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SPECTRAL ANALYSIS OF ELASTIC WAVEGUIDES

ABSTRACT

This paper deals with the spectral analysis of elastic waveguides shaped like an infinite cylinder 

with a bounded or unbounded cross section. Note that waveguides with bounded cross sections were 

studied in the framework of the operator and operator pencil theory. In this paper we extend this 

theory on elastic waveguides with a unbounded cross section. The problem reduces to the spectral 

theory of a one-parameter family of unbounded operators. The spectral structure, the asymptotics 

of the eigenvalues, comparisons between the solutions of different problems and the existence of 

special guided modes for these operators are the main questions that we study in this paper. We use an 

operator approach to solve these problems, and on the basis of this approach, we suggest alternative 

methods to solve spectral problems arising in the theory of both closed elastic waveguides and elastic 

waveguides with unbounded cross sections. 
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ÖZ

Bu makalede, sınırlı veya sınırsız kesite sahip sonsuz bir silindir biçiminde şekillendirilmiş elastik 

dalga kılavuzlarının spektral analizi ele alınmıştır. Sınırlı kesitli dalga kılavuzları operatör ve 

operatör demet teorisi çerçevesinde çalışılmıştır. Bu çalışmada, bu teori sınırsız kesite sahip elastik 

dalga kılavuzları üzerine genişletilmiştir. Problem, sınırsız operatörlerden oluşan tek parametreli bir 

operatör sınıfının spektral teorisine indirgenmiştir. Spektral yapı, özdeğerlerin asimptotik davranışları,  

farklı problemlerin çözümleri arasındaki karşılaştırmalar ve bu operatörler için özel dalga çözümünün 

varlığı burada çalışılan ana konulardır. Bu problemleri çözmek için bir operatör yaklaşımı kullanılmış 

ve bu yaklaşıma dayanılarak, hem kapalı elastik dalga kılavuzlarının hem de sınırsız kesitli elastik 

dalga kılavuzlarının teorisinde ortaya çıkan spektral problemleri çözmek için alternatif yöntemler 

önerilmiştir.
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1  Introduction and Preliminary Facts

The main subject of this paper is the wave solutions 
of the elastodynamic equation in the following 
form, and the related spectral problems (here, we 
follow the notation of [6]):

where t∈R, ∈ ∈ is the normal vector,

                                    and 
∈:={(x_1 ,x_2 ,x_3) ∈R^3:x=(x_1 ,x_2) ∈Ω} . 
Throughout this paper, Ω=Ω_0∈O, where O is 
a bounded connected open set with a smooth 
boundary such that O∈{x∈R^2:x_2>0} and 
Ω_0={x∈R^2:x_2<0} (see Figure 1). ∈(U) is the 
stress tensor, defined by

where ∈_ij denotes the Kronecker symbol and 
U_(i,j)=∂U_i/∂x_j (see [6, 8
In what follows we will consider unbounded 
waveguides described in the following figure.

Fig 1. A bounded deformation of the half space  
 
We are looking for wave solutions to (1.1) in the form 

        and       ,which denotes 
the Sobolev space of three-dimensional vector 
fields (see [1]). We are particularly interested 
in solutions with real and positive k and w. 
By inserting this particular solution into (1.1) 
and following the notation of [6], we obtain the 
following system of equations in vector form:

where

                                                     and 
μ=μ ∈/∈   This system allows us to rewrite (1.1) in

the form

where

is the normal vector, div_k^*  ∈^ is equal to the 
left-hand side of (1.2), and the asterisk indicates a 
minus sign in front of  ∈(div_k  u)+2μku in the third 
line of (1.2). The entries of the matrix ∈^k (u) can 
be written in the following form:

where ∈_ij^k (u are the entries of the matrix

Note that problem (1.3) is a two-parameter 
eigenvalue problem. Throughout this paper, 
we fix k and study the eigenvalue problem 
(1.3) with respect to w2 . The main question 
studied in this paper is this: for what values 
of the parameter w^ do there exist nontrivial 
solutions to problem (1.3) for a fixed   k∈R ?
    In addition to problem (1.3), the following 
Dirichlet and Neumann-type boundary value 
problems will be considered as auxiliary problems:

and

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)
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These problems are useful for studying problem 
(1.3) via comparison. The solutions to problems 
(1.3), (1.4) and (1.5) have to be understood in the 
weak sense. Below, we give exact definitions of 
these solutions.
       In what follows, the main space for all the 
problems that we study will be L^2       , and (.,.) 
denotes the scalar product in this space. We shall 
also use energetic spaces, which are specifically 
defined for given problems. For example, the 
energetic spaces for problems (1.3), 
(1.4) and (1.5)  are  H^1(      ,                and      
respectively.
      Let us first consider problem (1.3). By applying 
Green’s formula to (1.3) and using the boundary 
condition    ∈^k (u)∈ ∈=0,x∈∂Ω      we obtain

