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FIXED POINT THEOREMS IN p−SUMMABLE SYMMETRIC n−CONE
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Abstract. In this study fixed point theorems and related concepts in summable sym-
metric cone normed sequence spaces are investigated.
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1. Introduction

Gähler introduced the concepts of 2−metric spaces, linear 2−normed spaces and their
topological structures [2]. Gunawan and Mashadi introduced the concepts of n−normed
spaces and their topological structures [5]. Then Lewandowska defined generalized 2−normed
spaces and generalized symmetric 2−normed spaces [3, 4].

In 2007, Guang and Xian [7] introduced the concept of cone metric space, replacing the
set of real numbers by an ordered Banach space. They proved some fixed point theorems
of contractive type mappings over cone metric spaces. Some of the articles in the literature
dealt with the extension of certain fixed point theorems of cone metric spaces [8, 9, 10]
and some others dealt with the structure of the spaces themselves [11, 12, 13, 14].

Definition 1.1. Let E be a real Banach space and P be a subset of E. Then P is called
cone if

(i) P is closed, nonempty and P ̸= {0};
(ii) ax+ by ∈ P for all x, y ∈ P and non-negative real numbers a, b;
(iii) P ∩ (−P ) = {0} .

We know that for given a cone P ⊂ E, a partial ordering ≤ with respect to P can be
defined by x ≤ y if and only if y − x ∈ P ; x < y will stand for x ≤ y and x ̸= y, while
x << y will stand for y − x ∈ int P , where int P denotes the interior of P .

The cone P is called normal if there is a number M > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ||x|| ≤ M ||y||.

The least positive number M satisfying the above is called the normal constant of P [8].
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The cone P is called regular if every increasing sequence which is bounded from above
is convergent. That is, if {xk} is a sequence such that

x1 ≤ x2 ≤ ... ≤ xn ≤ ... ≤ y

for some y ∈ E, then there is x ∈ E such that lim
k→∞

||xn − x|| = 0. Equivalently the

cone P is regular if and only if every decreasing sequence which is bounded from below is
convergent. It is well known that a regular cone is normal cone.

In the following we always suppose E is Banach space, P is a cone in E with int P ̸= ∅
and ≤ is partial ordering with respect to P .

Definition 1.2. A cone normed space is an ordered pair (X, ||.||c) where X is a vector
space over R and ||.||c : X → (E,P, ||.||) is a function satisfying:

(c1) 0 < ||x||c, for all x ∈ X;
(c2) ||x||c = 0 if and only if x = 0;
(c3) ||αx||c = |α| ||x||c, for each x ∈ X and α ∈ R;
(c4) ||x+ y||c ≤ ||x||c + ||y||c, x, y ∈ X.

It is easy to see that each cone normed space is cone metric space. Namely, the cone
metric is defined by d(x, y) = ||x− y||c.

According to what we mentioned above, we say that a sequence {xn} of a cone normed
space (X, ||.||c) over (E,P, ||.||) is said to be convergent, if there exists x ∈ X such that
for all c >> 0, c ∈ E, there exists n0 such that

||x− xn||c << c

for all n ≥ n0. Also, we say that {xn} is Cauchy if for each c >> 0, there exists n0 such
that

||xm − xn||c << 0

for all m,n ≥ n0 [8].

Definition 1.3. Let n ∈ N, X be a real vector space of dimension 2 ≤ d < ∞, E be a
Banach space and P ⊂ E be a cone. If the function

∥�, ..., �∥c : X ×X × ...×X −→ (E,P, ∥.∥)

satisfies the following four conditions

(i) ∥x1, x2, ..., xn∥c = 0 ⇔ x1, x2, ..., xn linear dependent;
(ii) ∥x1, x2, ..., xn∥c = ∥x2, x1, ..., xn∥c invariant under permutation;
(iii) ∥αx1, x2, ..., xn∥c = |α| ∥x1, x2, ..., xn∥c for any α ∈ R;
(iv) ∥x1, x2, ..., xn−1, y + z∥c ≤ ∥x1, x2, ..., xn−1, y∥c+∥x1, x2, ..., xn−1, z∥c then (X, ∥�, ..., �∥c)

is called an n−cone normed space.

Definition 1.4. [4] Let X be a real linear space. Denote by χ a non-empty subset X ×X
with the property χ = χ−1 and such that the set χy = {x ∈ X; (x, y) ∈ χ} is a linear
subspace of X, for all y ∈ X.

