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ON THE EXISTENCE OF SOLUTION FOR AN INVERSE PROBLEM

C. TAJANI1, J. ABOUCHABAKA1, N. SAMOUH2 §

Abstract. We consider a boundary detection problem. We present physical motiva-
tions. We formulate the problem as a shape optimization problem by introducing the
Neumann condition of the accessible part in a cost functional to be minimized, which
complicates the study of continuity state that requires more regularity of the free bound-
ary. We show the existence of the optimal solution of the problem by the J. Haslinger
and P. Neittaanmäki principle.
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1. Introduction

Inverse problems can be found in many realistic engineering applications, such as the
determination of the boundary conditions [4], [11], material properties [12], applied force
[9], boundary position [8], etc.
In this paper we are interested in the inverse problem of determining the location of the
unknown and damaged boundary from the data collected on the accessible part of the
boundary.
In the boundary detection problem, which is also known as the geometry identification
problem, the materials used as electrical conductors, electromagnetic elements are subject
to wear by corrosion or by direct contact with other elements causing a material loss or
cracks, as for instance pipes transporting water, gas, chemically aggressive fluids or body-
work of aircraft, cars, etc, whose surfaces have been damaged by a corrosion attack. A
very important issue in the nondestructive testing of materials [2], [5], [10] is the ability
to detect possible defects (cracks, fractures for example) inside the material. In practice,
it often happens that such surfaces are not accessible to direct inspection, hence in order
to detect the possible presence of corrosion one has to rely on measurements only per-
formed on the accessible part of the specimen surface. Our problem is to estimate this
loss, or place of crack which is to determine the unknown part of the boundary that has
suffered corrosion by making measurements of voltage and current on the known parts of
the boundary.
This type of problem is known to be severely ill-posed, whose solution does not depend
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continuously on the boundary data, i.e. a small error in the measured data may result an
enormous error in the numerical solution.
In this paper, the boundary detection problem is governed by the Laplace equation, the
Cauchy data is given on part of the boundary Γ1 and the Robin boundary condition on
the two other parts of the boundary Γ0 and Σ, whose spatial position of Γ0 is unknown
a priori, and we are interested in determining the location of the unknown and damaged
boundary Γ0 from the data collected on the accessible part of the boundary Γ1 by formu-
lating the problem in a problem of shape optimization.
In many work of boundary detection problem, on the part of the boundary to be deter-
mined, called free boundary, we have two conditions, and to proceed to a formulation
in shape optimization problem, we introduce one of the two conditions in a cost func-
tional to minimize [1]. We use the same principle by introducing this time one of the two
measurements obtained on the accessible part, especially the Neumann condition which
complicates the study of continuity State that requires more regularity of the free bound-
ary. Then; we show that our problem has at least one solution, which is to show that the
set of the solutions of the shape optimization problem is compact and the cost functional
is semi continuous inferiorly.
The second section is devoted to physical model and presentation of the mathematical
formulation of the boundary detection problem. In section 3; we formulate the problem
in a shape optimization problem. Section 4 presents the existence of the optimal solution
of the problem based on the principle of J. Haslinger & P. Neittaanmäki.

2. Mathematical formulation

2.1. The physical model. We consider a perfect dielectric materiel damaged, repre-
sented by a bounded domain in two dimension ( Ω ⊂ R2).
∂Ω is the boundary of Ω, where ∂Ω = Γ0 ∪ Γ1 ∪ Σ.
Γ1 and Σ are the known parts of the boundary ∂Ω,
Γ0 is the unknown part of the boundary ∂Ω,
Γ0,Γ1 and Σ are disjoints.
To determine material loss occurring on the part Γ0 ⊂ ∂Ω, measurements of tension are
taken on the accessible part of the boundary ∂Ω. i.e. We want to calculate the electric
field in the concerned domain. The problem is modeled by Maxwell’s equations that are
written in the form: {

divD = ρ (1.1)
rotE = 0 (1.2)

in Ω (1)

where ρ is the density of electric charge E and D is the induction electric (or electrical
displacement).
We add to these two equations, the constitutive law for a perfect medium: D = εE,
where ε is the constant that characterizes the medium in question called dielectric permit-
tivity of the medium. We can reduce the problem (1) into scalar problem by remarking
that (1.2) implies the existence of a function u called potentiel such that:

E = −grad u.