This formula allows us to define the Friedrichs 
extension of the symmetric (for real k) operator 
-div_k^*  ∈^k   from the initial domain 
D={u|u∈C^2 (Ω)^3,∈^k (u)∈ ∈=0,x∈∂Ω} to H^1 
in the following way: the Friedrichs extension of 
the operator given in problem (1.3) is the operator 
(more precisely, the operator pencil) L(Ω;k) 
defined on H^1 (Ω)^3∈L_2 (Ω and associated with 
the bilinear form

where u,v∈H^1 (Ω)^3. In what follows, we shall use 
the notation  L(k): = L (Ω;k). We note that 
L^* (k)=L(¯k), i.e., L(k  is a self - adjoint operator 
pencil (see [19]). In particular, it is self-adjoint when 
considered as an operator for each fixed real k.
     We can define the Friedrichs extension of the 
operator given in problem (1.4) in the same way. This 
extension is the operator (or operator pencil) 
                  defined on H_0^1 (Ω)^3∈L_2  and associated 
with the bilinear form

where
Finally, the operator L(O;k) associated with problem 
(1.5) is defined by the bilinear form

where                         The two operators    _0 (O;k) and 
L(O;k) are also self-adjoint for real k.

Throughout this paper, the solutions to problems 
(1.3), (1.4) and (1.5) are defined as the weak solutions 
(i.e., solutions for extended operators) given by the 
following definitions.

Definition 1.1 A function u≠0 is a solution to 
problem (1.3) if u∈H^1 (Ω)^3 and  L(k)u=w^2 u.

Definition 1.2 A function u≠0  is a solution to 
problem (1.4) if u∈H_0^1 (O) and L_0 (O;ku=w^2

Definition 1.3 A function u≠0 is a solution to 
problem (1.5) if u∈H^1 (O)^3 and  L(O;k)u=w^2 u.

Thus problem (1.1) leads us to spectral problems for 
the operators L(k), L_0 (O;k) and L(O;k). Next, we 
define some spectral sets that we need for further 
investigation.
Let T be a closed operator defined on a dense 
subspace of a Hilbert space H. We define the 
following spectral sets:

• ∈(T)={∈∈C|(T-∈I)^(-1)∈B(H)}  (the resolvent set), 
where B(H) denotes the space of all bounded 
operators in H;

• ∈(T)=C\∈(T) ( the spectrum);

• ∈_p (T)={∈∈C|Ker(T-∈I)∈(=) 0} (the point spectrum);

• ∈_c (T)={∈∈C|¯(R(T-∈I)) ∈(=)  
(the continuous spectrum). 

Note that we have used the definition of the 
continuous spectrum ∈_c (T) given in Birman and 
Solomyak’s book ([3]), which is slightly different 
from that given in almost all of the literature on 
functional analysis. However, it is more convenient 
for studying perturbation problems. In particular, 
with this definition, some eigenvalues may belong 
to ∈_c (T). Moreover, for normal operators, ∈_c (T) 
consists of the nonisolated points in ∈(T) 
(see [3], Chapters 3 and 9).
     At this point we should note that the problem of 
the existence of nonisolated eigenvalues in ∈_c (L(k)) 
for a fixed k is an open problem in elasticity theory 
(see [6, 8]).
      The essential spectrum (of a self-adjoint operator) 
is another subclass of    ∈(T)  , which is defined as 

where  ∈_p^   denotes the set of eigenvalues of infinite 
multiplicity.
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The following fact is often used as an alternative 
definition of the essential spectrum: a point ∈ belongs 
to ∈_ess ( if and only if there exists a singular 
sequence for T at ∈ ([3], p. 207, Theorem 2). We 
recall the following definition.

