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Abstract

In this paper, we introduce a three step implicit iteration process with errors and prove strong convergence
theorem of the new iterative scheme for finite family of uniformly L—-Lipschitzian total asymptotically strict
pseudocontractive mappings in Banach spaces. The results in this paper extend, generalize and unify well
known results in the existing literature.
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1. Introduction

Let E be a real Banach space with dual E*. We denote by J the normalized duality mapping from E
into 2F" defined by

JO)={r e B (¢ ) =< =} vC e E, (1.1)
where (., .) denotes the generalized duality pairing. The single-valued-normalized duality mapping is denoted
by j and F(G) denotes the set of fixed points of mapping G, i.e., F(G) ={( € E: G{ = (}.

In the sequel, we give the following definitions which will be useful in this study.

Definition 1.1. Let K be a nonempty subset of real Banach space E. A mapping G : K — K is said to be:

Email address: ofemaustine@gmail.com (Austine Efut Ofem)

Received June 05, 2020, Accepted: June 29, 2020, Online: July 01, 2020.



A E. Ofem, Results in Nonlinear Anal. 3 (2020), 100-116 101

e nonexpansive if

IGC—=Gnll < [I€=nll, ¥ ¢n € K; (1.2)
o k-strictly pseudocontractive if there exists j(( —n) € J(¢ —n) and a constant A € (0,1) such that
(GC—=Gn,j(¢—m) < NIC=nl> = AT =T)¢ = (I =Thnll*, ¥¢on € K. (1.3)
It is easy to see that such mappings are Lipschitz with constant L = %;

o uniformly L-Lipschitzian if there exists a constant L > 0 such that
1G"C=G"nll < LI¢ =nll, ¥V ¢,n € K and n > 1; (1.4)

o asymptotically A-strictly pseudocontractive with sequence {h,} C [1,00) and h,, — 1 as n — oco. If
there exists a constant A € (0, 1) and for any given (,n € K there exists j(( —n) € J(¢ —n) such that

(G"C =G, §(C—m) < hallC = nll* = NI = G™)¢ = (I = G™)nlf?, (1.5)
Vn > 1.
o asymptotically \-strictly pseudocontractive in the intermediate sense if there exists a constant A € (0,1)

and sequences p, € [0,00) and &, € [0,00) with p, — 0, £, — 0 as n — oco. For any (,n € K, there
exists j(z —y) € J(¢ —n) such that

(G"C—G™,j(¢C—m) < (14 mwa)|¢—nl
“AMIT =G = (I =GP+ & Vn>1, (1.6)

e total asymptotically strictly pseudocontractive if there exists a constant A € (0,1) and sequences p,, €
[0,00) and &, € [0,00) with p, — 0, &, — 0asn — oo. For any (,n € K, there exists j(x—y) € J((—n)
such that

(G"¢C—G",j((—mn) < [[¢C=nlP=Al(I—-G")¢— (-Gl
Fnd(IC —=nll) + & V n > 1, (1.7)

where ¢ : [0,00) — [0, 00) is continuous and strictly increasing function with ¢(0) = 0.

Remark 1.2. If ¢()\) = A2, then total asymptotically strictly pseudocontractive mapping reduces to asymp-
totically A-strictly pseudocontractive mapping in the intermediate sense. If &, = 0, then asymptotically
A—strictly pseudocontractive mapping in the intermediate sense reduces to asymptotically A—strictly pseu-
docontractive mapping and if k, = 1, n = 1, then an asymptotically A-strictly pseudocontractive mapping
reduces to strictly pseudocontractive mapping. Hence, the class of total asymptotically strictly pseudocon-
tractive mappings properly includes all the classes of mappings defined above.

These class of mappings have been studied by several authors (see for example, [3], [43], [44], [38] and
the references there in).

In 1974, Ishikawa [17] introduced an iteration process {¢,} defined by

G € K,
CnJrl = (1 - an)Cn + anGT/TM Vn > 17 (18)
Tin = (1 - 5n)<n + 5nGCn7

where {a,,} and {6, } are sequences in [0,1]. This iteration process reduces to Mann iteration [20] if 4, = 0
for all n > 1 as follows:

(o € K,
{ Cag1 = (1 = an)Gn + GGy, vn 21, (1.9)



A E. Ofem, Results in Nonlinear Anal. 3 (2020), 100-116 102

where {a,,} is a sequence in [0,1].
In 1991, Schu [30] introduced the following Mann-type iterative process for an asymptotically nonexpansive
mapping in Hilbert spaces

(o € K,
>
{ Cost = (1 — an)n + anGC, 2T (1.10)

where {ay,} is a sequence in [0,1].
In 2014, Saluja [29] improved the modified explicit scheme (1.10) of Schu [30] as follows:

€ K, Vn > 1 111
Cn—l—l = anCn + (1 - an)G?((nn))Cn7 =t ( . )

where {a,} is a sequence in [0,1], n = (h— )N+, i =n(i) € I = {1,2,..,N}, h = h(n) > 1 is some
positive integers and h(n) — oo as n — 0.

In 2001, Xu and Ori [40] introduced the following implicit iteration process for finite family of nonexpan-
sive self-mapping in Hilbert spaces.