Substituting this equation in (1.1) and taking into account the constitutive equation, we
get:

−div(εgradu) = ρ
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since ε is a constant, we obtain the Poisson equation:

−∆u = ρ
ε

which becomes a Laplace equation in the absence of electrical source,(i.e. ρ = 0)
whether;

−∆u = 0 in Ω (2)

In this equation, we add boundary conditions:
Assuming that the part of the boundary Γ1 bears a given density of electric charge ρ(x)
and the outside domain of Ω is a perfect conductor, leads to boundary conditions (trans-
mission condition): {

E ∧ ν/Γ1
= 0 (3.1)

D.ν = −ρ(x) (3.2)
on Γ1 (3)

where ν is the unit outward normal vector Γ1.
(3.1) shows that the tangential component of u in Γ1 is zero, i.e. that u must remain
constant on Γ1. Hence an inhomogeneous boundary condition on Γ1 (u = f).
(3.2) expresses that the normal component of u is continuous at the traversal of Γ1. Hence
an inhomogeneous Neumann condition on Γ1 (∂u∂n = g).
On Σ and Γ0, we consider a mixed condition which expresses that the given potential by
the system is proportional to the difference between the potential of the system and that
of the external environment.
Hence; {

α0u+ β0
∂u
∂n = h on Σ

α1u+ β1
∂u
∂n = q on Γ0

(4)

where αi and βi , for i = 0, 1 are the exchange coefficients.

2.2. Formulation of the inverse problem. In this study, the boundary detection prob-
lem considered is governed by the two-dimensional Laplace’s equation. The governing
equation and the corresponding boundary conditions are demonstrated as follows:

For f ∈ L2(Γ1), g ∈ L2(Γ1), h ∈ L2(Σ), q ∈ L2(Γ0);
−∆u = 0 in Ω

u = f, ∂u∂n = g on Γ1

α0u+ β0
∂u
∂n = h on Σ

α1u+ β1
∂u
∂n = q on Γ0

(5)

where f, g, h, q, α0, β0, α1 and β1 are a given functions.
∂u/∂n is the normal derivative of u, Ω is the computational domain and ∂Ω = Γ0∪Γ1∪Σ
(Γ1,Σ and Γ0 are disjoints).
The spatial position of Γ0 is unknown apriori. Then, the purpose of the boundary detec-
tion problem is to find the solution of the Laplace’s problem u, and the spatial position of
the boundary portion Γ0 .
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3. Shape optimization formulation

We propose a formulation in a shape optimization problem which consists in including
the Neuman condition on Γ1 in a cost functional and in varying the domain Ω in class of
domain, which will be define later by θad.
A formulation of the problem (5) in shape optimization can be written as:
Find Ω∗ ∈ θad solution of:

ȷ(Ω∗) = minΩ∈θad ȷ(Ω) where ȷ(Ω) =
∫
Γ1
(∂uΩ

∂n − g)2dσ

and uΩ solution of :

(P.E)


−∆u = 0 in Ω
u = f on Γ1

α0u+ β0
∂u
∂n = h on Σ

α1u+ β1
∂u
∂n = q on Γ0

(6)

The problem (6) is well-posed if for any element of θad , the state equation (P.E) has a
unique solution and if ȷ(Ω) is well defind.
ȷ(Ω) is well defind assuming that ∂u

∂n ∈ L2(∂Ω).

3.1. Study of the state problem. We will show that the state problem (P.E) has a
unique solution.

3.1.1. The variational form: Let D be a bounded open domain in R2 such that Ω ⊂ D
and u the solution of the problem (P.E).

