ T ; k, r ∈ N+; s ≥ t ≥ 0

)
.

or in generating functions

∂fkr
αβ (t, s, θ)

∂s
=

c−1∑
j=0

∑
γ∈T

fkj
αβ (t, s)π

jr
γβ(s, θ)+

+
∞∑
j=c

∑
γ∈T

∞∑
r=j−1

fkj
αβ (t, s) θ

jqr−j
γβ (s)θr−j =

=

c−1∑
j=0

∑
γ∈T

fkj
αβ (t, s)π

jr
γβ(s, θ) +

∞∑
j=c

∑
γ∈T

fkj
αβ (t, s) θ

jqγβ(s),

i.e.
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∂fkr
αβ (t, s, θ)

∂s
=

∑
γ∈T

fk
αβ (t, s) qγβ(s, θ)+

+

c−1∑
j=0

∑
γ∈T

fkj
αβ (t, s)

[
πj
γβ(s, θ)− θjqγβ(s)

]
.

The last equality takes the following form in matrix notation

∂Fk (t, s, θ)

∂s
= Fk (t, s, θ)Q(s, θ)+

+

c−1∑
j=0

Fkj (t, s)
[
Πj(s, θ)− θjQ(s, θ)

]
.

In view of (1) and the boundary condition

Fk (t, t, θ) = θkI,

the solution of this equation can be represented as follows:

∂Fk (t, s, θ)

∂s
= θkP (t, s, θ)Q(s, θ)+

+
c−1∑
j=0

s∫
t

Fkj (t, u)
[
Πj(u, θ)− θjQ(u, θ)

]
P (u, s, θ) du.

Equating the coefficients at θr, we will get

Fkr (t, s) = Pr−k (t, s)+

+

c−1∑
j=0

s∫
t

Fkj (t, u)
∑
l

[Πjl(u)−Ql−j(u)]Pr−l (u, s) du

or

Fkr (t, s) = Pr−k (t, s) +
c−1∑
j=0

s∫
t

Fkj (t, u)Ljr(u, s)du,
(
k, r ∈ N+; s ≥ t ≥ 0

)
, (3)

where

Ljr (t, s) =
∑
l

[Πjl(t)−Ql−j(t)]Pr−l (t, s). (4)

In (4) the sum is taken in all l that yield a coefficient at θr.
We have established that matrices Fkr and Pr−k are bound by relations (3) and (4).
It is clear from (3) that for each k ∈ N+, Fkr are expressed through Fkj , j < c and

known matrices Ljr.
Let us introduce the following notation

L1◦ (t, s) = L (t, s)
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Ln◦
(t, s) =

s∫
t

L(n−1)◦ (t, u)L (u, s)du (n ≥ 2)

According to (3), for n ≥ 1

→
Fk (t, s) =

→
Pk (t, s)+

+

n∑
j=1

s∫
t

→
Pk (t, u)L

j◦ (u, s) du +

s∫
t

→
Fk (t, u)L

(n+1)◦ (u, s) du. (5)

Estimating the elements of matrix L(n+1)◦ (t, s), we have

L(n+1)◦ (t, s) =

∫
t≤u1≤···

· · ·
∫

≤un≤s

L (t, u1)L (u1, u2) · · · L (un, s) du1 · · · dun

The standard form of the product under the integral is

c−1∑
j1=0

· · ·
c−1∑
jn=0

Lij1 (t, u1)Lj1j2 (u1, u2) · · · Ljkn
(un, s), (6)

(i, k = 0, 1, · · ·, c− 1; t ≤ u1 ≤ · · · ≤ un ≤ s).

Let

Ljk (t, s) =
∥∥∥lαβik (t, s)

∥∥∥ , (α, β ∈ T ) .

The elements of matrix Lik are determined by (4).
Let us assume that

l (t, s) = max
0≤i,k<s

max
α,β∈T

max
t≤u≤v≤s

∣∣∣lαβik (t, s)
∣∣∣ .

Due to the continuous nature of lαβik (t, s), the value l (t, s) < ∞.
If d is the number of elements of the set T , then all elements of the product under the

summation sign in (6) do not exceed dnln+1(t, s), which means that all elements of the

total (6) in the module do not exceed (cd)nln+1(t, s), so all elements of L(n+1)◦ (t, s) do
not exceed

(cd)nln+1(t, s)(s− t)n

n!
. (7)

The latter is nearing zero at n → ∞.
Proceeding to the bound in (5) at n → ∞ we get

→
Fk (t, s) =

→
Pk (t, s) +

s∫
t

→
Pk (t, u)R(u, s)du, (8)

where

R(t, s) =
∞∑
n=1

Ln◦
(t, s) . (9)
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is the resolvent operator of integral equation (8). It should be noted that the estimate (7)
guarantees the convergence of the series in the right-hand side of (8). This convergence
will be uniform in any finite run of t and s (s ≥ t), so that the elements of the left-hand
side of (8) are continuous in t and s.

Thus, we have the following result.

The elements of vector
→
Fk are determined by equalities (8), (9) and R(t, s) is the resol-

vent operator of equation (8).

3. A particular case

All obtained results can be extended to the homogeneous case without significant
changes. Thus, in the homogeneous case, the matriciant Ωs

t (Q) looks as follows

Ωs
t (Q) = e(s−t)Q =

∞∑
k=0

[(s− t)Q]k

k!
.

It should be noted that the knowledge of the infimum distribution of process nt is of
particular importance for practical reasons. Precisely, let us consider a particular case of
process {βt, mt}, when c = 1 and πor

αβ(t) = 0 r ≥ 0; α, β ∈ T .

The evolution of this process is described by the process {αt, nt} until nt gets into 0
for the first time. If it happens at the instant t0 and αt0 = α, then for t ≥ t0, βt ≡ α,
mt ≡ α. In that case, according to (3) and (4), we have

Fkr (t, s) = Pr−k (t, s)−
s∫

t

Fk0 (t, u)Lr (u, s) du,

where

Lr (t, s) =
∑
l

Ql(t)Pr−l (t, s).

According to (1)

Lr (t, s) = −∂Pr (t, s)

∂t
.

Therefore

Fkr (t, s) = Pr−k (t, s) +

s∫
t

Fk0 (t, 0)
∂Pr (u, s)

∂u
du.

Thus to find Fkr (t, s) one only needs to know Fk0 (t, s).
Assuming that r = 0 in the latter, we have the following integral equation for Fk0 (t, s):

Fk0 (t, s) = P−k (t, s) +

s∫
t

Fk0 (t, 0)
∂P0 (u, s)

∂u
du.

The solution to this equation can be found through the pattern built for equation (8).
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