{COGK,

>1 1.12
Cn = an(nfl + (1 - an)GnCm vn 2 ’ ( )

where {ay,} is a sequence in [0,1] and Gy, = Gy (mod N)-
In 2003, Sun [35] modified the implicit iteration of Xu and Ori [40] aa follows:

G0 € X, Vn > 1 1.13
Cn = Oann—l + (]- — an)G?énn))gn7 =5 ( . )

where {ay,} is a sequence in [0,1], n = (h — 1)N 4+, ¢ = n(i) € [ = {1,2,..., N}, h = h(n) > 1 is some
positive integers and h(n) — oo as n — 0.

In 2006, Su and Li [34] introduced the following implicit Ishikwa-type iteration scheme and called it
composite implicit iteration process and applied the iteration process for the approximation of common fixed
points of a finite family of strictly pseudocontractive maps:

CO € K’
Cn = anCu-1+ (1 — an) G, Vn > 1, (1.14)
T = 5nCn71 + (1 - 6n)GnCna

where {a,} and {d,} are sequences in [0,1] and Gy, = G, (mod) N-

In 2011, Igbokwe and Ini [16] modified and improved the composite implicit iteration process of Su
and Li [34] for the approximation of common fixed points of finite family of A—strictly asymptotically
pseudocontractive mappings in Banach spaces. Precisely, they considered the following modified averaging
composite iteration process:

G € K,
Cn = anCr1+ (1 — an)G?((:))nna Vn > 1, (1.15)
h = 6n<n—1 + (1 - 6n)Gil((nn))Cna

where {a,,} and {6, } are sequences in [0,1] and n = (h — 1)N +4,i =i(n) € {1,2,.... N}, h = h(n) > 1 is
some positive integers and h(n) — oo as n — oc.

In 2010, Gu [13] introduced a composite implicit iteration process with errors for a finite family of strictly
pseudocontractive mappings in Banach spaces as follows:
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G € K,
Cn = (1 — Qp — /Bn)Cn—l + anGnnn + Bnuna Vn > 1, (116)
T = (1 —0p — ’Yn)Cn—l + 5nGnCn + YnUn,

where Gy, = Gy (modn): 1@n}s 18n}, {1}, {0n}, are four real sequences in [0, 1], {u,} and {v,} are bounded
sequences in K.

In 2012, Jim et al. [19] improved and modified the composite implicit iteration process of Gu [13] for a
finite family of asymptotically ¢-demicontractive maps in Banach spaces as follows:

CO € K’
Cn=(1—0an—PBn)ln-1+ anG?((n))nn + Bnun, Vn > 1, (1.17)
M= (1= 6n — )1 + 5nG?((TZL))Cn + Ynn,

where {an,}, {Bn}, {0n}. {7n}, are four real sequences in [0,1], {u,} and {v,} are bounded sequences in K
and n = (h—1)N +14, i =1i(n) € {1,2,..., N}, h = h(n) > 1 is some positive integers and h(n) — oo as
n — oo.

Noor et al. [21] introduced and studied a three-step iteration process for solving non-linear operator
equations in real Banach spaces. Since then, Noor iteration scheme has been applied to study the strong and
weak convergence of several mappings (see, e.g., [8], [41], [36]). It was proved by Bnouhachem et al. [1] that
three-step method performs better than two-step and one-step methods for solving variational inequalities.
Moreover, three-step schemes are natural generalizations of the splitting methods to solve partial differential
equations, (see [31], [33], [36]).

On the other hand, Glowinski and Le-Tallec [9] used a three-step iterative method to solve elasto-
viscoplasticity, liquid crystal and eigenvalue problems. They also established that three-step iterative scheme
performs better than one-step (Mann) and two-step (Ishikawa) iterative schemes. Haubruge et al. [10]
studied the convergence analysis of the three-step iterative processes of Glowinski and Le-Tallec [9] and used
the three-step iteration to obtain some new splitting type algorithms for solving variational inequalities,
separable convex programming and minimization of a sum of convex functions. They also proved that
three-step iteration also lead to highly parallelized algorithms under certain conditions.

Hence, we can conclude by observing that three-step iterative schemes play an important role in solving
various problems in pure and applied sciences. (one-step) and Ishikawa.

Implicit iterative schemes have been studied recently by several authors (see for example, [13], [24], [34],
[35], [40], [6] and the references there in).

Motivated and inspired by the above results, we introduce a new modified three-steps composite implicit
iteration process with errors for a finite family of N uniformly L-Lipschitzian total asymptotically strictly
pseudocontractive mappings in Banach spaces as follows:

G € K,
Cn = (1 — Oy — /Bn)Cn—l + anG?((nn))nn + ,Bnum
M = (1= 00 = )Gnt + OnGl ) 20 + A,

Zn = (1 — €n — fn)Cn + enG:L((,zL))Cn + fnwn,

Vn > 1, (1.18)

where {an}, {Bn}, {0n}, {7}, {en}, {fn}, are real sequences in [0, 1] satisfying e, + fr, < 1, @,y + B, < 1 and
O+ <1, {un}, {vn} and {w,} are bounded sequences in K and n = (h—1)N+1i,i=1i(n) € {1,2,..., N},
h = h(n) > 1 is some positive integers and h(n) — oo as n — oc.