We take h1 = f on Γ1 and suppose that f ∈ H
1
2 (Γ1).

By utilizing the trace application in H
1
2 (∂D), it exist U0 ∈ H1(D) such that U0 = h1 on

Γ1.
We define the space HD(Ω) = {v ∈ H1(Ω)/v/Γ1

= 0}.
Assume that u ∈ H1(Ω) , by applying Green’s formula, we get:

∀v ∈ HD(Ω),∫
Ω∇u.∇vdxdy + α0

β0

∫
Σ u.vdσ + α1

β1

∫
Γ0

u.vdσ =
∫
Σ

h
β0
.vdσ +

∫
Γ0

q
β1
.vdσ.

Then, the problem (PE) is equivalent to:{
Find u such that u− U0 ∈ HD(Ω) and∫
Ω∇u.∇vdxdy + α0

β0

∫
Σ u.vdσ + α1

β1

∫
Γ0

u.vdσ =
∫
Σ

h
β0
.vdσ +

∫
Γ0

q
β1
.vdσ

(7)

if we set ω = u− U0, we obtain the problem:
Find ω ∈ HD(Ω) such that∫
Ω∇ω.∇vdxdy + α0

β0

∫
Σ ω.vdσ + α1

β1

∫
Γ0

ω.vdσ

= −
∫
Ω∇U0.∇vdxdy + 1

β0

∫
Σ(h− α0U

0).vdσ + 1
β1

∫
Γ0
(q − α1U

0).vdσ

(8)

3.1.2. Existence and uniqueness of the solution: We consider the bilinear form:

a(ω, v) =
∫
Ω∇ω.∇vdxdy + α0

β0

∫
Σ ω.vdσ + α1

β1

∫
Γ0

ω.vdσ (9)
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and the linear form:

l(v) = −
∫
Ω∇U0.∇vdxdy + 1

β0

∫
Σ(h− α0U

0).vdσ + 1
β1

∫
Γ0
(q − α1U

0).vdσ (10)

For showing the existence and the uniqueness of the problem (8), we use the Lax-Miligram
lemma. Then, it suffices to show that the bilinear form a is continuous and coercive;
and the linear form l is continuous in HD(Ω) equipped with the norm |φ|1,Ω where

|φ|1,Ω = (
∫
|∇φ|2dx)

1
2 .

4. existence of the optimal solution:

The schematic diagram for the boundary detection problem

We suppose that Γ0 is defined by a graph of a continuous function y = φ(x).
Let Γ0 = {(x, y)/y = φ(x), x ∈ [0, 1]}

We define Ω by: Ω = Ω(φ) = {(x, y)/0 < x < 1, 0 < y < φ(x)}
and ȷ is in the form of: ȷ(Ω(φ)) =

∫ 1
0 (

∂uΩ
∂n (x, 0)− g)2dx =

∫ 1
0 (

∂uΩ
∂n (x)− g)2dx

we define the space Uad and the family of domain θad by:

Uad =


φ ∈ C1[0, 1]/c1 ≤ φ(x) ≤ c2 for x ∈ [0, 1], φ(0) = a;φ(1) = b

|φ′
(x)| ≤ K for x ∈ [0, 1]

|φ′
(x)− φ

′
(x

′
)| < c0|x− x

′ | for x, x
′ ∈ [0, 1]


θad = {Ω(φ)/φ ∈ Uad}
where c0, c1 and K are a given strict positives constants.

4.1. Compacity of F1. We define the set:

F1 = {(Ω, ω(Ω))/Ω ∈ θad and ω(Ω) is solution of (8) in Ω} (11)

Then the shape optimization problem is as follows:

Minimize ȷ(Ω, ω(Ω)) for (Ω, ω(Ω)) ∈ F1 (12)

The existence of the optimal solution of (12) is assured if F1 is compact and if the func-
tional ȷ is semi-continuous inferiorly in F1.