A function ∥., .∥ : χ → [0,∞) satisfying the following conditions:
(S1) ∥x, y∥ = ∥y, x∥ for all (x, y) ∈ χ;
(S2) ∥x, αy∥ = |α| ∥x, y∥ for any real number α and all (x, y) ∈ χ;
(S3) ∥x, y + z∥ ≤ ∥x, y∥+ ∥x, z∥ for x, y, z ∈ X such that(x, y), (x, z) ∈ χ;
will be called a generalized symmetric 2−norm on χ. The set χ is called a symmetric

2−normed set. In particular, if χ = X×X, the function ∥�, ..., �∥ will be called a generalized
symmetric 2−norm on X and the pair (X, ∥., .∥) a generalized symmetric 2−normed space.
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In this article, we introduce generalized symmetric n−cone normed spaces and gener-
alized symmetric n−cone Banach spaces. The results expressing under what conditions a
self-mapping T of generalized symmetric n−cone Banach space (lp, ∥·, ..., ·∥c) has a unique
fixed point is also given.

2. Main Results

Definition 2.1. Let X be a real linear space. Denote by χ a non-empty subset of
X ×X × . . .×X︸ ︷︷ ︸

n times

with the property χ = χ−1 and such that the set χx = {x ∈ X; (x, x1, x2, ..., xn−1) ∈

χ} is a linear subspace of X, for all x1, x2, ..., xn−1 ∈ X.
A function ∥�, ..., �∥ : χ → [0;∞) satisfying the following conditions:
(S1) ∥x1, x2, ..., xn∥ = ∥x2, x1, ..., xn∥ invariant under permutation;
(S2) ∥αx1, x2, ..., xn∥ = |α| ∥x1, x2, ..., xn∥ for any real number α and all (x1, x2, ..., xn) ∈

χ;
(S3) ∥x1, x2, ..., xn−1, y + z∥ ≤ ∥x1, x2, ..., xn−1, y∥+∥x1, x2, ..., xn−1, z∥ for x1, x2, ..., xn−1, y, z ∈

X such that (x1, x2, ..., xn−1, y), (x1, x2, ..., xn−1, z) ∈ χ;
will be called a generalized symmetric n−norm on χ. The set χ is called a symmetric

n−normed set. In particular, if

χ = X ×X × . . .×X︸ ︷︷ ︸
n times

the function ∥�, ..., �∥ will be called a generalized symmetric n−norm on X and the pair
(X, ∥�, ..., �∥) a generalized symmetric n−normed space.

Definition 2.2. Let X be a real linear space. Denote by χ a non-empty subset of
X ×X × . . .×X︸ ︷︷ ︸

n times

with the property χ = χ−1 and such that the set χx = {x ∈ X; (x, x1, x2, ..., xn−1) ∈

χ} is a linear subspace of X, for all x1, x2, ..., xn−1 ∈ X.
A function ∥�, ..., �∥c : χ → (E,P, ||.||) satisfying the following conditions:
(S1) ∥x1, x2, ..., xn∥c = ∥x2, x1, ..., xn∥c invariant under permutation;
(S2) ∥αx1, x2, ..., xn∥c = |α| ∥x1, x2, ..., xn∥c for any real number α and all (x1, x2, ..., xn) ∈

χ;
(S3) ∥x1, x2, ..., xn−1, y + z∥c ≤ ∥x1, x2, ..., xn−1, y∥c+∥x1, x2, ..., xn−1, z∥c for x1, x2, ..., xn−1, y, z ∈

X such that (x1, x2, ..., xn−1, y), (x1, x2, ..., xn−1, z) ∈ χ;
will be called a generalized symmetric n−cone norm on χ. The set χ is called a sym-

metric n−cone normed set. In particular, if

χ = X ×X × . . .×X︸ ︷︷ ︸
n times

the function ∥�, ..., �∥c will be called a generalized symmetric n−cone norm on X and the
pair (X, ∥�, ..., �∥c) a generalized symmetric n−cone normed space.

Example 2.1. Let X = Rn, E = Rn and P = {(x1, x2, ..., xn) ∈ Rn : xi > 0, i = 1, ..., n}.
Then the function ∥�, ..., �∥c : Rn × Rn × ...× Rn︸ ︷︷ ︸

n times

−→ (E,P, ∥.∥) defined by

∥x1, x2, ..., xn∥c =

A, ..., A︸ ︷︷ ︸
n times


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where

A = abs


∣∣∣∣∣∣∣∣∣
x11 x12 ... x1n
x21 x22 ... x2n
...

...
. . .

...
xn1 xn2 · · · xnn

∣∣∣∣∣∣∣∣∣


is a generalized symmetric n−cone norm and (X, ∥�, ..., �∥c) is a generalized symmetric
n−cone normed space.