On the other hand, it is of high importance to check if any constructed iteration process is well defined
so as to know if it can be employed to approximate the fixed points of some mappings. Now, we show that

(1.18) can be employed to approximate the fixed point of asymptotically total pseodocontractive mapping
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which is Lipschitz continuous. Let G; be L;-Lipschitz total assymptotically pseudocontractive mappings with
sequences i, and &, C [0,00) such that u;, and &, — co — 0 as n — 0.
Define a mapping ¥,, : K — K by

!pn(C) = (1 — Op — ﬁn)gn—l + anG?((n)){(l - 5 - "Yn)Cn—l

+0a Gl (1= en = fu)C + enGlU)C+ futon] + Yntn} + Butin,
for all n > 1. It follows that
1#0(Q) = T )| = anll G (1 = 60— W) a1 + 8aGi [(1 = €n — f)C
+enGln)C+ fuwn] + Jnvn} — GH {(1 = 6 — n)Cn 1
+5nt((”)) [(1 = en — fun + eaGy ( Y1+ fawn] + ynvn}]
s<me0”mwfwn—nx+al.)c+nmﬁ

—6, G (1 = en mm+%G{n+n%m

< anénL2H(1 _en_fn)<c_77)+en( i C Gz(n )”
S an5nL2[(1 —€n — fn)”C_UH +€nHGi(n)C_ Gz(n)nm
< a7z5nL2[(1 —en — fu)IC =l +enL|IC — nl[]
< anénL [1 €n+€nL]||C—77||

[

= a,0,L? 1+ e, (L —D]|IIC—n], ¥(,n € K,

where L = max{L; : 1 <i < N}.
If a6, L2[1 + e, (L —1)] < 1 for all n > 1, then ¥, is a contraction. By Banach contraction mapping
principle, we can see that there exists a unique fixed point (, € K such that

WTI(C) = (1 — Op — Bn)Cn 1+ anGh((n)){(l — 5 — ’Yn)Cn—l
+0, G (L = e — Fa)C + enGR)C 4 fotn] + Antn} + Butin,

for all n > 1. This shows that the implicit iteration sequence (1.18) is well defined.

Remark 1.3. Tt is actually fascinating to see that the iteration process (1.18) reduces to:
(1.9) when 6, =y, =ep = fr, =0, G" = G, N =1 (Mann iterative scheme [20]).
(1.10) when 6, = v, = ep = fr, =0, N =1 (Schu iterative scheme [30]).

(1.11) when 6, = v, = e, = fr, = 0 (Saluja iteraive scheme [29]).

(1.14) when B, =y, = en = fn =0, G"™ = G (Su and Li iterative scheme [34]).
(1.15) when 5, = 7, = en, = fn = 0 (Igbokwe and Ini ietative scheme [16]).

(1.16) when e, = f,, =0, G™ = G (Gu iterative scheme [13]).

(1.17) when e, = f,, = 0, (Jim et al. iterative scheme [19]).

Interestingly, our new iterative scheme properly includes those mentioned above and several other explicit
and implicit iterative schemes in the existing literature. And hence, our results will generalize, extend,
complement and unify the results of Jim et al. iterative scheme [19], Gu [13], Mann [20], Xu and Ori [40],
Osilike [24], Su and Li|34|, Chang |2]|, Schu [30], Saluja [29] and several other well known results in the
existing literature.

It is our purpose in this paper to use a simple and quite different method to study the strong convergence
of our new implicit iterative sequence {(,} defined by (1.18) to a common fixed points of finite family of
uniformly L-Lipschitzian total asymptotically strictly pseudocontractive mappings in a Banach space. Our
results extend and improve some recent results in [24], [13|, [34], [16], [40], [6] and several others in the
existing literature.
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2. Preliminaries

In order to prove our main results, we also need the following Lemmas.
Lemma 2.1 (see [2]). Let J : E — 2F be the normalized duality mapping. Then for any C,n € E, one has

I1C+ 0l < KN+ 20, 5(¢ +n), Vi(C+n) € J(E+n).

Lemma 2.2 (see [22]). Let {an}, {bn} and {c,} be nonnegative real sequences satisfying the following
conditions:
ap+1 < (14 by)an + ¢, Y0 > ng

If >0 g en <00, Yoo by < 00. Then,
(1) the lim a, exists.
n—oo

(11) In addition if there exists a subsequence {an,;} C {an}such that a,, — 0, then a,, — 0 (as n — o0).

3. Main results

Lemma 3.1. Let E be a real Banach space and let K be a closed conver subset of E. Let {Gi}N, :
K — K be a finite family of uniformly L;-Lipschitzian (N, {tin}, {&mn}, ¢i)—total asymptotically strictly
pseudocontractive mappings such that & = (| F(Gy) # 0. Let {un}, {vn} and {w,} be bounded sequences
in K. Let {an},{Bn}, {0n}, {7}, {en} and {fn} be siz real sequences in [0,1] such that o, + B, < 1,
On + v <1 and e, + fr, < 1. Assume that the following conditions are satisfied:

(i) 3 an = oo;
n=1

o0 o0
(i) > a2 < 00, Y 0 By < 00, Y by < 00, 07 Yy < 00,
n=1

n=1

o0 o0 o0
Y andnfn < 00, Y Qppin < 00, Y, ap, < 00;

n=1 n=1 n=1
(iii) 3> B < 00;
(1v) TCL;}”Lz[l +en(L—1)] <1, where L=max{L; :1<i< N}.
Let {(} be the iteration process generated by (1.18), then for arbitrary zo € K we oblain that
lim |G, — Geal| =0, Yt € {1,2,..., N} (3.1)