Definition 1.4 A sequence u_n H is said to be 
singular for a self-adjoint operator T at a point    if the 
following conditions are satisfied:

This paper consists of the present introduction and 
three further sections. In Section 2, we study closed 
waveguides (waveguides with bounded cross 
sections) and their eigenvalues in detail. Section 3 
is devoted to waveguides with an unbounded cross 
section  Ω_0O.  A triangular deformation of the half-
plane Ω_0 is considered separately in this section. An 
inverse eigenvalue problem and some methods for its 
solution are considered in Section 4.
Note. In this paper, we use operator theory to present 
some general results in the framework of elastic 
waveguides with an arbitrary unbounded cross 
section Ω_0 O. However, by choosing special forms 
of O, such as rectangular, cylindrical and triangular 
deformations, and special vector fields, one can 
obtain more specific and concrete results 
(see [2, 6, 8, 15, 14] and references therein.)

2 Eigenvalue Problems in Bounded Domains

The main concern of this section is problems (1.10) 
and (1.11) in a bounded domain O. Actually, the 
central problem is problem (1.9) in an unbounded 
domain Ω, where Ω=Ω_0 O. However, to study this 
problem we need the structure of the eigenvalues of 
problems (1.10) and (1.11) in bounded domains. By 
using (1.8), we can write

where the operators A, B and C are defined by their 
bilinear forms as follows: 

and

for all
In the same way, we may rewrite the operator 
L_0 (O;k) in the form

Our further study is based on some properties of 
the operators A, B and C, which are given in the 
following theorem (see [21], Section 35, and [17]).

Theorem 2.1 The operators A, B and C have the 
following properties in the space
(I) A is a self-adjoint, nonnegative operator such 
that (A+I)^(-1) S_∞ and H^1 (O)=D((A+I)^(1/2)), 
where S  is the set of all compact operators in 
(II) C is a bounded and positive definite operator.
(III) The operator B is symmetric, and 
(A+I)^(-1/2) B(A+I)^(-1/2)S_ In particular, this 
condition means that D((A+I)^(1/2)) D(B).
(IV) (A+I)^(-1) B S_
Additionally, the operator A is positive definite in 
H_0^1  i.e., (Au,u)≥ (u,u) for some  >0  and for all 
H_0^1 (O)

Theorem 2.1 means that all of the operators A,B 
and C are well defined on the energetic space 
H=D((A+I)^(1/2)). In particular, the operator A is 
extended on D((A+I)^(1/2)) in the following way:

where

Theorem 2.2 For all k C,   the spectrum of the 
operator L(O;k) is discrete, i.e.,  (L(O;k)) consists 
of isolated eigenvalues of finite multiplicity with a 
possible concentration point at infinity.

Proof. It follows from Theorem 2.1 that the operator 
L(O;k)-w^2 I is invertible if and only if 
(A+I)^(-1/2) (L(O;k)-w^2I)(A+I)^(-1/2) is invertible. 
On the other hand,

where the operators T(k) and   (A+I)^(-1   are compact. 
It follows from this equality that the spectrum of the 
operator L(O;k) is discrete (see [19], Theorem 17.3).
      Now we establish a relation between the asymptotic 
behaviors of the eigenvalues of the operators A 
and L(O;k) for a fixed real k. By Theorem 2.2, the 
spectrum of the operator L(O;k) is discrete, i.e., it 
consists of a sequence 
w_1^2 (k)≤w_2^2 (k)≤ ≤w_n^2 ( 
First we give the following fact, due to M. G. Krein 
(see [9], Theorem 11.4).

Lemma 2.1 Let a self-adjoint operator T be given in 
the form T=H(I+S), where H,S S_∞. 
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If either (i) (I+S)^(-1) B(H

The proof of the following theorem, which is basic to 
our further study, is based on Lemma 2.1.

Theorem 2.3  Let  k R    be fixed and let 
{w_n^2 be the eigenvalues of the operator 
L(O;k)=A+kB+k^2 C. Then

(iii) ) the same results hold for the operator   L_0 (O;  
too.
Proof. We can rewrite L(O;k) in the following form:

Suppose that 0 () Ker(L(O;k)). Then, by using the 
fact that L(O;k) is self-adjoint, we obtain

By using the notation
                                                                                  
we get                             where, by Theorem 2.1, the 
operators T, H and S satisfy the conditions of Lemma 
2.1. Hence, by Lemma 2.1 we obtain the result that

Finally, let 0 Ker(L(O;k)). By Theorem 2.2, the 
spectrum of the operator L(O;k) is discrete and, 
consequently, there exists a0 such that  L(O;k)- _0 I 
is invertible. Therefore, by repeating the argument 
that we applied in the case of 0 ( ) Ker(L(O;k)), we 
get the same asymptotic relation.
(ii) The formula
follows from (i) and the fact that  _n (A) cn^(2/3) 
(see [4] for details).
(iii) We can establish this statement by repeating the 
arguments that we applied in the proof of (i) and (ii).
Next we give two inequalities that are useful for the 
localization of spectra.