If we fix {u1, u2, ..., un} to be a basis for X, we can give the following lemma.

Lemma 2.1. Let (X, ∥�, ..., �∥c) be a generalized symmetric n−cone normed space. Then
a sequence {xm} converges to x in X if and only if for each c ∈ E with c >> θ (θ is zero
element of E) there exists an N = N (c) ∈ N such that n > N implies ||x1, x2, ..., xn−2, xk−
x, ui||c << c for every i = 1, 2, ..., n.

Proof. We prove necessity since sufficiency is clear. In this case there exists N = N (c) ∈ N
such that n > N implies ||x1, x2, ..., xn−2, xk − x, ui||c << c

nmax|αi| for every i = 1, 2, ..., n.

Since {u1, u2, ..., un} is a basis for X, every y can be written of the form y = α1u1+α2u2+
...+ αnun for some α1, α2, ..., αn in R. Hence

||x1, x2, ..., xn−2, xk − x, y||c
≤ |α1| ||x1, x2, ..., xn−2, xk − x, u1||c + ...+ |αn| ||x1, x2, ..., xn−2, xk − x, un||c
≪ c.

�

This gives us the following.

Lemma 2.2. Let (X, ∥�, ..., �∥c) be a generalized symmetric n−cone normed space. Then a
sequence {xm} converges to x in X if and only if lim

n→∞
max ||x1, x2, ..., xn−2, xk−x, ui||c =

θ.

Now we are ready to define a norm with respect to the basis {u1, u2, ..., un} on X. The
function ∥�, ..., �∥ c∞ : Xn → (E,P, ∥.∥) defined by

∥�, ..., �∥ c∞ := max{∥x1, x2,..., xn, ui∥c : i = 1, 2, ..., n}

is a cone norm on X.
Note that if we choose another basis {v1, v2, ..., vn} then resulting ∥�, ..., �∥ c∞ will be

equivalent to the one defined with respect to the basis {u1, u2, ..., un} .

Lemma 2.3. Let (X, ∥�, ..., �∥c) be a generalized symmetric n−cone normed space. Then
a sequence {xm} converges to x in X if and only if for each c ∈ E with c >> θ (θ is zero
element of E) there exists an N = N (c) ∈ N such that n > N implies ||x1, x2, ..., xn−1, xk−
x|| c∞ << c.

Definition 2.3. Let ∥�, ..., �∥ c∞ : Xn → (E,P, ∥.∥) and r ∈ E with r >> θ. Then the set

B{u1,u2,...,un} (x; r) =
{
y : ||x1, x2, ..., xn−1, y − x||∞

c
<< r

}
is called (open) ball centered at x, with radius r.

Then we have following:
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Lemma 2.4. Let (X, ∥�, ..., �∥c) be a generalized symmetric n−cone normed space. Then
a sequence {xm} converges to x in X if and only if for each r ∈ E with r >> θ (θ is zero
element of E) there exists an N = N (r) ∈ N such that n > N implies ||x1, x2, ..., xn−1, xk−
x|| c∞ ∈ B{u1,u2,...,un} (x; r) .

Theorem 2.1. Any symmetric n−cone normed space X is a cone normed space and its
topology agrees with the norm generated by ∥�, ..., �∥c∞ .

Now we introduce the notions of symmetric n−cone normed space of the sequence space
lp, 1 ≤ p ≤ ∞, consisting of all sequences x = (xk) such that

∑
k |xk|

p < ∞ and prove
some fixed point theorems.

Recall from [16] that the functions

||x1, x2, ..., xn|| :=

 1

n!

∑
j1

...
∑
jn

|det (xijk)|
p

1/p

and

||x1, x2, ..., xn||∞ := sup
j1

...sup
jn

|det (xijk)|

define a n−norm on lp for 1 ≤ p ≤ ∞ and for p = ∞, respectively. Then we have the
following:

If X = lp, E = Rn and P = {(x1, x2, ..., xn) ∈ Rn : xi > 0, i = 1, ..., n} then the
functions ∥�, ..., �∥cp : lp × lp × ...× lp︸ ︷︷ ︸

n times

−→ (E,P, ∥.∥) and ∥�, ..., �∥c∞ : lp × lp × ...× lp︸ ︷︷ ︸
n times

−→

(E,P, ∥.∥) defined by

∥�, ..., �∥cp :=

α1B, ..., αnB︸ ︷︷ ︸
n times

 (1)

and

∥�, ..., �∥c∞ :=

α1C, ..., αnC︸ ︷︷ ︸
n times

 (2)

define a symmetric n−cone norm on lp for 1 ≤ p < ∞ and for p = ∞, respectively where

B : =

 1

n!