Proof. Since for each G; : K — K, 1 < i < N is total asymptotically strictly pseudocontractive mapping,
then we have for all (,n € K, there exists a constant A\; € (0,1), L; > 1 and sequences {pin }, {&n} C [0, 00)
with p;, — 0 and &, — 0 as n — oo such that

(GP¢C =G (¢ —n) < IC—nl* =Nl = G)¢— (I = Gml)?
F1in®i([IC = nll) + &in, V0 21, (3.2)

where ¢; : [0,00) — [0, 00) is continuous and strictly increasing function with ¢;(0) = 0, and
1GI¢ = Ginll < Lill¢ = nll, n > 1. (3.3)
<

Let A=min{\; : 1 <i < N}, gy = max{pn : 1 <i < N} & =max{&y: 1 <i< N}, ¢ =max{¢;: 1 <1
N}.
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For (,n e K,p € & with 1 <i < N, then we have
(G =G, g(C=m) < (<=l = AT =GP)¢ =T =GPl
Fund (¢ —nll) + &ny V0 2> 1,

where ¢ : [0,00) — [0, 00) is continuous and strictly increasing function with ¢(0) =0,
and

1GI¢ = Ginll < LII¢ =, n> 1.
It follows from (1.18) that

lzn —pll = (1 —en— fn)<n+en <n+fnwn Pl
H(l_en_fn)(Cn_ )+en( n)Cn_p)'i‘fn(wn_p)H
(1 = en — fu)llGn — pll + enHG,(n = pll + fullwn = pll
1Gn = Il + enLl|Gn — pll + fallwn — pll
(L4 enL)[|Cn — pll + fullwn — pll
(L4 L)|IGn = pll + fallwn = pl-
Using (1.18) and (3.6), we obtain,

VAN VAN VAR VAN

||(1 - 5n - 'Yn)Cnfl + 5nGil((:))Zn + YnUn — pH
11 = 8 = 70) (Go1 = P) + 5u( G120 = )+ F(vn = )
h(n
(1= 8n = ) [n1 = Il + 0a Gl 2 — Il + Amllvn —
[¢n—1 = Il + 0nLl[2n = pl| + Wnllvn — P
161 = pll + 0 L{(L + L)I|Gn — Il + fullwn — plI} + mllon — pl]
= [[Gn—1 = pll + 0 L(1 + L)||Gn —
+5nfnL”wn - p” + ’YnH'Un - p”
Again from (1.18) and (3.7) we obtain

”77n_<n|| = H77n Cn—1+ Cn— I_CnH < |\77n—Cn—1|| + ”gnfl _Cn”
= H(1_5 _’7n)Cn 1+ 0n G(( ))Zn“"ynvn Cnle

+H<n_1—[<1—an Bt + an G + B
= H6 ( — Cn— 1)+’Yn(vn Cn—l)H
+||an<gn,1 - Gfg?) M) + Bu(Cnr — )|

= 16a(Gl 2 = p+ P~ Cumt) + (vn =P+~ Guo)|

Hlan(Cor = p+p = Gl na) + Ba(Grr — p+p — un)|

Sul|GI) 2 = ol + Bullp = Goctll + mllon — Pl + Wl = Caa |

i(n)
+an|[Cn-1 — Pl + anllp — G 77n|| + BnllCn—1 — pll + Bullp — unl|
OnL||zn = pll + 6nllp — a1l + Yallvn — 2l + Ynllp — G-t
+an||Cu—1 = pll + anLllp — mnll + BullCu—1 — Il + Bnllp — uall

= anL|nn —pll + 0nLllzn — pll + (an + Bn + 00 + 7)) Gom1 — p|
+Bpllun = pll + Y llvn — p-

7 — |

IA A

IN

IN

(3.8)
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Substituting (3.6) and (3.7) into (3.8) we obtain

”nn -

Gl

<

IA

anL{||Gn—1 — Pl + 6 L(1 + L)[[¢a — pll + OnfuLllwn — pll + Yallvn — plI}
F0n L{(1 + L)[|Cn — pll + fallwn — plI} + (an + Bn + 6n + Y0)l|Cn—1 — Pl
+Bnllun — pll + Ynllvn — 2l

anL||Cno1 —pll + an&nL2(1 + L)||Gn — pll + O‘n(;nfnL2||wn =7l
FanynLl|on = pll + 6n L(1 + L)||¢n = pl| + On fr Ll wn — pl|

+(an + Bn + 0n + )l[Cn-1 = pll + Bullun — pll + mllvn — pll

(anL + an + Bn + 6n + ) [Cn-1 — pl| + (O‘ndan + 0, L)(1+ L)||¢n — p
+(O‘n5nfnL2 + 6nfrl)|lwn — pll + (n L + yn)llvn — pll + Bullun — p|
[ (L + 1) + B + 0n + Ynll|Cn—1 — pIl + onL{an L + 1)(1 + L)[|¢n — p|
FonfuLl(oanLl +1)|Jwn — pll + (el + 1)|lon — pll + Bnllun — pl|

[ (L + 1) + Bn + 0n + Yl l6n—1 = pll + 0u L(L + 1)?( ¢ — p
FonfnL(L + 1)[[wn = pll + (L + Djvn = pl| + Bnllun — pll.