38 TWMS J. APP. ENG. MATH. V., N., 2011

We define a topology in θad by:

Definition 1: Let Ωn = Ω(φn) a sequence in θad and Ω = Ω(φ) element of θad

Ωn → Ω ⇔ φn → φ uniformly on [0, 1] (13)

The domains of family θad are Lipschitz boundary; we can uniformly extend any function
ω of HD(Ω) in a function ω̃ on H1(D) [3].

Proposition 1: It exist a constant c such that ∀Ω ∈ θad, ∀ω ∈ HD(Ω). It exist ω̃
extension of ω in H1(D) that verify:

∥ω̃∥1,D ≤ c∥ω∥1,Ω in ω̃/Ω = ω p.p on Ω.

For any sequence (Ωn)n of θad, we associate the sequence of solution ωn = ω(Ωn) of (8)
on Ωn for all n. We define the convergence of ωn to ω = ω(Ω) such a weak convergence of
the uniform extension of ωn to the uniform extension of ω in H1(D), and we can write:

ωn ⇁ ω ⇔ ω̃n → ω̃ in H1(D)-weak (14)

Then, we can define a topology on F1 by:

Definition 2: let (Ωn, ωn) a sequence of (Ωn, ωn) and (Ω, ω) element of F1. We define
the convergence of (Ωn, ωn) to (Ω, ω) by:

(Ωn, ωn) → (Ω, ω) ⇔
{

Ωn → Ω in the sens of (13)
ωn ⇁ ω in the sens of (14)

(15)

We use the following theorem that give the existence and the solution of the problem
(12)[6].

Theorem 1: If F1 is compact and the functional J is semi continuous inferiorly, then
(12) admits at least one solution.

4.2. Compacity of F1. For this, we should study the compacity of θad for the conver-
gence (15) and the continuity of the state equation.

4.2.1. Compacity of θad. It suffices to show that Uad is compact in C1([0, 1]).
Indeed; let (φn)n a sequence of Uad.
According to Ascoli-Arzela theorem [6], it exists a subsequence that we note (φn)n and a
continuous function φ in [0, 1] such that φn → φ in [0, 1], in addition, φ isK-Lipschitzienne.

More; (φn) ∈ Uad, then (φ
′
n) is equicontinuous, therefore, relatively compact. It exists then

a continuous element φ∗ and a subsequence of (φ
′
n) also noted (φ

′
n) that converge to φ∗.

Otherwise; (φn) is a sequence of derivable function in [0, 1], (φn(.)) converge to φ and

(φ
′
n) uniformly converge in [0, 1]. According to the theorem of derivability of sequence, we

deduce φ∗ = φ
′
.

And we has φn(x) → φ(x) in [0, 1] since φn(0) = a ⇒ φ(0) = a
and φn(1) = b ⇒ φ(1) = b.
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We deduce that φ ∈ Uad

Thus; Uad is compact in C1([0, 1]).

4.2.2. Continuity of the state: Whether (Ωn)n a sequence in θad, we can extract a subse-
quence, denoted again (Ωn) such that: Ωn → Ω (Compacity of θad).
We define: HD(Ωn) = {v ∈ H1(Ωn)/v/Γ1

= 0}.

Whether ωn = ω(Ωn) solution of (8) on Ωn, we have:
ωn ∈ HD(Ωn) , ∀vn ∈ HD(Ωn)∫

Ωn
∇ωn.∇ vndxdy +

α0
β0

∫
Σn

ωnvndσ + α1
β1

∫
Γ0,n

ωnvndσ

= −
∫
Ωn

∇U0∇vndxdy +
1
β0

∫
Σn

(h− α0U
0)vndσ + 1

β1

∫
Γ0,n

(q − α1U
0)vndσ

(16)

We cite the following results that will be useful later:

Proposition 2:[7] If Ωn is a sequence of θad and Ω element of θad such that : Ωn → Ω
then:

χΩn → χΩ in L∞(D)− weak∗
in addition, :

limn→∞
∫
D(χΩn − χΩ)

2fdx = 0, ∀f ∈ L1(D)

χA denote the characteristic function of a measurable set A.