Proposition 2.1 (I)  The positivity of the energy: 
There exists μ≥0 such that

(II)   The energetic stability principle: There exist real 
numbers  ≥0 and c_0>0 such that for all  k R    and 
all

Proof. We note that (2.4) follows immediately 
from (1.8). Moreover, since Ker (A) (=)  (actually, 
dimKer(A)=4) in the space H^1    we obtain the result 
that μ=0 in (2.4).

The inequality (2.5) follows from (2.1), (2.2) and 
(2.3) by using Korn’s first inequality (see [12]) in the 
following form:

where
      In particular, the following corollary about the 
real pairs (k,w) in  p (L_0 (O;k)  follows from (2.5).

Corollary 2.1 
Let
Then:
                                  lies inside the hyperbola

lies inside the hyperbola and on the vertical line 
passing through the point (k,0).

      Corollary 2.1 yields the localization for eigenvalues 
of               as in Figure 2.

Fig 2. The domain containing the eigenvalues of 
operator L_0 (O;  .

      By Corollary 2.1, 0 ( )  _p (L_0 (O;k)) for all k R. 
Now our question is: for what values of k do we have 
0 _p (L(O;k))? The answer is given in the following 
proposition.

Proposition 2.2

Proof. Evidently,

Consequently, if  k = 0, then  L(O;0) = A and 
0 _p (L(O;0)).   We shall now show that 0 _p 
(L(O;k))  k=0.              We consider two cases:  
(a) u ( ) Ker(A) and (b) u Ker(A).    In the case of (a), 
it follows from (2.4) that

On the other hand, this inequality implies that

BUJSE
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Therefore, for any    k R,   , a vector u ( ) Ker(A) is not 
an eigenvector of the operator L(O;k) corresponding 
to the eigenvalue w=0. Now, let u Ker(A).    First, we 
obtain from (2.4) that

Since

Thus

3 The Spectrum of an Elastic Waveguide in a 
Domain with an Unbounded Cross Section

3.1 Bounded Deformations of the Half-plane 
and Related Perturbations for the Operator 
L(Ω_0;k)

The main subject of this section is the structure of the 
spectrum of the operator L(k) that is obtained from 
L(Ω_0;k) by a bounded deformation of the half-plane

We also need the quantities
which are called the speeds of the primary wave, the 
secondary wave and the Rayleigh wave, respectively. 
The speed of the Rayleigh wave is defined as the single 
root in (0,c_S) of the Rayleigh equation (see [20]),

The following proposition follows immediately from 
Definition 1.4 and the related properties of semibounded 
self-adjoint operators.

Proposition 3.1

Proof. By definition, L(k) is the operator defined on 
H^1 (Ω)^3 L_2  and associated with the bilinear form

where u,v H^1 (Ω)^3. Hence, we can write 
L(k)=L(Ω_0;k)+L(O;k). By (3.1) and (1.8), all of 
the operators L(k), L(Ω_0;k) and L(O;k) are positive 
and self-adjoint. Moreover, L(Ω_0;k)≥k^2 c   in 
H^1 (Ω_  (see [6], Lemma 3), which implies that 
L(k)≥L(Ω_0;k)≥k^2 c_R^2  This inequality yields

Next we give a stronger result established in [6].

Proposition 3.2 ([6], Theorem 1) For every k∈R,

        A proof of this proposition was given in [6], 
and for this reason we shall not give an alternative 
proof. We note also that throughout this paper we 
use operator and operator pencil techniques, which 
are quite different from the methods that were used 

in [6] and related papers. Particularly, Proposition 
3.2 may be proved by using the generalized Weyl 
criterion (see [3], p. 207, Theorem 4 and [16]) and 
some known facts from perturbation theory.

       The generalized Weyl criterion. Let T, S be 
self-adjoint operators. Suppose that for some point  
_0 (T) (S)    the difference of the resolvents is 
compact, i.e.,

then
       As one can see from Proposition 3.2, the problem 
of the existence of the eigenvalues and (if there are 
any) their dependence on k and on the shape of 
the deformation is one of the main questions in the 
spectral theory of unbounded elastic waveguides. 
There may be two kinds of eigenvalues: (i) 
nonisolated eigenvalues in c_R^2,+∞ , as pointed 
out in the introduction; and (ii) isolated eigenvalues 
located strictly below
We set

and

Evidently, all eigenvalues (if any) located strictly 
below k^2 c are among the numbers _n (k). Our first 
observation is given in the following proposition.