Using (1.18), we obtain

1Gn

—p|?

IN

IN

IN

11— = Ba)Cuot + anGl i + Butin — pl|?

11 = an = Ba)(Gamt = P) + (G110 = p) + Bulun = 1)
(1= an = Ba)* a1 =PI + 2an(Gl)na = ) + Bulttn — ), 5(Cn = P))
(1= an = B)?ll6a—1 = II” + 200 (G} 10 = P, (Go — )
+280(ttn = 1,3 (Cn — P))

(1= an = Bn)IGo-1 = PII? + 200 (Gl m0 = GL G

+ G G = 1,5(Go = P)) + 280t — P, (Cn — D))

(1—ay— ﬂnwcﬂ_l = Pl + 20 (Gl — GL s 3G — )
+20 (G ,n) ™ =, §(Cn = D)) + 2B (ttn — 1,5 (Cn — p))

(1= an = B)?ICus — pl* + Qanuc’?%)nn = G CalllG — ol
+28utn — pllIGn = 2l + 200 (GL Cn — . 3 (Gn = )

(1= an)?[[¢ns — plI* + 2anL||nn — CalllGn = Pl

+2Bu[un = plllIGn = Il + 20 (G Gu = p, 5(Gn — ).

(3.9)

(3.10)
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Substituting (3.9) into (3.10) we obtain

16 = plI* <

IN

(1= an)?l|Ga-1 = pI* + 20n L{[an(L + 1) + Bu + 8n + ] [Go-1 — Pl

+0n L(L +1)/|6n = pll + 6nfu L(L + 1)][wp = pl| + 7 (L + 1)]on = ]
+Ballun = pIHIGn = Pl + 28ullun = pllGn = Pl + 200 (Gl Gu = G

+Cn =, J(Cn —p)>

(1= an)?[|Ga-1 = p* + 200 Llon(L + 1) + B + 6 + Yl [Gn1 = PllIGn — P
+2an5nL2(L + 1)2||Cn - p”2 + 204n5nfnL2(L + 1) ||wn = pll[|¢n — Pl
+20m Y L(L + 1)[tn = 160 = Il + 20 BuLlun — p[[1n — o

+28altn = PllIGn = pll + 20 (G Gn = Cnv (o = 2)

+200, (G — 15§ (Cn — P))-

(1= an)?[|Ga-1 = p* + 20 Llon(L + 1) + B + 6 + Yl [Gn1 = PllIGn — 7
+2an5nL2(L + 1)2||<n - pHQ + 205n5nfnL2(L + 1) ||wn = pll[[¢n — Pl
+20 Y L(L + 1)[vn = pllI6n = Il + 28n(@nL + 1) un = plllI¢n — pl

+200 (G Cu = G (Cn = P)) + 20m{Gn = 2,5 (Gn = D)

(1= an)?[Gne1 = pI* + 200 Llan(L + 1) + Bu + 0 + Yl l6n-1 = pllGn =
+200 L2 (L + 1[G — pII? + 20m0n f L2(L + 1) [, = p[[1Ga — ]
+20 9 L(L + 1)[[v = 60 = Il + 280 (L + 1) lun = p1l[1Gn — p]

+200 (G Cu = G (Gn = P)) + 20m (G = 2, (G = P))- (3.11)

Setting M = max{sup{u, — p||},sup{v, — pl|},sup{w, — p||},n > 1} and noting that

1Gn—1 = 26 = 2l < 3(I¢n-1 =PI + [I1Ga = pII*),

lun = plllIGe = Pl < 5(lun = pI* + [I6n — 2I%),

Vn > 1, (3.12)
[on = plllIGn = Il < 5o — 21> + 160 — 2II?),
[wn = pllI¢n — 2l < 5(lwn = pII* + 11¢n — pII?), )
we obtain
HCn —p||2 < (1 - O‘n)2||gn—1 _pH2

IN

1
+2ap Llom(L +1) + B + 6n + 9] X 5 ([G1 = pI* + 1160 = pII*)

+20,6, L*(L + 1)?||C — pl|* + 2000, frn L2 (L + 1)

1 1
x5 ([lwn — Pl +11¢n = pII*) + 205 m L(L + 1) x 5 Ulon = pl? + 11G — 2l1%)

280(L 1) x L (I + G0 )

+200/[Gu = PII? + 200 (G Co = Cas (G = D))

{(1 = ) + anLlon(L 4+ 1) + B + 00 + Yl G — plI?

+{an Lo (L4 1) + By + 6 + Y] + 20,0, L (L 4 1)?
F0n 0 fn L2 (L + 1) + anYn L(L + 1) + B (L + 1) + 200, }| G — pl|?
Fn0p frn L*(L + 1) My + apyn L(L 4+ 1) My + B (L + 1) M,

+2an<G?((:))Cn = Gns J(Cn = p))- (3.13)
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By (3.4), for the point (, € K and p € S, there exists j((, — p) € J({, — p) such that

<Gil((:))gn - Cn:.](Cn _p)> S _)‘HG?((:))CR - Cn” + ,un(b(”(n - p”) + fm vn Z 1.