Theorem 2: For Ωn ∈ θad and for ωn ∈ HD(Ωn), it exists ω̃n extention of ωn in H1(D)
and c constant such that: ∥ω̃n∥1,D ≤ c .

We define H0(D) = {v ∈ H1(D)/vΓ1∪(∂D\∂Ω) = 0} equipped with the norm induced

by H1(D).

Lemma: H0(D) is dense in HD(Ω) for the norm H1(Ω).

Theorem 3:(Theorem of continuity) There exists an extension ω̃n of ωn in H1(D)
which converge weakly in H1(D) to a limit which we denote ω̃ such that its restriction on
Ω is a solution of (8) in Ω.
i.e. There exists ω̃n uniform extension of ωn in H1(D) such that:

ω̃n ⇁ ω̃ weak - H1(D) and ω̃/Ω = ω ∈ HD(Ω)

and ω satisfies the variational formulation of (8) ∀v ∈ HD(Ω).
Therefore; ω̃n + U0 ⇁ ω̃ + U0 in H1(D) weak.

Ũn = ω̃n + U0 (resp. Ũ = ω̃ + U0) is solution of (7) in (Ωn) ( resp. in Ω)

Proof. From the previous theorem (ω̃n)n is uniformly bounded.
So; we can extract a subsequence, still noted (ω̃n), which converges weakly to a limit
denoted ω̃.
That, it suffices to show that: ω̃/Ω = ω is a solution of the variational formulation.
To do this, we will show that both assertions are true:
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(i) ω̃/Ω = ω ∈ HD(Ω)

(ii)
∫
Ω∇ω.∇vdxdy + α0

β0

∫
Σ ω.vdσ + α1

β1

∫
Γ0

ω.vdσ

= −
∫
Ω∇U0.∇vdxdy + 1

β0

∫
Σ(h− α0U

0)vdσ + 1
β1

∫
Γ0
(q − α1U

0)vdσ,∀v ∈ H0(D)

(i) We have ω̃/Ω = ω ∈ H1(Ω).
In addition; we have:

ω̃n ⇁ ω̃ in H1(D)- weak.

and using the continuity and the linearity of the trace application from H1(D) to L2(Γ1)
we have:

ω̃n/Γ1
⇁ ω̃/Γ1

in L2(Γ1)-weak.

i.e. ∫
Γ1

ω̃n.vdσ →
∫
Γ1

ω̃.vdσ , ∀v ∈ H1(D)

and since; ∫
Γ1

ω̃n.vdσ → 0 then
∫
Γ1

ω̃.vdσ → 0

we have;

ω̃/Γ1
= 0

and then;

ω ∈ HD(Ω)

(ii) Remain to prove that ω verifies the variational formulation for v ∈ H0(D).
For every v ∈ H0(D) and any n, we have v ∈ HD(Ωn).
Therefore we have:∫

Ωn

∇ω̃n.∇vdxdy +
α0

β0

∫
Σ
ω̃n.vdσ +

α1

β1

∫
Γ0,n

ω̃n.vdσ

= −
∫
Ωn

∇U0.∇vdxdy +
1

β0

∫
Σ
(h− α0U

0).vdσ +
1

β1

∫
Γ0,n

(q − α1U
0).vdσ,

∀v ∈ H0(D)

By passing to the limit, when n → ∞, we get: ω̃Ω solution of :∫
Ω
∇ω̃.∇vdxdy +

α0

β0

∫
Σ
ω̃.vdσ +

α1

β1

∫
Γ0

ω̃.vdσ

= −
∫
Ω
∇U0.∇vdxdy +

1

β0

∫
Σ
(h− α0U

0).vdσ +
1

β1

∫
Γ0

(q − α1U
0).vdσ,

∀v ∈ H0(D).
Indeed; ∀v ∈ H0(D) , we put:
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I1 =
∫
Ωn