Proposition 3.3 For any

either is an eigenvalue located strictly below k^2   or  
is equal to k^2  , which belongs to
              is an eigenvalue if and only the infimum in 
(3.2) is attained.

In particular,

Proof. 
(a) This statement follows from (3.2) and Proposition 
3.2.
(b) The proof is based on the spectral expansion

where E_(k) is the spectral measure for the operator 
L(k), and on the fact that L(k) is a semibounded 
self-adjoint operator. 
(c) This follows from (3.3) and Proposition 3.2.
(d) This fact is known from the spectral theory of 
self-adjoint operators (see [3]), which is also based 
on the spectral expansion given above.

BUJSE
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Now, in addition to problems (1.4) and (1.5), we 
consider the following Zaremba-type boundary value 
problem (see [13] for similar problems).

where ∂O= _1 _2 (see Figure 1). The operator 
associated with the Zaremba problem will be 
denoted by L_Z (O;k)  We denote the energetic 
spaces of problem (1.4), the Zaremba problem and 
problem (1.5) by H_1, H_2 and H3,  respectively. As 
mentioned in the introduction,     H_1=H_0^1    and
                 Hower
     By Theorem 2.2, for all   k R   ,  the spectra 
of all these problems are discrete, i.e., they consist 
of isolated eigenvalues of finite multiplicity with 
a concentration point at infinity. We denote by
                                             the eigenvalues of the 
operators                              and L(O;k), respectively. 
Then we have

Thus, the inclusion

Finally, the following corollary follows from (3.7), 
Theorem 2.3 and the fact that
Corollary 3.1 (a) For each

where the constant c does not depend on k;

where                                denote the spectral 
distribution functions of the operators L_Z (O;k and 
L(O;k), respectively.

        We recall that one of the main problems in the 
spectral theory of elastic waveguides is that of the 
nonemptiness of the set

which is the set of all eigenvalues (if any) of the 
operator L(k) located strictly below k^2 c. This is 
equivalent to the existence of a guided mode with 
a speed lower than the speed of the Rayleigh wave. 
The obvious result is that
                       is the spectral distribution function for 
operator                  The following theorem contains such 
a non-trivial result for

Theorem 3.1 There exists k^*>0   such that

Proof. By the definition N_ ^Z is the spectral 
distribution function for the operator L_Z (O,k)
Then

Hence,

i.e.,                   is the number of the negative eigenvalues 
of the operator

Thus the set of all eigenvalues (if any) of operator 
L_Z (O,  located strictly below k^2 c is the same 
as the number of the negative eigenvalues of the 
operator  M_Z     . Now, we show that there exists 
k*>0 such that if k<k^* then N_0 (M_Z (k))=0. 
Suppose that this is not true. Then we obtain a 
sequence k_n 0,k_n>0 such that

Therefore there exists

By using the compact embedding (see [1])

Consequently,

This is a contradiction to the fact that A is a positive 
operator in

4 On the inverse dispersion relation k(w) and a 
linearization method for its solution

       The main target of this section is the following 
inverse problem: for what values of k will the given 
w2 be an eigenvalue of the eigenvalue problem 
L(k)u=w^2 u ? So far, we fixed k and studied the 
eigenvalues of the operator L(k). Actually, this 
inverse problem is also the main concern of elastic 
waveguides. As we have seen in the previous 
sections there are may be two kind of eigenvalues for 
operator L(k): i) non-isolated eigenvalues in 
[k^2 c_R^)          isolated eigenvalues located strictly 
below k^2.    Although, we were mainly concentrated 
on the second case, however the existence or 
non-existence of non-isolated eigenvalues in 
[k^2 c_R     is another open problem for many 
cylindrically-perturbed elastic waveguides. Thus, 
if we have an eigen-pair (k,w^2) for the problem 
L(k)u=w^2 u then w^2 (for the fixed k) is either 
a non-isolated eigenvalues in [k^2 c_R^2   or an 
isolated eigenvalues located strictly below k^2 c_  . 
Clearly, this question is a typical eigenvalue problem 
for the operator pencil :
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The quantitative analysis of this problem via 
the comparison principles, as before leads to the 
eigenvalue problems for operator pencils