Since ¢ is a strictly increasing function, it follows that ¢(¢) < ¢(M), if ¢ < M; ¢(¢) < M*¢?,if ¢ > M. In
either case, we can obtain

$(C) < H(M) + M*¢. (3.14)
Hence from (3.13) and (3.14), we have

16 =plI> < {1 = an)? + 20n L]an(L 4 1) + o + 0 + 7] HI G — ol
+{anLon (L + 1) 4 Bn + 0 + Y] + 20000, L3(L + 1)?
+04n5nfnL2(L + 1) + anym L(L + 1) + Bu(L + 1) + 20, }|Cn _pH2
0O fuL? (L + 1) My + anyn L(L 4+ 1) My + B (L + 1) M,
+20{ =G Gn = Gall? + (1o = PI) + &0}

Using (3.14) in (3.15), then we obtain

16— 21> < {(Q = an)? + 20 Llan(L + 1) + By + 6n + Yl |Gt — pl?
+{an Lo (L 4+ 1) + By + 6 + Y] + 20,0, L(L 4 1)?
+20,0n fa L2 (L 4 1) 4+ anyn L(L 4 1) + Bu(L + 1) 4 20, }|G — ||
+an(5nfnL2(L + 1)M1 + an’YnL(L + 1)M1 + /Bn(L + 1)M1 + 20‘nun¢(M)
+20mpin MG = D2 + 20mEn — 20 A |G G — Gl

< {(1- an)2 + 20 L{an (L + 1) + B + dn + Yl HIGno1 — pHQ
HanL{on(L+1) + By + 6n + o] + 2006, L3 (L + 1)°
0 bn fu L2 (L + 1) + anyn L(L + 1) + 20ty M* + B (L + 1) + 200, }| G — plI?
+andn faL?(L + 1) My + anyn L(L + 1) My + By (L + 1) My + 2001, (M)
+20n&n — 20n | GH) G — Cal?

= TllGa1 = PIP + vallGo — I + @ — 20m MG G — Gall?, (3.15)

where
T = (1= an)?+ 20 L{o (L + 1) + B + 60 + Yl

Vn = anLlan(L+1)+ Bn + 0 + Yn) + 20,6, L (L + 1)
0O frn L2(L + 1) 4 anyn L(L + 1) 4 20t M* + B (L 4 1) + 20, and
@Wn = apdpful?(L4 1)My + anyn L(L + 1)My 4 Bn(L + 1) My + 20, pind(M)
+2a,&p.
From (3.15) we have,

Tn W, 20 A h(n
0= pP < [T lowmn —alP 4 2 = | 222 160G - Gal?

(3.16)
20\
1—v,

9 w
- [1+ L } |2n_1 — p|I* + . L [

h(n) 2
e 16186, - e

where
In=Tn+vn—1 = a2 +3a,Lian(L+1)+ B+ 0 + 7
+200,0, L2 (L 4 1) + a0 fn L2 (L + 1)
+an W L(L+ 1) + 20 pn M* + (L + 1).



A E. Ofem, Results in Nonlinear Anal. 3 (2020), 100-116 110
Since lim a,, = 0, it follows from the conditions (ii) and (iii) that

n—oo

Vn = anL(an(L+1) 4 Bn + 0p + V) + 20,0, LA(L + 1)

Fn0p fnL*(L + 1) + anYn L(L + 1) + 20, ptn M* + Bn(L + 1) + 20, — 0 as n — oo,

therefore, there exists a number ng such that 1 — v, > %, for any n > nyg.
Hence, we have

16n — pH2 < [T+ 29,](I6-1 —pH2 + 2wy, — 2an/\HGZ(n) CnH2

= [1+bn]l[¢n-1 — p”2 +cn — 2O‘n)‘”Gi(n) Cn — Cn”2 (3.17)

< [1 + bn]HCn—l - pH2 + cp,

oo
where b, = 2¢,, and ¢, = 2w,. From the conditions (ii) and (iii), it easy to see that > b, < oo and

n=1

o0
> ¢n < 00. It follows from Lemma 2.2 that

n=1

lim ||¢,—p||? exists and so also lim ||¢,, —p|| exists, therefore, {(,} is bounded, hence there exists a constant

My > 0 such that HCn —p|| € My, ¥n > 1. Tt follows from (3.17) that

2an)\HG Cn“ < ||Cn71 _p||2_ ||Cn_p‘|2+bn”§nfl _p||2+cn
< léa=1 = plI* = lI¢n = pII® + b Mo + cn, ¥n > no.
Thus,
h(
2) Z o5 |GE G = Gill < 16ny — pIP + Mo Z bj + Z
Jj=no+1 Jj=no+1 Jj=no+1
and hence,
oo oo
h
2 Z anl[GICn = Gall < 1l — I+ M2 > b+ > e
n=1 n=1

Since ). b, <ooand ) ¢, < oo, it follows from (3.18) that
J=no+1 n=1

ZanHGz(n Cn”2 < 0.