∇ω̃n.∇vdxdy −
∫
Ω∇ω̃.∇vdxdy

I2 =
∫
Σ ω̃n.vdσ −

∫
Σ ω̃.vdσ

I3 =
∫
Γ0,n

ω̃n.vdσ −
∫
Γ0

ω̃.vdσ

I4 =
∫
Ωn

∇U0.∇vdxdy −
∫
Ω∇U0.∇vdxdy

I5 =
∫
Γ0,n

(q − α1U
0).vdσ −

∫
Γ0
(q − α1U

0).vdσ

(17)

It suffices to prove that:

limn→∞I1 = 0 ; limn→∞I2 = 0 limn→∞I3 = 0
limn→∞I4 = 0 ; limn→∞I5 = 0

(18)

• For (I1); we have :

I1 =
∫
D(χΩn − χΩ)∇ω̃n.∇vdxdy +

∫
D χΩ(∇ω̃n −∇ω̃).∇vdxdy

Then :

|I1| ≤ |
∫
D(χΩn − χΩ)∇ω̃n.∇vdxdy|+ |

∫
D χΩ(∇ω̃n −∇ω̃).∇vdxdy|

On the one hand by Holder’s inequality;

|
∫
D(χΩn − χΩ)∇ω̃n.∇vdxdy| ≤

∫
D |χΩn − χΩ||∇ω̃n||∇v|dxdy

≤ [
∫
D |∇ω̃n|2]

1
2 [
∫
D(χΩn − χΩ)

2|∇v|2dxdy]
1
2

≤ ∥ω̃n∥1,D[
∫
D(χΩn − χΩ)

2|∇v|2dxdy]
1
2

According to the previous proposition and using the previous theorem, we have:

lim
n→∞

∫
D
(χΩn − χΩ)∇ω̃n.∇vdxdy = 0

Moreover; since we have the convergence: ω̃n ⇁ ω̃ in H1(D)- weak
And using the linearity of the application of gradient H1(D) in L2(D), we also
have :

∇ω̃n ⇁ ∇ω̃ in L2(D)- weak ;

And since χΩ∇v ∈ L2(D), we have:∫
D χΩ(∇ω̃n −∇ω̃).∇vdxdy = 0

Accordingly;

limn→∞I1 = 0.

• For (I2):
We have: I2 =

∫
Σ ω̃n.vdσ −

∫
Σ ω̃.vdσ =

∫
Σ(ω̃n − ω̃).vdσ.

Then, according to the continuity and the linearity of the trace application of
H1(D) in L2(Σ); we have:

limn→∞I2 = 0
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• For (I4):
Applying the inequality of Holder to the following inequality:

|I4| ≤ |
∫
D(χΩn − χΩ)∇U0.∇vdxdy|

We obtain:

|I4| ≤ ∥U0∥1,D[
∫
D(χΩn − χΩ)

2|∇v|2dxdy]
1
2

And since U0 ∈ H1(D) it exists c such that: ∥U0∥1,D ≤ c
And according to previous proposition, we have:

limn→∞I4 = 0

• For (I3) ,we have :

I3 =
∫
Γ0,n

ω̃n.vdσ −
∫
Γ0

ω̃.vdσ

=
∫
Γ0
(ω̃n − ω̃).vdσ +

∫
Γ0,n

ω̃n.vdσ −
∫
Γ0

ω̃n.vdσ

Using the linearity and the continuity of the trace application of H1(D) in L2(Γ0),
we have:

ω̃n/L2(Γ0) ⇁ ω̃/L2(Γ0) in L2(Γ0)- weak

hence;

limn→∞
∫
Γ0
(ω̃n − ω̃).vdσ → 0

on the other hand,∫
Γ0,n

ω̃n.vdσ −
∫
Γ0

ω̃n.vdσ

=
∫ 1
0 ω̃n(x, φn(x))v(x, φn(x))

√
1 + φ′

n(x)
2dx−

∫ 1
0 ω̃n(x, φ(x))v(x, φ(x))