There are various methods to investigate the 
spectrum of operator pencils (see [7], [10], [11], [17], 
[19] and [21]). But in this paper we are trying to stay 
within the framework of the operator theory. The best 
way to do this is to apply a linearization method. The 
most suitable linearization in this context is that of 
given by M. Krein and H. Langer in their well-known 
paper [18]. This linearization allows us to establish 
a desirable connection between the root functionals 
of the pencils studied in this paper and the numerical 
ranges of their linearizations, which is very important 
in the variational theory.
We start with
By Proposition 2.1 we have
The principle of positivity of the energy:

There exists μ≥0 such that 

The energetic stability principle:

There exist real numbers  ≥0 and c  >0 such that for 
all k R      and all

We repeat a result from our paper [7].
Theorem 4.1 Let L_w (   be an operator pencil of 
w.g.t. satisfying the energetic stability condition then 
for all w C    the spectrum

is discrete, i.e.  (L_w (O,k consists of isolated 
eigenvalues of finite multiplicity.

The following properties of  (L_w (O,k)) follow from 
the inequalities (4.1) and (4.2).
Corollary 4.1  
• If Im w≠0 then Im k≠0. 
• If Im w=0 and |w|<μ then Im k≠0. 
Consequently, real wavenumbers exist only at real 
frequencies satisfying the inequality |w|≥μ. 
       Finally, we study real eigenvalues in  (L_w (O,k)). 
According to Theorem 2.1, applying the operator
           to both the sides of L (O,k) reduces it to 
the bounded operator pencil of the form (see our the 
previous paper [11]):

where
                                                     We fix w and rewrite 
T_w (    in the form

Notice that many properties of this pencil were 
studied in the paper of M. Krein and H. Langer [18].

A simple connection between the eigenvalues of 
T(O, )  and L_w (O,k) is that  _   is an eigenvalue 
for T(O,)    if and only if  _0+k^  is an eigenvalue 
for L_w (O
In the following discussion, our starting point is the 
pencil

and its linearization: L( )=I- T in the space H^2=HH, 
where

A proof of the following proposition is based on the 
definitions of eigenvectors and associated vectors 
(see [19] for the definitions) by using the above given 
linearization.

Proposition 4.1  (T)= (L).   Moreover, if the vectors 
u_0,u_1,....u     form a chain of eigenvectors and 
associated vectors (e.a.v.) corresponding to the 
eigenvalue  _0 of the pencil T( ), then the vectors

form a chain of e.a.v. corresponding to the same 
eigenvalue  _0 of the linear pencil L( )=I- T. 
Conversely, if

                                                      form a chain of e.a.v. 

corresponding to the eigenvalue _0  of   L( )=I- T, 
then the vectors u_0^2,u_1  form a chain of e.a.v. 
corresponding to same eigenvalue  _0 of the pencil 
T( ).

     Evidently, the eigenvalues of the linear pencil 
L()=I-T      and the characteristic values of the 
operator T are the same. The operator T is not self-
adjoint in the Hilbert space                But if we define

                         , then (.                  This relationship

means that the operator        is a self-adjoint operator 
in the Krein space                   with the inner product
                             (see [5]). According to Proposition 4.1,
         is an eigenvector corresponding to the eigenvalue
 _0 of the pencil T ( ) if and only if the vector

                                   is an eigenvector corresponding

to the characteristic value  _0 of the operator T.
        We note that all the results, presented in this 
paper are based on the variational principles like (3.2) 
and (3.3).
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(4.2)
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These are variational principles for operator L(k). 
However, the characterization of the eigenvalues 
of problem T( )u=0     is much more complicated, 
because this is an eigenvalue problem for the 
operator pencil T( ).   In this case one can use the 
characteristic values of the self-adjoint operator T 
in the Krein space K. Let us write [u,v] for [u,v]J 
in the Krein space K. Variational principles for real 
eigenvalues (positive or negative type) of a self-
adjoint operator T in a Krein space K are given by the 
following formula:
                                                 then

CONCLUSION  
We use an operator approach and suggest alternative 
methods to solve spectral problems arising in the 
theory of both closed elastic waveguides and elastic 
waveguides with unbounded cross sections. By using 
operator methods we give full description of the 
spectral sets studied in this paper. We study the inverse 
dispersion relation k(w) and suggest a linearization 
method for its solution.
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