Since ) o, = oo, then from (3.19), we must have that
n=1

lim inf [|G, — G Gul| = 0.
n—o0
Notice from (1.18) that

”Cn - Cnfln = ||(1 — Qp — Bn)Cnfl + anGl((:)nn + Brun — CanH

lon (Gl 1 = Ga1) + Bt — G|

O‘n(HGZ(n N = DIl + [|G—1 = pII) + Bnl(un — Gu—1)|
an (Ll = pll + [[Ga=1 = plI) + B (un — Ca—1)]-

IN A

(3.18)

(3.19)

(3.20)

(3.21)
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Since lim ||, — p|| exists for all p € & and therefore {||(;, —p||} is bounded. Since follows from lim «, =0,
n—oo n—oo

then using (3.7) and the restrictions (ii), that we obtain
lim ||¢, — Cn—1]] = 0. (3.22)
n—oo

This implies that
lim |Gy — ol =0, V1 =1,2,...N. (3.23)
n—oo

Since for each n > N, n = (h(n)—1)N+i(n), where i(n) € {1,2,..., N}, thenn—N = (k(n)—1)N+i(n)—N =
[(h(n) —1) = 1]N +i(n) = (h(n — N) — 1)N 4+ i(n — N), thus h(n — N) = h(n) — 1 and i(n — N) = i(n),
hence, we see that

HCn - Gi(n)CTLH < Hgn - Z(n CnH + HG Gi(n)CnH
< en -Gl <nr| + L(HGZ(,?) lqn — G Gl
+HGi(n,N)Cn—N - Cn—NH + HCn—N - CnH) (3-24)
Notice that h(n — N) = h(n) — 1 and i(n — N) = i(n). Thus, it implies that
h(n)—1 h(n)—1 h(n)—1 h(n)—1
”Gi((n)) Cn - Gi((nzN)Cn—NH = HGi((n)) Cn - Gi((n)) Cn—NH
< L||¢n = Cn-nll (3.25)
and
h(n)— h(n—N
HGi((nle)C”*N - CH*NH = HGZ'((n_N))Can - CanH~ (326)

Substituting (3.25) and (3.26) into (3.24)
160 = GigGnll < 116w — Gl Gall + L(ZNGn — Gnow
HGH ) 6N = Gaw [l + [Gnn = Gall)-
It follows from (3.20) and (3.23) that
Tim G = GignGall = 0. (3.27)

In particular, we see that

lim [[¢unvy1 — Gilun1]l =0,
h—o0

hli_{IOlo [Chnv+2 — Galuny2|l = 0, (3.28)

lim ||¢hven — GNCGunen]| = 0.
h—o0

For any t,s = 1,2,...N, we obtain that

N

ICan+s — GeCantsll < ICuN+s — Canvell + |Chn+t — GeCpnell
+|Gihn+t — GiChns]|
(14 L) ||Chn+s — Canvtell + [[Chnvt — Gelhntell-

IN
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Letting h — oo, we obtain
lim |[(hn4s — GiChnsl| =0, (3.29)
h—o0

which is equivalent to

[¢n = GiCall = 0. (3.30)

lim
n—oo

This completes the proof of Lemma 3.1.

Theorem 3.2. Let E be a real Banach space and let K be a closed conver subset of E. Let {Gi}N., : K - K
be a finite family of uniformly L;-Lipschitzian (N, {iin}, {&in}, ¢:)—total asymptotically strictly pseudocon-
tractive mappings such that & = ﬂfil F(G;) #0. Let {un},{vn} and {w,} be bounded sequences in K. Let
{an}, {Bn}, {00}, {m},{en} and {fn} be siz real sequences in [0,1] such that o, + Bn < 1, 6n + v < 1 and
en + fn < 1. Assume that the following conditions are satisfied:

(1) Dnlq n = 00;
(1) 3opey i < 00, 35074 iy < 00, 30071 b < 00, 307 1 iy < 00,
Yoo O frn < 00, 7 O fly < 00, > 0y Ay < 00;
(ii6) 300, B < o;
(iv) oo, L?[1 + e (L —1)] < 1, where L = max{L; : 1 <i < N}.

Let {(,} be the iteration process generated by (1.18), for arbitrary (o € K. If one mapping in {G1,Ga, ..., GN}
is semicompact, then the sequence {(,} converges strongly to some point in 3.

Proof. Without loss of generality, we may assume that G is semicompact. It implies from (3.30) that
lim ||(, — G1G,|| = 0. (3.31)
n—o0

Since G is semicompct, then definitely there exist a subsequence {(p,} of {¢,} such that {¢,,} = g € K
strongly. From (3.30), we obtain

lg = Gigll < llg = Gngll + 160y = GiGn, [l + GiCny — Gigll-

Since G is Lipschitz continuous, we have that g € §. From Lemma 3.1, we know that h_)m |¢n — p| exists
n—oo
for each p € Q. This immediately implies that lim ||, — g|| exists. Notice that from {(,,} — g € K, we
n—o0
finally obtain

Jim |6, — gl = 0. (3.32)

This completes the proof.
The following results can be obtain immediately from Theorem 3.2.