√
1 + φ′(x)2dx

=
∫ 1
0 ω̃n(x, φn(x))v(x, φn(x))(

√
1 + φ′

n(x)
2 −

√
1 + φ′(x)2)dx

+
∫ 1
0 (ω̃n(x, φn(x))v(x, φn(x))− ω̃n(x, φ(x))v(x, φ(x)))

√
1 + φ′

n(x)
2dx

Let:

I3,1 =
∫ 1
0 ω̃n(x, φn(x))v(x, φn(x))(

√
1 + φ′

n(x)
2 −

√
1 + φ′(x)2)dx

and,

I3,2 =
∫ 1
0 (ω̃n(x, φn(x))v(x, φn(x))− ω̃n(x, φ(x))v(x, φ(x)))

√
1 + φ′(x)2dx

We have:

|I3,1| ≤ supx∈[0,1](|φ
′
n(x)− φ

′
(x)|)

∫ 1
0 ω̃n(x, φn(x))v(x, φn(x))dx

≤ supx∈[0,1](|φ
′
n(x)− φ

′
(x)|)(

∫ 1
0 (ω̃n(x, φn(x)))

2dx)
1
2 (
∫ 1
0 (v(x, φn(x)))

2dx)
1
2

According to theorem of the mean;

It exists x̄ ∈ [0, C] such that :
∫ 1
0 ω̃2

n(x, x̄)dx = 1
C

∫ C
0

∫ 1
0 ω̃2

n(x, y)dxdy
then:

ω̃n(x, φn(x)) = ω̃n(x, x̄) +

∫ φn(x)

x̄

∂ω̃n

∂y
(x, y)dy



C. TAJANI, J. ABOUCHABAKA, N. SAMOUH: ON THE EXISTENCE OF SOLUTION FOR ... 43

From which :

ω̃2
n(x, φn(x)) ≤ 2[ω̃2

n(x, x̄) + (
∫ φn(x)
x̄

∂ω̃n
∂y (x, y)dy)2]

≤ 2[ω̃2
n(x, x̄) + (φn(x)− x̄)(

∫ φn(x)
x̄ (∂ω̃n

∂y (x, y))2dy)]

then :∫ 1
0 (ω̃n(x, φn(x)))

2dx ≤ 2[
∫ 1
0 ω̃2

n(x, x̄)dx+ C
′ ∫ 1

0

∫ φn(x)
x̄ (∂ω̃n

∂y (x, y))2dydx]

≤ 2
c∥ω̃n∥L2(D) + 2C

′∥ω̃n∥1,D

Using the Poincare inequality, we have:

∫ 1
0 (ω̃n(x, φn(x)))

2dx ≤ C
′′∥ω̃n∥1,D ≤ k

As far as;

∫ 1
0 (v(x, φn(x))

2dx ≤ k
′

And since: supx∈[0,1](|φ
′
n(x)− φ

′
(x)|) → 0 pour n → ∞; then: limn→∞I3,1 = 0.

and we have:

|I3,2| ≤ |
∫ 1
0 (ω̃n(x, φn(x))v(x, φn(x))− ω̃n(x, φ(x))v(x, φ(x)))

√
1 + φ′(x)2dx|

≤ c
∫ 1
0 |ω̃n(x, φn(x))v(x, φn(x))− ω̃n(x, φ(x))v(x, φ(x))|dx

≤ c(
∫ 1
0 |ω̃n(x, φn(x))(v(x, φn(x))− v(x, φ(x)))|

+
∫ 1
0 |(ω̃n(x, φn(x))− ω̃n(x, φ(x)))v(x, φ(x))|)

≤ c(
∫ 1
0 (ω̃n(x, φn(x))

∫ φn(x)
φ(x)

∂v(x,y)
∂y dy)dx+

∫ 1
0 (

∫ φn(x)
φ(x)

∂ω̃n(x,y)
∂y dy)v(x, φ(x))dx)