∑
j1

...
∑
jn

|det (xijk)|
p

1/p

,

C : = sup
j1

...sup
jn

|det (xijk)|

and αi ≥ 0, i = 1, 2, ..., n.
Remember from [16] that for any n−normed space X by using a derived norm, defined

with respect to the set {a1, a2, ..., an} , where ai = (δij) , i = 1, ..., n by

∥x∥∗p :=

 ∑
{i2,...,in}⊆{1,...,n}

∥x, ai2 , ..., ain∥
p
p

1/p

if 1 ≤ p < ∞, or

∥x∥∗∞ := sup
{i2,...,in}⊆{1,...,n}

∥x, ai2 , ..., ain∥∞
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if p = ∞. The above facts allow us to define symmetric n−cone norms on lp by

∥x∥∗c
p
:=

α1

 ∑
{i2,...,in}⊆{1,...,n}

∥x, ai2 , ..., ain∥
p
p

1/p

, ..., αn

 ∑
{i2,...,in}⊆{1,...,n}

∥x, ai2 , ..., ain∥
p
p

1/p


and by

∥x∥∗c∞ :=

(
α1 sup

{i2,...,in}⊆{1,...,n}
∥x, ai2 , ..., ain∥∞ , ..., αn sup

{i2,...,in}⊆{1,...,n}
∥x, ai2 , ..., ain∥∞

)
where αi ≥ 0, i = 1, 2, ..., n for 1 ≤ p < ∞ and for p = ∞, respectively. Remember also
that

∥x∥p ≤ ∥x∥∗p ≤ n1/p ∥x∥p
for all x ∈ lp, where ∥.∥p is the usual norm on lp. In particular, ∥.∥∞ = ∥.∥∗∞ . Hence,

if we take αi = 1 for all i = 1, 2, ..., n in (1) and (2) we have symmetric n−cone norms

∥�, ..., �∥cp :=

B, ..., B︸ ︷︷ ︸
n times

 and ∥�, ..., �∥c∞ :=

C, ..., C︸ ︷︷ ︸
n times

 of lp for 1 ≤ p < ∞ and for p = ∞,

respectively. Thus we have∥x∥p , ..., ∥x∥p︸ ︷︷ ︸
n times

 ≤ ∥x∥∗p ≤

n1/p ∥x∥p , ..., n
1/p ∥x∥p︸ ︷︷ ︸

n times


where ∥x∥P =

(
∥x∥p , ..., ∥x∥p

)
is usual p−norm-like symmetric cone norm on

(
lp, ∥·, ..., ·∥cp

)
.

In order to show that
(
lp, ∥·, ..., ·∥cp

)
is complete we need following.

Lemma 2.5. If a sequence in lp is convergent in the usual norm ∥.∥p then it is convergent

in symmetric n−cone norm ∥·, ..., ·∥cp . Similarly, if a sequence in lp is Cauchy with respect

to ∥.∥p then it is Cauchy with respect to ∥·, ..., ·∥cp .

Theorem 2.2.
(
lp, ∥·, ..., ·∥cp

)
is a symmetric n−cone Banach space.

Proof. Let {xm} be a Cauchy sequence in
(
lp, ∥·, ..., ·∥cp

)
. Then for each c ∈ E with

c >> θ there exists N = N (c) ∈ N such that n > N implies ∥xm − xn, y∥cp << c for

all y in lp if and only if for each c ∈ E with c >> θ there exists N = N (c) ∈ N such
that n > N implies ∥xm − xn∥∗cp << c. This proves that {xm} is a Cauchy sequence in

symmetric n−cone normed space
(
lp, ∥·, ..., ·∥cp

)
if and only if {xm} is a Cauchy sequence

in
(
lp, ∥.∥∗cp

)
. �

Theorem 2.3. Let T a self-mapping of lp such that

∥Tx − Ty, x2, ..., xn∥cp ≤ K ∥x− y, x2, ..., xn∥cp

for all x, y, x2, ..., xn in X, where K ∈ (0, 1) is a constant. Then T has a unique fixed

point in
(
lp, ∥�, ..., �∥cp

)
.
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Proof. Clearly T satisfies

∥Tx − Ty, ai2 , ..., ain∥
c
p ≤ K ∥x− y, ai2 , ..., ain∥

c
p

for all x, y ∈ lp and {i2, ..., in} ⊆ {1, ..., n}, whence
∥Tx − Ty∥∗cp ≤ K ∥x− y∥∗c

p

for all x, y ∈ lp. Since
(
lp, ∥.∥∗cp

)
is a cone Banach space T must have a unique fixed

point. �
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