Corollary 3.3. Let E be a real Banach space and let K be a closed convex subset of E. Let {G;}Y, : K — K
be a finite family of uniformly L;-Lipschitzian (N, {pin}, {&in}, ¢i)—total asymptotically strictly pseudocon-
tractive mappings such that & = NN, F(G;) # 0. Let {u,} and {v,} be bounded sequences in K. Let
{an}, {Bn}, {0n} and {vn} be four real sequences in [0,1] such that o, + Bn < 1 and 0p, + v < 1 . Assume
that the following conditions are satisfied:

(1) > ey an = 00;
(7’.7’.) ZZL 047% < 00, Zzozl anﬁn < 00, Zflozl andy < o0, Zzozl OnYn < 00,
Dot Onbn < 00, 3507 anéy < 005
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(Z'Z'Z) Z’?Lozl /Bn < 005
(i) an0pL? < 1, where L = max{L;:1<i< N}.

For arbitrary (o € K, let {(,} be the iteration process generated by

CO € K’
Cn=(1—0an—PBn)ln-1+ anG?((nn))Tln + Brtn, Vn > 1. (3.33)
M= (1 =060 — Yn)Cn-1+ 5nG?((7:L))Cn + YnUn.

If one mapping in {G1,Ga, ..., GN} is semicompact, then the sequence {(,} converges strongly to some point
n .

Proof. Set e, = f,, = 0 in Theorem 3.2.

Corollary 3.4. Let E be a real Banach space and let K be a closed convex subset of E. Let {Gi}g\il K —- K
be a finite family of uniformly L;-Lipschitzian (N, {iin}, {&in}, ¢i)—total asymptotically strictly pseudocon-
tractive mappings such that S = ﬂf\il F(G;) # 0. Let {an} and {0} be real sequences in [0,1]. Assume that
the following conditions are satisfied:

(i) 220:1 Qn = 00;

(7’7’) Z?LOZI OZ% < OO, Z?LOZI an(sn < OO; 22021 Oén/in < OO, Z;.Lozl O‘nEn < OO;'
(iii) 6, L? < 1, where L = max{L; :1<i < N}.
For arbitrary (o € K, let {(,} be the iteration process generated by

CO € K7
Cn = (1 - an)(nfl + anG?((:))nnv Vn > 1. (334)
M = (1= 0n)Gn1 + 0G0 o

If one mapping in {G1,Ga,...,GN} is semicompact, then the sequence {(,} converges strongly to some point
n .

Proof. Set 3, = v, = 0 in corollary 3.3.

Corollary 3.5. Let E be a real Banach space and let K be a closed convex subset of E. Let {Gi}fil K — K
be a finite family of uniformly L;-Lipschitzian (N, {iin}, {&in}, ¢i)—total asymptotically strictly pseudocon-
tractive mappings such that § = ﬂzj\il F(G;) # 0. Let {an} and {B,} be real sequences in [0,1]. Assume that
the following conditions are satisfied:

(1) D onsq n = 00;
(7;7;) Zzozl a%z < 00, ZZO:I o B < 00, 220:1 Oy, < OO, 220:1 anén < 00y

(iii) > o 1 Bn < 00.
For arbitrary (o € K, let {(,} be the iteration process generated by

“€ K, Vn > 1 3.35
Cn = (1 — Op — Bn)Cn—l + OénG?((:))Cn—l + 5nun =t ( . )

If one mapping in {G1,Ga, ..., GN} is semicompact, then the sequence {(,} converges strongly to some point
n .

Proof. Set 6, = v, = 0 in corollary 3.3.
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Corollary 3.6. Let E be a real Banach space and let K be a closed convex subset of E. Let {G;}Y, : K — K
be a finite family of uniformly L;-Lipschitzian (N, {pin},{&in}, @i)—total asymptotically strictly pseudocon-
tractive mappings such that ¥ = ﬂfil F(G;) # 0. Let {an} be a real sequences in [0,1]. Assume that the
following conditions are satisfied:

(Z) E;.Lozl Qp = O0;
(i) Z;.Lozl a% < 00, Z’Zozl Qplbn < 00, Zﬁil an&p < 0.

For arbitrary (o € K, let {(,} be the iteration process generated by

0 € X, Vn > 1 3.36
Cn = (1 - an)Cn—l + anG?((:))Cn—l- =t ( . )

If one mapping in {G1,Ga,...,GN} is semicompact, then the sequence {(,} converges strongly to some point
n .

Proof. Set 5, = 0 in corollary 3.5.

This is just to state but a few of the numerous results that can be obtain from Theorem 3.2.

4. Conclusion

Since our new implicit iteration process properly includes the iterative schemes considered by Osilike [24],
Gu [13], Su and Li [34], Igbokewe and Ini [16], Xu and Ori [40], Chen [6], Saluja [29] and owing to the fact
that the class total asymptotically strictly pseudocontractive mapping is more general than the classes of
nonexpasive, asymptotically A— strictly pseudocontractive and asymptotically A— strictly pseudocontractive
mappings in the intermediate sense, then it follows that the results of Osilkie [24], Gu [13], Su and Li [34],
Igbokewe and Ini [16], Xu and Ori [40], Chen [6], Saluja [29] are special cases of Theorem 3.2. Hence, our
results generalize, extend, improve and complement their results and several other results in the literature
relating to this class of mappings.

Acknowledgement. The author is grateful to Professor Donatus Tkechukwu Igbokwe (Department of
Mathematics, Michael Okpara University of Agriculture, Umudike, Nigeria) for his mentorship and thorough
guidance in Functional Analysis and to the reviewers who painstakingly read through the paper for their
useful contributions and comments which helped to improve this paper.
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