By using Holder, we will have:

|I3,2|2 ≤ 2c2 supx∈[0,1] |φn(x)− φ(x)|(∥ω̃n(., φn(.))∥L2([0,1])∥v∥1,D
+∥ω̃∥1,D∥v(., φ(.))∥L2([0,1]))

≤ c
′
supx∈[0,1]|φn(x)− φ(x)|

The Uniform convergence of φn to φ in [0, 1] then: limn→∞I3,2 = 0
Hence :

limn→∞I3 = 0

And similarly, we show that: limn→∞I5 = 0

4.3. Semi-continuity of the cost functional. Considering (Ωk)k a minimizing sequence
of ȷ on θad
i.e.

limk→∞ȷ(Ωk) = minΩ∗∈θad ȷ(Ω
∗)

Based to the above, there exists a subsequence still noted (Ωk)k and an element Ω ∈ θad
such that Ωk → Ω.
The functional ȷ definied on θad by: ȷ(Ω) = ȷ(Ω, u(Ω)) =

∫
Γ1
(∂u∂n−g)2dσ is semi-continuous

inferiorly on θad
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Indeed;

ȷ(Ωk)− ȷ(Ω) =
∫
Γ1
(∂uk
∂n − g)2dσ −

∫
Γ1
(∂u∂n − g)2dσ

=
∫
Γ1
(∂uk
∂n − ∂u

∂n)(
∂uk
∂n + ∂u

∂n − 2g)dσ

≤ (
∫
Γ1
(∂uk
∂n − ∂u

∂n)
2dσ)

1
2 (
∫
Γ1
(∂uk
∂n + ∂u

∂n − 2g)2dσ)
1
2

≤ ∥(∂ũk
∂n − ∂ũ

∂n)∥L2(Γ1)(
∫
Γ1
(∂ũk
∂n + ∂ũ

∂n − 2g)2dσ)
1
2

We have:∥(∂ũk
∂n − ∂ũ

∂n)∥L2(Γ1) ≤ c∥ũk − ũ∥H1(D)

And since ũk → ũ in H1(D)

then ∥(∂ũk
∂n − ∂ũ

∂n)∥L2(Γ1) → 0
On the other hand;∫

Γ1
(∂ũk
∂n + ∂ũ

∂n − 2g)2dσ ≤ 3[
∫
Γ1
(∂ũk
∂n )2dσ +

∫
Γ1
(∂ũ∂n)

2dσ +
∫
Γ1

4g2dσ]

And since ∫
Γ1
(∂ũk
∂n )2dσ ≤ 2[

∫
Γ1
(∂ũk
∂n − g)2dσ +

∫
Γ1

g2dσ]

≤ c1

(
∫
Γ1
(∂ũk
∂n − g)2dσ = ȷ(Ωk) is bounded et g ∈ L2(Γ1))

and ∫
Γ1
(∂ũ∂n)

2dσ ≤ 2[
∫
Γ1
(∂ũk
∂n − ∂ũ

∂n)
2dσ +

∫
Γ1
(∂ũk
∂n )2dσ]

= 2[∥∂ũk
∂n − ∂ũ

∂n∥
2
L2(Γ1)

+ ∥∂ũk
∂n ∥2L2(Γ1)

]

≤ 2c2

( ∥∂ũk
∂n − ∂ũ

∂n∥
2
L2(Γ1)

→ 0 et ∥∂ũk
∂n ∥2L2(Γ1)

≤ c2)

then;
∫
Γ1
(∂ũk
∂n + ∂ũ

∂n − 2g)2dσ ≤ C
Hence;

ȷ(Ωk)− ȷ(Ω) → 0

Hence; the semi-continuity inferior of the cost functional.

5. Conclusion

In this paper, we have considered a boundary detection problem governed by Laplace’s
equation, with a Cauchy conditions in the accessible part of the boundary and Robin
condition on the inaccessible part and the other part of the boundary. We have proposed
a formulation of the problem in a shape optimization problem by introducing the Neumann
condition of the accessible part in a cost functional to be minimized. The existence of the
problem has been shown.
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